2021-04-25 23:35:11 +02:00
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch.utils.data import DataLoader, TensorDataset, random_split
|
|
|
|
from sklearn import preprocessing
|
2021-05-24 12:21:39 +02:00
|
|
|
import sys
|
2021-04-25 23:35:11 +02:00
|
|
|
|
|
|
|
class LogisticRegressionModel(torch.nn.Module):
|
|
|
|
def __init__(self, input_dim, output_dim):
|
|
|
|
super(LogisticRegressionModel, self).__init__()
|
|
|
|
self.linear = nn.Linear(input_dim, output_dim)
|
|
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
def forward(self, x):
|
|
|
|
out = self.linear(x)
|
|
|
|
return self.sigmoid(out)
|
|
|
|
|
|
|
|
results = pd.read_csv('diabetes2.csv')
|
|
|
|
|
|
|
|
results.dropna()
|
|
|
|
|
|
|
|
data_train, data_valid, data_test = np.split(results.sample(frac=1), [int(.6*len(results)), int(.8*len(results))])
|
|
|
|
columns_to_train = ['Glucose', 'BloodPressure', 'Insulin', 'Age']
|
|
|
|
|
|
|
|
x_train = data_train[columns_to_train].astype(np.float32)
|
|
|
|
y_train = data_train['Outcome'].astype(np.float32)
|
|
|
|
|
|
|
|
x_test = data_test[columns_to_train].astype(np.float32)
|
|
|
|
y_test = data_test['Outcome'].astype(np.float32)
|
|
|
|
|
|
|
|
fTrain = torch.from_numpy(x_train.values)
|
|
|
|
tTrain = torch.from_numpy(y_train.values.reshape(460,1))
|
|
|
|
|
|
|
|
fTest= torch.from_numpy(x_test.values)
|
|
|
|
tTest = torch.from_numpy(y_test.values)
|
|
|
|
|
2021-05-24 12:21:39 +02:00
|
|
|
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 20
|
2021-04-25 23:35:11 +02:00
|
|
|
n_iters = 900
|
2021-05-24 12:21:39 +02:00
|
|
|
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 10
|
2021-04-25 23:35:11 +02:00
|
|
|
learning_rate = 0.005
|
|
|
|
input_dim = 4
|
|
|
|
output_dim = 1
|
|
|
|
|
|
|
|
model = LogisticRegressionModel(input_dim, output_dim)
|
|
|
|
|
|
|
|
criterion = torch.nn.BCELoss(reduction='mean')
|
|
|
|
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
|
|
|
|
|
|
|
for epoch in range(num_epochs):
|
2021-04-25 23:49:57 +02:00
|
|
|
print ("Epoch - ",epoch)
|
2021-04-25 23:35:11 +02:00
|
|
|
model.train()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
# Forward pass
|
|
|
|
y_pred = model(fTrain)
|
|
|
|
# Compute Loss
|
|
|
|
loss = criterion(y_pred, tTrain)
|
|
|
|
print(loss.item())
|
|
|
|
# Backward pass
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
|
|
|
|
y_pred = model(fTest)
|
|
|
|
|
|
|
|
torch.save(model, 'diabetes.pkl')
|