paranormal-or-skeptic-ISI-p.../main.py

108 lines
3.2 KiB
Python
Raw Normal View History

2021-06-21 21:46:10 +02:00
import pandas as pd
import os
import sys
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
import torch
import csv
IN_FILE_NAME = "in.tsv.xz"
OUT_FILE_NAME = "out.tsv"
TRAIN_PATH = "train"
EXP_FILE_NAME = "expected.tsv"
FILE_SEP = "\t"
IN_HEADER_FILE_NAME = "in-header.tsv"
OUT_HEADER_FILE_NAME = "out-header.tsv"
2021-06-22 15:55:04 +02:00
# PT_MODEL_NAME = "bert-base-cased"
PT_MODEL_NAME = "roberta-base"
2021-06-21 21:46:10 +02:00
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx])
for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
def main(dirnames):
check_path(IN_HEADER_FILE_NAME)
in_cols = (pd.read_csv(IN_HEADER_FILE_NAME, sep=FILE_SEP)).columns
check_path(OUT_HEADER_FILE_NAME)
out_cols = (pd.read_csv(OUT_HEADER_FILE_NAME, sep=FILE_SEP)).columns
print("Reading train data...")
train_set_features = get_tsv_data(os.path.join(
TRAIN_PATH, IN_FILE_NAME), names=in_cols)
train_set_labels = get_tsv_data(os.path.join(
TRAIN_PATH, EXP_FILE_NAME), names=out_cols, compression=None)
print("Reading input data...")
in_sets = []
for d in dirnames:
print(f"\tReading dir: {d}...")
in_sets.append(get_tsv_data(
os.path.join(d, IN_FILE_NAME), names=in_cols))
tokenizer = AutoTokenizer.from_pretrained(PT_MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(
PT_MODEL_NAME, num_labels=2)
train_set_enc = tokenizer(
[t for t in train_set_features[in_cols].agg(' '.join, axis=1)], truncation=True, padding=True)
dataset = CustomDataset(
train_set_enc, [int(t) for t in train_set_labels[out_cols[0]]])
trainer = Trainer(
model=model,
2021-06-22 15:55:04 +02:00
args=TrainingArguments(
output_dir='./res',
num_train_epochs=5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16
),
train_dataset=dataset
2021-06-21 21:46:10 +02:00
)
trainer.train()
for i in range(len(in_sets)):
p = os.path.join(dirnames[i], IN_FILE_NAME)
with open(p) as f:
print(
f"\tPredicting for: {p}...")
X = [t for t in in_sets[i][in_cols].agg(' '.join, axis=1)]
out_file_path = os.path.join(dirnames[i], OUT_FILE_NAME)
f.write('\n'.join(trainer.predict(X)))
print(f"Saved predictions to file: {out_file_path}")
def get_tsv_data(filename: str, names, compression="infer"):
check_path(filename)
return pd.read_csv(
filename,
sep=FILE_SEP,
compression=compression,
error_bad_lines=False,
quoting=csv.QUOTE_NONE,
header=None,
names=names,
dtype=str
)
def check_path(filename: str):
if not os.path.exists(filename):
raise Exception(f"Path {filename} does not exist!")
if __name__ == "__main__":
if len(sys.argv) < 2:
raise Exception("Name of working dir not specified!")
main(sys.argv[1:])