import pandas as pd import nltk from collections import Counter, defaultdict from utils import get_csv, check_prerequisites, ENCODING, clean_text def main(): check_prerequisites() data = get_csv("train/in.tsv.xz") train_words = get_csv("train/expected.tsv") train_data = data[[7, 6]] train_data = pd.concat([train_data, train_words], axis=1) train_data[760] = train_data[7] + train_data[0] + train_data[6] model = defaultdict(lambda: defaultdict(lambda: 0)) train_model(train_data, model) predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv", model) predict_data("test-A/in.tsv.xz", "test-A/out.tsv", model) def train_model(data, model): for _, row in data.iterrows(): words = nltk.word_tokenize(clean_text(row[760])) for w1, w2 in nltk.bigrams(words, pad_left=True, pad_right=True): if w1 and w2: model[w2][w1] += 1 for w2 in model: total_count = float(sum(model[w2].values())) for w1 in model[w2]: model[w2][w1] /= total_count def predict(word, model): predictions = dict(model[word]) most_common = dict(Counter(predictions).most_common(5)) total_prob = 0.0 str_prediction = "" for word, prob in most_common.items(): total_prob += prob str_prediction += f"{word}:{prob} " if not total_prob: return "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1" if 1 - total_prob >= 0.01: str_prediction += f":{1-total_prob}" else: str_prediction += f":0.01" return str_prediction def predict_data(read_path, save_path, model): data = get_csv(read_path) with open(save_path, "w", encoding=ENCODING) as f: for _, row in data.iterrows(): words = nltk.word_tokenize(clean_text(row[7])) if len(words) < 3: prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1" else: prediction = predict(words[-1], model) f.write(prediction + "\n") if __name__ == "__main__": main()