delete test

This commit is contained in:
piotr6789 2021-05-27 10:31:00 +02:00
parent ba4aadb5a7
commit dc2b142326

View File

@ -6,7 +6,7 @@ from nltk.tokenize import word_tokenize
from gensim import downloader from gensim import downloader
FEATURES = ['content', 'id', 'label'] FEATURES = ['content', 'id', 'label']
PATHS = ['train/in.tsv', 'train/expected.tsv', 'dev-0/in.tsv', 'test-A/in.tsv', './dev-0/out.tsv', './test-A/out.tsv'] PATHS = ['train/in.tsv', 'train/expected.tsv', 'dev-0/in.tsv', './dev-0/out.tsv']
PRE_TRAINED = 'word2vec-google-news-300' PRE_TRAINED = 'word2vec-google-news-300'
class NeuralNetwork(torch.nn.Module): class NeuralNetwork(torch.nn.Module):
@ -26,36 +26,32 @@ def get_data(FEATURES, PATHS):
x_train = pd.read_table(PATHS[0], error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = FEATURES[:2]) x_train = pd.read_table(PATHS[0], error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = FEATURES[:2])
y_train = pd.read_table(PATHS[1], error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = FEATURES[2:]) y_train = pd.read_table(PATHS[1], error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = FEATURES[2:])
x_dev = pd.read_table(PATHS[2], error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = FEATURES[:2]) x_dev = pd.read_table(PATHS[2], error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = FEATURES[:2])
x_test = pd.read_table(PATHS[3], error_bad_lines = False, header = None, quoting = csv.QUOTE_NONE, names = FEATURES[:2])
return x_train, y_train, x_dev, x_test return x_train, y_train, x_dev
def preprocess(x_train, y_train, x_dev, x_test): def preprocess(x_train, y_train, x_dev):
x_train = x_train[FEATURES[0]].str.lower() x_train = x_train[FEATURES[0]].str.lower()
x_dev = x_dev[FEATURES[0]].str.lower() x_dev = x_dev[FEATURES[0]].str.lower()
x_test = x_test[FEATURES[0]].str.lower()
y_train = y_train[FEATURES[2]] y_train = y_train[FEATURES[2]]
return x_train, y_train, x_dev, x_test return x_train, y_train, x_dev
def tokenize(x_train, x_dev, x_test): def tokenize(x_train, x_dev):
x_train = [word_tokenize(i) for i in x_train] x_train = [word_tokenize(i) for i in x_train]
x_dev = [word_tokenize(i) for i in x_dev] x_dev = [word_tokenize(i) for i in x_dev]
x_test = [word_tokenize(i) for i in x_test]
return x_train, x_dev, x_test return x_train, x_dev
def use_word2vec(): def use_word2vec():
w2v = downloader.load(PRE_TRAINED) w2v = downloader.load(PRE_TRAINED)
return w2v return w2v
def document_vector(w2v, x_train, x_dev, x_test): def document_vector(w2v, x_train, x_dev):
x_train = [np.mean([w2v[word] for word in doc if word in w2v] or [np.zeros(300)], axis = 0) for doc in x_train] x_train = [np.mean([w2v[word] for word in doc if word in w2v] or [np.zeros(300)], axis = 0) for doc in x_train]
x_dev = [np.mean([w2v[word] for word in doc if word in w2v] or [np.zeros(300)], axis = 0) for doc in x_dev] x_dev = [np.mean([w2v[word] for word in doc if word in w2v] or [np.zeros(300)], axis = 0) for doc in x_dev]
x_test = [np.mean([w2v[word] for word in doc if word in w2v] or [np.zeros(300)], axis = 0) for doc in x_test]
return x_train, x_dev, x_test return x_train, x_dev
def basic_config(): def basic_config():
INPUT_DIM = 300 INPUT_DIM = 300
@ -84,8 +80,8 @@ def train(nn_model, BATCH_SIZE, criterion, optimizer, x_train, y_train):
loss.backward() loss.backward()
optimizer.step() optimizer.step()
def prediction(nn_model, BATCH_SIZE, x_dev, x_test): def prediction(nn_model, BATCH_SIZE, x_dev):
y_dev, y_test = [], [] y_dev = []
nn_model.eval() nn_model.eval()
with torch.no_grad(): with torch.no_grad():
for i in range(0, len(x_dev), BATCH_SIZE): for i in range(0, len(x_dev), BATCH_SIZE):
@ -94,30 +90,23 @@ def prediction(nn_model, BATCH_SIZE, x_dev, x_test):
outputs = nn_model(X.float()) outputs = nn_model(X.float())
prediction = (outputs > 0.5) prediction = (outputs > 0.5)
y_dev += prediction.tolist() y_dev += prediction.tolist()
for i in range(0, len(x_test), BATCH_SIZE):
X = x_test[i:i+BATCH_SIZE]
X = torch.tensor(X)
outputs = nn_model(X.float())
prediction = (outputs > 0.5)
y_test += prediction.tolist()
return y_dev, y_test return y_dev
def get_result(y_dev, y_test): def get_result(y_dev):
np.asarray(y_dev, dtype = np.int32).tofile(PATHS[4], sep='\n') np.asarray(y_dev, dtype = np.int32).tofile(PATHS[3], sep='\n')
np.asarray(y_test, dtype = np.int32).tofile(PATHS[5], sep='\n')
def main(): def main():
x_train, y_train, x_dev, x_test = get_data(FEATURES, PATHS) x_train, y_train, x_dev = get_data(FEATURES, PATHS)
x_train, y_train, x_dev, x_test = preprocess(x_train, y_train, x_dev, x_test) x_train, y_train, x_dev = preprocess(x_train, y_train, x_dev)
x_train, x_dev, x_test = tokenize(x_train, x_dev, x_test) x_train, x_dev = tokenize(x_train, x_dev)
w2v = use_word2vec() w2v = use_word2vec()
x_train, x_dev, x_test = document_vector(w2v, x_train, x_dev, x_test) x_train, x_dev = document_vector(w2v, x_train, x_dev)
INPUT_DIM, BATCH_SIZE = basic_config() INPUT_DIM, BATCH_SIZE = basic_config()
nn_model, optimizer, criterion = init_model(INPUT_DIM) nn_model, optimizer, criterion = init_model(INPUT_DIM)
train(nn_model, BATCH_SIZE, criterion, optimizer, x_train, y_train) train(nn_model, BATCH_SIZE, criterion, optimizer, x_train, y_train)
y_dev, y_test = prediction(nn_model, BATCH_SIZE, x_dev, x_test) y_dev = prediction(nn_model, BATCH_SIZE, x_dev)
get_result(y_dev, y_test) get_result(y_dev)
if _name_ == '_main_': if _name_ == '_main_':
main() main()