Working on setup script

This commit is contained in:
Maciej Sobkowiak 2022-02-15 04:03:45 +01:00
parent 1115b4636f
commit 4bb1051beb
8 changed files with 194 additions and 1 deletions

2
.gitignore vendored
View File

@ -2,4 +2,4 @@ venv/
**/images* **/images*
**/data/train_features* **/data/train_features*
**/data/train_labels* **/data/train_labels*
**/__pychache__*

17
README.md Normal file
View File

@ -0,0 +1,17 @@
# Setup
W przypadku rosterio i GDAL należy pobrać wheele z repozytorium [tutaj](https://www.lfd.uci.edu/~gohlke/pythonlibs/), a nastepnie zainstalować je lokalnie. Reszta paczek zainstaluje się automatycznie komendą:
```
pip install -r requirements.txt
```
Pierwsze uruchomienie polega na uruchomieniu skryptu setup.py
```
python3 setup.py
```
Skrypt ten sprawi że zdjęcia zostaną przekonwertowane z formatu tif na format jpg.
#TODO
Jeżeli chcemy zwizualizować przekonwertowane zdjęcia, należy urochomić skrypt z flagą --show
```
python3 setup.py --show
```

2
src/__import__.py Normal file
View File

@ -0,0 +1,2 @@
from consts import *
from helpers import *

10
src/consts.py Normal file
View File

@ -0,0 +1,10 @@
import pandas as pd
FEATURES ='../data/train_features'
LABELS = '../data/train_labels'
JPG_IMAGES = '../images'
FC_DIR = "fc"
METADATA = pd.read_csv('../data/On_Cloud_N_Cloud_Cover_Detection_Challenge_-_train_metadata.csv.csv')
BATCH = 8
IMG_SIZE = (512,512)
SEED = 7

41
src/generators.py Normal file
View File

@ -0,0 +1,41 @@
train_datagen = ImageDataGenerator(rescale=1 / 255.0,
horizontal_flip=True,
vertical_flip=True,
validation_split=0.2)
# mask_datagen = ImageDataGenerator(rescale=1/255,
# validation_split=0.2)
#training data
#rgb images
rgb_dir = '../input/ai4earth-mask-the-clouds/RGB_images'
rgb_gen = train_datagen.flow_from_directory(directory=rgb_dir,
target_size= img_size,
batch_size=BATCH,
class_mode=None,
classes=None,
shuffle=False,
seed=seed,
subset='training')
#false color (nir,green,blue)
fc_dir = '../input/ai4earth-mask-the-clouds/False_color'
fc_gen = train_datagen.flow_from_directory(
directory=fc_dir,
target_size= img_size,
batch_size=BATCH,
class_mode=None,
classes=None,
shuffle=False,seed=seed,
subset='training')
#training labels
mask_dir ='../input/ai4earth-mask-the-clouds/Masks'
mask_gen = train_datagen.flow_from_directory(
directory=mask_dir,
target_size= img_size,
batch_size=BATCH,
class_mode=None,
classes=None,
shuffle=False,seed=seed,
subset='training')

46
src/helpers.py Normal file
View File

@ -0,0 +1,46 @@
import cv2
import os
import random
import numpy as np
# import tensorflow as tf
import rasterio as rio
import matplotlib.pyplot as plt
def load_img(path,expand_dim=False):
img = cv2.imread(path)
# img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
img = img / 255.0
if expand_dim:
img = np.expand_dims(img,axis=0)
return img
def create_folder(name, path):
n = os.path.join(path, name)
if not os.path.exists(n):
os.makedirs(n)
return n
def scale(band):
return band/np.max(band)
def convert_tif_to_jpg(rasters_dir,
rgb_path=None,
false_color_path=None):
b2 = scale(rio.open(rasters_dir+'/B02.tif').read().reshape(512, 512, 1))
b3 = scale(rio.open(rasters_dir+'/B03.tif').read().reshape(512, 512, 1))
b4 = scale(rio.open(rasters_dir+'/B04.tif').read().reshape(512, 512, 1))
b8 = scale(rio.open(rasters_dir+'/B08.tif').read().reshape(512, 512, 1))
file_name = rasters_dir.split(os.sep)[-1]
rgb = np.dstack([b4, b3, b2])
plt.imsave(fname=rgb_path + f'/{file_name}.jpeg',
arr=rgb)
fc = np.dstack([b8, b3, b2])
plt.imsave(fname=false_color_path + f'/{file_name}.jpeg',
arr=fc)

29
src/setup.py Normal file
View File

@ -0,0 +1,29 @@
import os
import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt
import time
#progess bar
from tqdm import tqdm
import cv2
import warnings
#deep learning
from consts import SEED, JPG_IMAGES, FC_DIR, FEATURES
from helpers import create_folder, convert_tif_to_jpg
warnings.filterwarnings('ignore')
def transform_photo(tif_dir):
dp = create_folder(tif_dir, JPG_IMAGES)
fc = create_folder(FC_DIR, dp)
convert_tif_to_jpg(os.path.join(FEATURES, tif_dir), dp, fc)
if __name__ == "__main__":
for d in os.listdir(FEATURES):
print(str(d), end='\t')
transform_photo(d)

48
src/utils.py Normal file
View File

@ -0,0 +1,48 @@
def plot_image_grid(image_list,
label_list,
sample_images=False,
num_images=6,
pre_title='class',
num_img_per_row=3,
cmap=None,
img_h_w=3):
'''viz images from a list of images and labels
INPUTS:
image_list: a list of images to be plotted,
label_list: a list of correspomding image labels'''
#number of img rows
n_row= num_images//num_img_per_row
plt.subplots(n_row,num_img_per_row,figsize=(img_h_w*num_img_per_row,img_h_w*n_row))
if sample_images:
#select_random images
sampled_ids = random.choices(np.arange(0,len(image_list)),k=num_images)
for i,idx in enumerate(sampled_ids):
img = image_list[idx]
label = label_list[i]
plt.subplot(n_row,num_img_per_row,i+1)
plt.title(f'{pre_title} - {label}')
plt.axis('off')
plt.imshow(img,cmap=cmap)
else:
for i,img in enumerate(image_list):
label = label_list[i]
plt.subplot(n_row,num_img_per_row,i+1)
plt.title(f'{pre_title} - {label}')
plt.axis('off')
plt.imshow(img,cmap=cmap)
# break the loop
if i==num_images-1 :
break
#show
plt.tight_layout()
plt.show()