add pytorch exercise
This commit is contained in:
parent
332e14bfdb
commit
379b3622c5
@ -6,11 +6,13 @@ RUN apt update && apt install python3-pip -y
|
||||
RUN pip3 install kaggle && pip3 install pandas && pip3 install scikit-learn && pip3 install matplotlib
|
||||
RUN apt install -y curl
|
||||
RUN pip3 install --user wget
|
||||
RUN pip3 install torch torchvision torchaudio
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY ./init.py ./
|
||||
COPY ./stats.py ./
|
||||
COPY ./pytorch-example.py ./
|
||||
|
||||
RUN mkdir /.kaggle
|
||||
RUN chmod -R 777 /.kaggle
|
9
Jenkinsfile
vendored
9
Jenkinsfile
vendored
@ -22,13 +22,20 @@ node {
|
||||
"KAGGLE_KEY=${params.KAGGLE_KEY}", "CUTOFF=${params.CUTOFF}" ]) {
|
||||
checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s440058/ium_440058']]])
|
||||
|
||||
checkout scm
|
||||
|
||||
def image = docker.build("s440058/ium")
|
||||
image.inside {
|
||||
sh 'python3 ./pytorch-example.py > model.txt'
|
||||
sh 'python3 ./init.py > model.txt'
|
||||
sh "chmod 777 ./bash.sh"
|
||||
sh "./bash.sh"
|
||||
|
||||
archiveArtifacts "courses.data.dev"
|
||||
archiveArtifacts "courses.data.test"
|
||||
archiveArtifacts "courses.data.train"
|
||||
|
||||
archiveArtifacts 'model.txt'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
66
pytorch-example.py
Normal file
66
pytorch-example.py
Normal file
@ -0,0 +1,66 @@
|
||||
from sklearn.model_selection import train_test_split
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.data import DataLoader, TensorDataset, random_split
|
||||
from sklearn import preprocessing
|
||||
|
||||
class LogisticRegressionModel(torch.nn.Module):
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super(LogisticRegressionModel, self).__init__()
|
||||
self.linear = nn.Linear(input_dim, output_dim)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
def forward(self, x):
|
||||
out = self.linear(x)
|
||||
return self.sigmoid(out)
|
||||
|
||||
results = pd.read_csv('diabetes2.csv')
|
||||
|
||||
results.dropna()
|
||||
|
||||
data_train, data_valid, data_test = np.split(results.sample(frac=1), [int(.6*len(results)), int(.8*len(results))])
|
||||
columns_to_train = ['Glucose', 'BloodPressure', 'Insulin', 'Age']
|
||||
|
||||
x_train = data_train[columns_to_train].astype(np.float32)
|
||||
y_train = data_train['Outcome'].astype(np.float32)
|
||||
|
||||
x_test = data_test[columns_to_train].astype(np.float32)
|
||||
y_test = data_test['Outcome'].astype(np.float32)
|
||||
|
||||
fTrain = torch.from_numpy(x_train.values)
|
||||
tTrain = torch.from_numpy(y_train.values.reshape(460,1))
|
||||
|
||||
fTest= torch.from_numpy(x_test.values)
|
||||
tTest = torch.from_numpy(y_test.values)
|
||||
|
||||
batch_size = 95
|
||||
n_iters = 900
|
||||
num_epochs = int(n_iters / (len(x_train) / batch_size))
|
||||
learning_rate = 0.005
|
||||
input_dim = 4
|
||||
output_dim = 1
|
||||
|
||||
model = LogisticRegressionModel(input_dim, output_dim)
|
||||
|
||||
criterion = torch.nn.BCELoss(reduction='mean')
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
print ("Epoch #",epoch)
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
# Forward pass
|
||||
y_pred = model(fTrain)
|
||||
# Compute Loss
|
||||
loss = criterion(y_pred, tTrain)
|
||||
print(loss.item())
|
||||
# Backward pass
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
|
||||
y_pred = model(fTest)
|
||||
|
||||
torch.save(model, 'diabetes.pkl')
|
Loading…
Reference in New Issue
Block a user