plot images
This commit is contained in:
parent
a4a53ca85e
commit
e0753c0b4f
@ -2,6 +2,7 @@ import pandas as pd
|
|||||||
FEATURES ='../data/train_features'
|
FEATURES ='../data/train_features'
|
||||||
LABELS = '../data/train_labels'
|
LABELS = '../data/train_labels'
|
||||||
JPG_IMAGES = '../images'
|
JPG_IMAGES = '../images'
|
||||||
|
RGB_DIR = "rgb"
|
||||||
FC_DIR = "fc"
|
FC_DIR = "fc"
|
||||||
MASK_DIR = "mask"
|
MASK_DIR = "mask"
|
||||||
METADATA = pd.read_csv('../data/train_metadata.csv')
|
METADATA = pd.read_csv('../data/train_metadata.csv')
|
||||||
|
@ -1,41 +1,41 @@
|
|||||||
train_datagen = ImageDataGenerator(rescale=1 / 255.0,
|
from consts import JPG_IMAGES, RGB_DIR, MASK_DIR, FC_DIR, BATCH, IMG_SIZE
|
||||||
|
import os
|
||||||
|
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
||||||
|
|
||||||
|
def create_generators(mode='train'):
|
||||||
|
'''
|
||||||
|
mode can be train or validation.
|
||||||
|
'''
|
||||||
|
if(mode=='train'):
|
||||||
|
subset = 'training'
|
||||||
|
else:
|
||||||
|
subset = 'validation'
|
||||||
|
|
||||||
|
train_datagen = ImageDataGenerator(rescale=1 / 255.0,
|
||||||
horizontal_flip=True,
|
horizontal_flip=True,
|
||||||
vertical_flip=True,
|
vertical_flip=True,
|
||||||
validation_split=0.2)
|
validation_split=0.2)
|
||||||
|
|
||||||
# mask_datagen = ImageDataGenerator(rescale=1/255,
|
rgb_gen = train_datagen.flow_from_directory(directory=os.path.join(JPG_IMAGES, RGB_DIR),
|
||||||
# validation_split=0.2)
|
target_size= IMG_SIZE,
|
||||||
|
|
||||||
#training data
|
|
||||||
#rgb images
|
|
||||||
rgb_dir = '../input/ai4earth-mask-the-clouds/RGB_images'
|
|
||||||
rgb_gen = train_datagen.flow_from_directory(directory=rgb_dir,
|
|
||||||
target_size= img_size,
|
|
||||||
batch_size=BATCH,
|
batch_size=BATCH,
|
||||||
class_mode=None,
|
class_mode=None,
|
||||||
classes=None,
|
classes=None,
|
||||||
shuffle=False,
|
shuffle=False,
|
||||||
seed=seed,
|
subset=subset)
|
||||||
subset='training')
|
|
||||||
|
|
||||||
#false color (nir,green,blue)
|
mask_gen = train_datagen.flow_from_directory(
|
||||||
fc_dir = '../input/ai4earth-mask-the-clouds/False_color'
|
directory=os.path.join(JPG_IMAGES, MASK_DIR ),
|
||||||
fc_gen = train_datagen.flow_from_directory(
|
target_size= IMG_SIZE,
|
||||||
directory=fc_dir,
|
|
||||||
target_size= img_size,
|
|
||||||
batch_size=BATCH,
|
batch_size=BATCH,
|
||||||
class_mode=None,
|
class_mode=None,
|
||||||
classes=None,
|
classes=None,
|
||||||
shuffle=False,seed=seed,
|
shuffle=False,
|
||||||
subset='training')
|
subset=subset)
|
||||||
|
|
||||||
|
|
||||||
|
# train_genenerator = zip(rgb_gen,mask_gen)
|
||||||
|
# for (imgs, mask) in train_genenerator:
|
||||||
|
# yield (imgs, mask)
|
||||||
|
return rgb_gen, mask_gen
|
||||||
|
|
||||||
#training labels
|
|
||||||
mask_dir ='../input/ai4earth-mask-the-clouds/Masks'
|
|
||||||
mask_gen = train_datagen.flow_from_directory(
|
|
||||||
directory=mask_dir,
|
|
||||||
target_size= img_size,
|
|
||||||
batch_size=BATCH,
|
|
||||||
class_mode=None,
|
|
||||||
classes=None,
|
|
||||||
shuffle=False,seed=seed,
|
|
||||||
subset='training')
|
|
@ -69,5 +69,6 @@ def convert_tif_to_jpg(features, labels,
|
|||||||
#konwersja maski
|
#konwersja maski
|
||||||
mask= rio.open(labels).read().reshape(512,512,1)
|
mask= rio.open(labels).read().reshape(512,512,1)
|
||||||
mask *= 255
|
mask *= 255
|
||||||
|
|
||||||
cv2.imwrite(filename= mask_path + f'/{file_name}.jpeg',
|
cv2.imwrite(filename= mask_path + f'/{file_name}.jpeg',
|
||||||
img=mask.astype(np.uint8))
|
img=mask.astype(np.uint8))
|
29
src/setup.py
29
src/setup.py
@ -1,33 +1,28 @@
|
|||||||
import os
|
import os
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import random
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import time
|
import time
|
||||||
|
import sys
|
||||||
#progess bar
|
import random
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import warnings
|
|
||||||
#deep learning
|
|
||||||
|
|
||||||
from consts import SEED, JPG_IMAGES, FC_DIR, FEATURES, MASK_DIR, LABELS
|
from consts import SEED, JPG_IMAGES, FC_DIR, FEATURES, MASK_DIR, LABELS, RGB_DIR
|
||||||
from helpers import create_folder, convert_tif_to_jpg, progress_bar
|
from helpers import create_folder, convert_tif_to_jpg, progress_bar
|
||||||
|
from utils import plot_image_grid
|
||||||
warnings.filterwarnings('ignore')
|
|
||||||
|
|
||||||
def transform_photo(tif_dir):
|
|
||||||
dp = create_folder(tif_dir, JPG_IMAGES)
|
|
||||||
fc = create_folder(FC_DIR, dp)
|
|
||||||
mk = create_folder(MASK_DIR, dp)
|
|
||||||
convert_tif_to_jpg(os.path.join(FEATURES, tif_dir), os.path.join(LABELS, tif_dir + ".tif"), dp, fc, mk)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
dirs = os.listdir(FEATURES)
|
dirs = os.listdir(FEATURES)
|
||||||
|
dp = create_folder(RGB_DIR, JPG_IMAGES)
|
||||||
|
fc = create_folder(FC_DIR, JPG_IMAGES)
|
||||||
|
mk = create_folder(MASK_DIR, JPG_IMAGES)
|
||||||
|
if(len(sys.argv) <= 1):
|
||||||
progress_bar(0, len(dirs), prefix = 'Converting TIF to JPG:', suffix = 'Complete', length = 50)
|
progress_bar(0, len(dirs), prefix = 'Converting TIF to JPG:', suffix = 'Complete', length = 50)
|
||||||
for i, d in enumerate(dirs):
|
for i, d in enumerate(dirs):
|
||||||
progress_bar(i, len(dirs), prefix = 'Converting TIF to JPG:', suffix = 'Complete', length = 50)
|
progress_bar(i, len(dirs), prefix = 'Converting TIF to JPG:', suffix = 'Complete', length = 50)
|
||||||
if d != ".DS_Store":
|
convert_tif_to_jpg(os.path.join(FEATURES, d), os.path.join(LABELS, d + ".tif"), dp, fc, mk)
|
||||||
transform_photo(d)
|
elif(sys.argv[1] == '--show'):
|
||||||
|
img_names = [random.choice(os.listdir(dp)) for _ in range(3)]
|
||||||
|
plot_image_grid(img_names)
|
53
src/utils.py
53
src/utils.py
@ -1,47 +1,26 @@
|
|||||||
def plot_image_grid(image_list,
|
import matplotlib.pyplot as plt
|
||||||
label_list,
|
import cv2
|
||||||
sample_images=False,
|
import os
|
||||||
num_images=6,
|
from consts import JPG_IMAGES, RGB_DIR, MASK_DIR
|
||||||
pre_title='class',
|
|
||||||
num_img_per_row=3,
|
|
||||||
cmap=None,
|
|
||||||
img_h_w=3):
|
|
||||||
'''viz images from a list of images and labels
|
|
||||||
INPUTS:
|
|
||||||
image_list: a list of images to be plotted,
|
|
||||||
label_list: a list of correspomding image labels'''
|
|
||||||
|
|
||||||
|
|
||||||
|
def plot_image_grid(image_names):
|
||||||
|
|
||||||
#number of img rows
|
#number of img rows
|
||||||
n_row= num_images//num_img_per_row
|
n_row= len(image_names)
|
||||||
|
|
||||||
plt.subplots(n_row,num_img_per_row,figsize=(img_h_w*num_img_per_row,img_h_w*n_row))
|
plt.subplots(n_row, 2, figsize=(6, 3*n_row))
|
||||||
|
|
||||||
if sample_images:
|
for i, img in enumerate(image_names):
|
||||||
#select_random images
|
r_img = cv2.imread(os.path.join(JPG_IMAGES, RGB_DIR, img))
|
||||||
sampled_ids = random.choices(np.arange(0,len(image_list)),k=num_images)
|
plt.subplot(n_row, 2, i*2+1)
|
||||||
|
plt.title(f'RGB - {img}')
|
||||||
for i,idx in enumerate(sampled_ids):
|
|
||||||
|
|
||||||
img = image_list[idx]
|
|
||||||
label = label_list[i]
|
|
||||||
plt.subplot(n_row,num_img_per_row,i+1)
|
|
||||||
plt.title(f'{pre_title} - {label}')
|
|
||||||
plt.axis('off')
|
plt.axis('off')
|
||||||
plt.imshow(img,cmap=cmap)
|
plt.imshow(r_img, cmap=None)
|
||||||
else:
|
m_img = cv2.imread(os.path.join(JPG_IMAGES, MASK_DIR, img))
|
||||||
for i,img in enumerate(image_list):
|
plt.subplot(n_row, 2, i*2+2)
|
||||||
|
plt.title(f'MASK - {img}')
|
||||||
label = label_list[i]
|
|
||||||
plt.subplot(n_row,num_img_per_row,i+1)
|
|
||||||
plt.title(f'{pre_title} - {label}')
|
|
||||||
plt.axis('off')
|
plt.axis('off')
|
||||||
plt.imshow(img,cmap=cmap)
|
plt.imshow(m_img, cmap=None)
|
||||||
|
|
||||||
# break the loop
|
|
||||||
if i==num_images-1 :
|
|
||||||
break
|
|
||||||
|
|
||||||
#show
|
#show
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
|
Loading…
Reference in New Issue
Block a user