ium_440058/pytorch-example.py

67 lines
1.9 KiB
Python
Raw Permalink Normal View History

2021-04-25 23:35:11 +02:00
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset, random_split
from sklearn import preprocessing
2021-05-24 12:21:39 +02:00
import sys
2021-04-25 23:35:11 +02:00
class LogisticRegressionModel(torch.nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear(x)
return self.sigmoid(out)
results = pd.read_csv('diabetes2.csv')
results.dropna()
data_train, data_valid, data_test = np.split(results.sample(frac=1), [int(.6*len(results)), int(.8*len(results))])
columns_to_train = ['Glucose', 'BloodPressure', 'Insulin', 'Age']
x_train = data_train[columns_to_train].astype(np.float32)
y_train = data_train['Outcome'].astype(np.float32)
x_test = data_test[columns_to_train].astype(np.float32)
y_test = data_test['Outcome'].astype(np.float32)
fTrain = torch.from_numpy(x_train.values)
tTrain = torch.from_numpy(y_train.values.reshape(460,1))
fTest= torch.from_numpy(x_test.values)
tTest = torch.from_numpy(y_test.values)
2021-05-24 12:21:39 +02:00
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 20
2021-04-25 23:35:11 +02:00
n_iters = 900
2021-05-24 12:21:39 +02:00
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 10
2021-04-25 23:35:11 +02:00
learning_rate = 0.005
input_dim = 4
output_dim = 1
model = LogisticRegressionModel(input_dim, output_dim)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
for epoch in range(num_epochs):
2021-04-25 23:49:57 +02:00
print ("Epoch - ",epoch)
2021-04-25 23:35:11 +02:00
model.train()
optimizer.zero_grad()
# Forward pass
y_pred = model(fTrain)
# Compute Loss
loss = criterion(y_pred, tTrain)
print(loss.item())
# Backward pass
loss.backward()
optimizer.step()
y_pred = model(fTest)
torch.save(model, 'diabetes.pkl')