plot images
This commit is contained in:
parent
a4a53ca85e
commit
e0753c0b4f
@ -2,6 +2,7 @@ import pandas as pd
|
||||
FEATURES ='../data/train_features'
|
||||
LABELS = '../data/train_labels'
|
||||
JPG_IMAGES = '../images'
|
||||
RGB_DIR = "rgb"
|
||||
FC_DIR = "fc"
|
||||
MASK_DIR = "mask"
|
||||
METADATA = pd.read_csv('../data/train_metadata.csv')
|
||||
|
@ -1,41 +1,41 @@
|
||||
train_datagen = ImageDataGenerator(rescale=1 / 255.0,
|
||||
horizontal_flip=True,
|
||||
vertical_flip=True,
|
||||
validation_split=0.2)
|
||||
from consts import JPG_IMAGES, RGB_DIR, MASK_DIR, FC_DIR, BATCH, IMG_SIZE
|
||||
import os
|
||||
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
||||
|
||||
# mask_datagen = ImageDataGenerator(rescale=1/255,
|
||||
# validation_split=0.2)
|
||||
def create_generators(mode='train'):
|
||||
'''
|
||||
mode can be train or validation.
|
||||
'''
|
||||
if(mode=='train'):
|
||||
subset = 'training'
|
||||
else:
|
||||
subset = 'validation'
|
||||
|
||||
#training data
|
||||
#rgb images
|
||||
rgb_dir = '../input/ai4earth-mask-the-clouds/RGB_images'
|
||||
rgb_gen = train_datagen.flow_from_directory(directory=rgb_dir,
|
||||
target_size= img_size,
|
||||
train_datagen = ImageDataGenerator(rescale=1 / 255.0,
|
||||
horizontal_flip=True,
|
||||
vertical_flip=True,
|
||||
validation_split=0.2)
|
||||
|
||||
rgb_gen = train_datagen.flow_from_directory(directory=os.path.join(JPG_IMAGES, RGB_DIR),
|
||||
target_size= IMG_SIZE,
|
||||
batch_size=BATCH,
|
||||
class_mode=None,
|
||||
classes=None,
|
||||
shuffle=False,
|
||||
seed=seed,
|
||||
subset='training')
|
||||
subset=subset)
|
||||
|
||||
#false color (nir,green,blue)
|
||||
fc_dir = '../input/ai4earth-mask-the-clouds/False_color'
|
||||
fc_gen = train_datagen.flow_from_directory(
|
||||
directory=fc_dir,
|
||||
target_size= img_size,
|
||||
mask_gen = train_datagen.flow_from_directory(
|
||||
directory=os.path.join(JPG_IMAGES, MASK_DIR ),
|
||||
target_size= IMG_SIZE,
|
||||
batch_size=BATCH,
|
||||
class_mode=None,
|
||||
classes=None,
|
||||
shuffle=False,seed=seed,
|
||||
subset='training')
|
||||
shuffle=False,
|
||||
subset=subset)
|
||||
|
||||
|
||||
# train_genenerator = zip(rgb_gen,mask_gen)
|
||||
# for (imgs, mask) in train_genenerator:
|
||||
# yield (imgs, mask)
|
||||
return rgb_gen, mask_gen
|
||||
|
||||
#training labels
|
||||
mask_dir ='../input/ai4earth-mask-the-clouds/Masks'
|
||||
mask_gen = train_datagen.flow_from_directory(
|
||||
directory=mask_dir,
|
||||
target_size= img_size,
|
||||
batch_size=BATCH,
|
||||
class_mode=None,
|
||||
classes=None,
|
||||
shuffle=False,seed=seed,
|
||||
subset='training')
|
@ -69,5 +69,6 @@ def convert_tif_to_jpg(features, labels,
|
||||
#konwersja maski
|
||||
mask= rio.open(labels).read().reshape(512,512,1)
|
||||
mask *= 255
|
||||
|
||||
cv2.imwrite(filename= mask_path + f'/{file_name}.jpeg',
|
||||
img=mask.astype(np.uint8))
|
35
src/setup.py
35
src/setup.py
@ -1,33 +1,28 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import random
|
||||
import matplotlib.pyplot as plt
|
||||
import time
|
||||
|
||||
#progess bar
|
||||
import sys
|
||||
import random
|
||||
from tqdm import tqdm
|
||||
|
||||
import cv2
|
||||
import warnings
|
||||
#deep learning
|
||||
|
||||
from consts import SEED, JPG_IMAGES, FC_DIR, FEATURES, MASK_DIR, LABELS
|
||||
from consts import SEED, JPG_IMAGES, FC_DIR, FEATURES, MASK_DIR, LABELS, RGB_DIR
|
||||
from helpers import create_folder, convert_tif_to_jpg, progress_bar
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
def transform_photo(tif_dir):
|
||||
dp = create_folder(tif_dir, JPG_IMAGES)
|
||||
fc = create_folder(FC_DIR, dp)
|
||||
mk = create_folder(MASK_DIR, dp)
|
||||
convert_tif_to_jpg(os.path.join(FEATURES, tif_dir), os.path.join(LABELS, tif_dir + ".tif"), dp, fc, mk)
|
||||
|
||||
from utils import plot_image_grid
|
||||
|
||||
if __name__ == "__main__":
|
||||
dirs = os.listdir(FEATURES)
|
||||
progress_bar(0, len(dirs), prefix = 'Converting TIF to JPG:', suffix = 'Complete', length = 50)
|
||||
for i, d in enumerate(dirs):
|
||||
progress_bar(i, len(dirs), prefix = 'Converting TIF to JPG:', suffix = 'Complete', length = 50)
|
||||
if d != ".DS_Store":
|
||||
transform_photo(d)
|
||||
dp = create_folder(RGB_DIR, JPG_IMAGES)
|
||||
fc = create_folder(FC_DIR, JPG_IMAGES)
|
||||
mk = create_folder(MASK_DIR, JPG_IMAGES)
|
||||
if(len(sys.argv) <= 1):
|
||||
progress_bar(0, len(dirs), prefix = 'Converting TIF to JPG:', suffix = 'Complete', length = 50)
|
||||
for i, d in enumerate(dirs):
|
||||
progress_bar(i, len(dirs), prefix = 'Converting TIF to JPG:', suffix = 'Complete', length = 50)
|
||||
convert_tif_to_jpg(os.path.join(FEATURES, d), os.path.join(LABELS, d + ".tif"), dp, fc, mk)
|
||||
elif(sys.argv[1] == '--show'):
|
||||
img_names = [random.choice(os.listdir(dp)) for _ in range(3)]
|
||||
plot_image_grid(img_names)
|
57
src/utils.py
57
src/utils.py
@ -1,47 +1,26 @@
|
||||
def plot_image_grid(image_list,
|
||||
label_list,
|
||||
sample_images=False,
|
||||
num_images=6,
|
||||
pre_title='class',
|
||||
num_img_per_row=3,
|
||||
cmap=None,
|
||||
img_h_w=3):
|
||||
'''viz images from a list of images and labels
|
||||
INPUTS:
|
||||
image_list: a list of images to be plotted,
|
||||
label_list: a list of correspomding image labels'''
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import cv2
|
||||
import os
|
||||
from consts import JPG_IMAGES, RGB_DIR, MASK_DIR
|
||||
|
||||
def plot_image_grid(image_names):
|
||||
|
||||
#number of img rows
|
||||
n_row= num_images//num_img_per_row
|
||||
n_row= len(image_names)
|
||||
|
||||
plt.subplots(n_row,num_img_per_row,figsize=(img_h_w*num_img_per_row,img_h_w*n_row))
|
||||
plt.subplots(n_row, 2, figsize=(6, 3*n_row))
|
||||
|
||||
if sample_images:
|
||||
#select_random images
|
||||
sampled_ids = random.choices(np.arange(0,len(image_list)),k=num_images)
|
||||
|
||||
for i,idx in enumerate(sampled_ids):
|
||||
|
||||
img = image_list[idx]
|
||||
label = label_list[i]
|
||||
plt.subplot(n_row,num_img_per_row,i+1)
|
||||
plt.title(f'{pre_title} - {label}')
|
||||
plt.axis('off')
|
||||
plt.imshow(img,cmap=cmap)
|
||||
else:
|
||||
for i,img in enumerate(image_list):
|
||||
|
||||
label = label_list[i]
|
||||
plt.subplot(n_row,num_img_per_row,i+1)
|
||||
plt.title(f'{pre_title} - {label}')
|
||||
plt.axis('off')
|
||||
plt.imshow(img,cmap=cmap)
|
||||
|
||||
# break the loop
|
||||
if i==num_images-1 :
|
||||
break
|
||||
for i, img in enumerate(image_names):
|
||||
r_img = cv2.imread(os.path.join(JPG_IMAGES, RGB_DIR, img))
|
||||
plt.subplot(n_row, 2, i*2+1)
|
||||
plt.title(f'RGB - {img}')
|
||||
plt.axis('off')
|
||||
plt.imshow(r_img, cmap=None)
|
||||
m_img = cv2.imread(os.path.join(JPG_IMAGES, MASK_DIR, img))
|
||||
plt.subplot(n_row, 2, i*2+2)
|
||||
plt.title(f'MASK - {img}')
|
||||
plt.axis('off')
|
||||
plt.imshow(m_img, cmap=None)
|
||||
|
||||
#show
|
||||
plt.tight_layout()
|
||||
|
Loading…
Reference in New Issue
Block a user