forked from kubapok/en-ner-conll-2003
210 lines
6.1 KiB
Python
210 lines
6.1 KiB
Python
import numpy as np
|
|
import gensim
|
|
import torch
|
|
import pandas as pd
|
|
import csv
|
|
import seaborn as sns
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
from torchtext.vocab import Vocab
|
|
from collections import Counter
|
|
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.metrics import accuracy_score
|
|
|
|
DATA_PATH = ['train/train.tsv', 'dev-0/in.tsv', 'dev-0/expected.tsv', 'test-A/in.tsv']
|
|
DATA_PATH_OUTPUT = ['dev-0/out.tsv', 'test-A/out.tsv']
|
|
|
|
def get_data(path):
|
|
train = pd.read_table(path, error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)
|
|
return train
|
|
|
|
def split(x):
|
|
return x.split()
|
|
|
|
def replace(x):
|
|
newList = []
|
|
for word in x:
|
|
if word == 'O':
|
|
newList.append(0)
|
|
if word == 'B-LOC':
|
|
newList.append(1)
|
|
if word == 'I-LOC':
|
|
newList.append(2)
|
|
if word == 'B-MISC':
|
|
newList.append(3)
|
|
if word == 'B-ORG':
|
|
newList.append(4)
|
|
if word == 'I-ORG':
|
|
newList.append(5)
|
|
if word == 'B-PER':
|
|
newList.append(6)
|
|
if word == 'I-PER':
|
|
newList.append(7)
|
|
return newList
|
|
|
|
def build_vocab(dataset):
|
|
counter = Counter()
|
|
for document in dataset:
|
|
counter.update(document)
|
|
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
|
|
|
|
def labels_process(dt):
|
|
return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]
|
|
|
|
def data_process(dt, vocab):
|
|
return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]
|
|
|
|
class NeuralNetwork(torch.nn.Module):
|
|
def __init__(self, train_tokens_ids):
|
|
super(NeuralNetwork, self).__init__()
|
|
self.fc1 = torch.nn.Linear(10_000,len(train_tokens_ids))
|
|
self.softmax = torch.nn.Softmax(dim=0)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.softmax(x)
|
|
return x
|
|
|
|
|
|
class NERModel(torch.nn.Module):
|
|
def __init__(self,):
|
|
super(NERModel, self).__init__()
|
|
self.emb = torch.nn.Embedding(23627,200)
|
|
self.fc1 = torch.nn.Linear(600,9)
|
|
|
|
def forward(self, x):
|
|
x = self.emb(x)
|
|
x = x.reshape(600)
|
|
x = self.fc1(x)
|
|
return x
|
|
|
|
def configure(train, vocab):
|
|
train_labels = labels_process(train[0])
|
|
train_tokens_ids = data_process(train[1], vocab)
|
|
ner_model = NERModel()
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.Adam(ner_model.parameters())
|
|
nn_model = NeuralNetwork(train_tokens_ids)
|
|
|
|
return train_labels, train_tokens_ids, ner_model, criterion, optimizer, nn_model
|
|
|
|
def training(nn_model, train_labels, train_tokens_ids, ner_model, optimizer, criterion):
|
|
for epoch in range(2):
|
|
loss_score = 0
|
|
acc_score = 0
|
|
prec_score = 0
|
|
selected_items = 0
|
|
recall_score = 0
|
|
relevant_items = 0
|
|
items_total = 0
|
|
nn_model.train()
|
|
for i in range(100):
|
|
for j in range(1, len(train_labels[i]) - 1):
|
|
X = train_tokens_ids[i][j-1: j+2]
|
|
Y = train_labels[i][j: j+1]
|
|
|
|
Y_predictions = ner_model(X)
|
|
|
|
acc_score += int(torch.argmax(Y_predictions) == Y)
|
|
|
|
if torch.argmax(Y_predictions) != 0:
|
|
selected_items +=1
|
|
if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():
|
|
prec_score += 1
|
|
|
|
if Y.item() != 0:
|
|
relevant_items +=1
|
|
if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():
|
|
recall_score += 1
|
|
|
|
items_total += 1
|
|
|
|
optimizer.zero_grad()
|
|
loss = criterion(Y_predictions.unsqueeze(0), Y)
|
|
loss.backward()
|
|
optimizer.step()
|
|
loss_score += loss.item()
|
|
|
|
def eval_dev(nn_model, dev_tokens_ids, dev_labels, ner_model):
|
|
result = []
|
|
nn_model.eval()
|
|
|
|
for i in range(len(dev_tokens_ids)):
|
|
result.append([])
|
|
for j in range(1, len(dev_labels[i]) - 1):
|
|
|
|
X = dev_tokens_ids[i][j-1: j+2]
|
|
Y = dev_labels[i][j: j+1]
|
|
|
|
Y_predictions = ner_model(X)
|
|
|
|
result[i].append(int(torch.argmax(Y_predictions)))
|
|
|
|
return result
|
|
|
|
def eval_test(nn_model, test_tokens_ids, ner_model):
|
|
result = []
|
|
nn_model.eval()
|
|
|
|
for i in range(len(test_tokens_ids)):
|
|
result.append([])
|
|
for j in range(1, len(test_tokens_ids[i]) - 1):
|
|
|
|
X = test_tokens_ids[i][j-1: j+2]
|
|
Y_predictions = ner_model(X)
|
|
|
|
result[i].append(int(torch.argmax(Y_predictions)))
|
|
|
|
return result
|
|
|
|
def generate_result(result,path):
|
|
features = ['O', 'B-LOC', 'I-LOC', 'B-MISC', 'B-ORG', 'I-ORG', 'B-PER', 'B-PER', 'I-PER']
|
|
final_result = []
|
|
|
|
for i in range(len(result)):
|
|
final_result.append([])
|
|
for j in range(len(result[i])):
|
|
final_result[i].append(features[result[i][j]])
|
|
|
|
f = open(path, "a")
|
|
for i in final_result:
|
|
f.write(' '.join(i) + '\n')
|
|
f.close()
|
|
|
|
def main():
|
|
#prepare train
|
|
train = get_data(DATA_PATH[0])
|
|
train[0] = train[0].map(split)
|
|
train[1] = train[1].map(split)
|
|
train[0] = train[0].map(replace)
|
|
|
|
#configure
|
|
vocab = build_vocab(train[1])
|
|
train_labels, train_tokens_ids, ner_model, criterion, optimizer, nn_model = configure(train, vocab)
|
|
|
|
#train
|
|
training(nn_model, train_labels, train_tokens_ids, ner_model, optimizer, criterion)
|
|
|
|
#dev
|
|
dev_in = get_data(DATA_PATH[1])
|
|
dev_ex = get_data(DATA_PATH[2])
|
|
dev_in[0] = dev_in[0].map(split)
|
|
dev_ex[0] = dev_ex[0].map(split)
|
|
dev_ex[0] = dev_ex[0].map(replace)
|
|
dev_labels = labels_process(dev_ex[0])
|
|
dev_tokens_ids = data_process(dev_in[0], vocab)
|
|
result_dev = eval_dev(nn_model, dev_tokens_ids, dev_labels, ner_model)
|
|
|
|
#test
|
|
test_in = get_data(DATA_PATH[3])
|
|
test_in[0] = test_in[0].map(split)
|
|
test_tokens_ids = data_process(test_in[0], vocab)
|
|
result_test = eval_test(nn_model, test_tokens_ids, ner_model)
|
|
|
|
#results
|
|
generate_result(result_dev, DATA_PATH_OUTPUT[0])
|
|
generate_result(result_test, DATA_PATH_OUTPUT[1])
|
|
|
|
if __name__ == '__main__':
|
|
main() |