{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "21c9b695", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import csv\n", "import regex as re\n", "import nltk\n", "from collections import Counter, defaultdict\n", "import string\n", "import unicodedata\n", "\n", "def clean_text(text): \n", " return re.sub(r\"\\p{P}\", \"\", str(text).lower().replace(\"-\\\\n\", \"\").replace(\"\\\\n\", \" \"))\n", "\n", "def train_model(data, model):\n", " for _, row in data.iterrows():\n", " words = nltk.word_tokenize(clean_text(row[\"final\"]))\n", " for w1, w2 in nltk.bigrams(words, pad_left=True, pad_right=True):\n", " if w1 and w2:\n", " model[w2][w1] += 1\n", " for w1 in model:\n", " total_count = float(sum(model[w1].values()))\n", " for w2 in model[w1]:\n", " model[w2][w1] /= total_count\n", "\n", "\n", "def predict(word, model):\n", " predictions = dict(model[word])\n", " most_common = dict(Counter(predictions).most_common(5))\n", "\n", " total_prob = 0.0\n", " str_prediction = \"\"\n", "\n", " for word, prob in most_common.items():\n", " total_prob += prob\n", " str_prediction += f\"{word}:{prob} \"\n", "\n", " if not total_prob:\n", " return \"the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1\"\n", "\n", " if 1 - total_prob >= 0.01:\n", " str_prediction += f\":{1-total_prob}\"\n", " else:\n", " str_prediction += f\":0.01\"\n", "\n", " return str_prediction\n", "\n", "\n", "def predict_data(read_path, save_path, model):\n", " data = pd.read_csv(\n", " read_path, sep=\"\\t\", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE\n", " )\n", " with open(save_path, \"w\") as file:\n", " for _, row in data.iterrows():\n", " words = nltk.word_tokenize(clean_text(row[7]))\n", " if len(words) < 3:\n", " prediction = \"the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1\"\n", " else:\n", " prediction = predict(words[-1], model)\n", " file.write(prediction + \"\\n\")\n" ] }, { "cell_type": "code", "execution_count": 2, "id": "e39473e2", "metadata": {}, "outputs": [], "source": [ "with open(\"in-header.tsv\") as f:\n", " in_cols = f.read().strip().split(\"\\t\")\n", "\n", "with open(\"out-header.tsv\") as f:\n", " out_cols = f.read().strip().split(\"\\t\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "bde510c9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['FileId', 'Year', 'LeftContext', 'RightContext']" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "in_cols" ] }, { "cell_type": "code", "execution_count": 4, "id": "0e8b31dd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['Word']" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "out_cols" ] }, { "cell_type": "code", "execution_count": null, "id": "7662d802", "metadata": {}, "outputs": [], "source": [ "data = pd.read_csv(\n", " \"train/in.tsv.xz\",\n", " sep=\"\\t\",\n", " on_bad_lines='skip',\n", " header=None,\n", " # names=in_cols,\n", " quoting=csv.QUOTE_NONE,\n", ")\n", "\n", "train_labels = pd.read_csv(\n", " \"train/expected.tsv\",\n", " sep=\"\\t\",\n", " on_bad_lines='skip',\n", " header=None,\n", " # names=out_cols,\n", " quoting=csv.QUOTE_NONE,\n", ")\n", "\n", "train_data = data[[7, 6]]\n", "train_data = pd.concat([train_data, train_labels], axis=1)\n", "\n", "train_data[\"final\"] = train_data[7] + train_data[0] + train_data[6]\n" ] }, { "cell_type": "code", "execution_count": null, "id": "c3d2cfec", "metadata": {}, "outputs": [], "source": [ "train_data" ] }, { "cell_type": "code", "execution_count": null, "id": "bd92ba07", "metadata": {}, "outputs": [], "source": [ "\n", "model = defaultdict(lambda: defaultdict(lambda: 0))\n", "\n", "train_model(train_data, model)\n", "predict_data(\"dev-0/in.tsv.xz\", \"dev-0/out.tsv\", model)\n", "predict_data(\"test-A/in.tsv.xz\", \"test-A/out.tsv\", model)" ] }, { "cell_type": "code", "execution_count": null, "id": "ad23240e", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.1" } }, "nbformat": 4, "nbformat_minor": 5 }