diff --git a/Dockerfile b/Dockerfile index 44e7cef..1259540 100644 --- a/Dockerfile +++ b/Dockerfile @@ -14,7 +14,7 @@ WORKDIR /app COPY ./init.py ./ COPY ./stats.py ./ COPY ./pytorch-example.py ./ -COPY ./scared-example-file.py ./ +COPY ./sacred-example-file.py ./ RUN mkdir /.kaggle RUN chmod -R 777 /.kaggle \ No newline at end of file diff --git a/lab06/jenkinsfile-train b/lab06/jenkinsfile-train index 68e8193..48cc1c7 100644 --- a/lab06/jenkinsfile-train +++ b/lab06/jenkinsfile-train @@ -29,7 +29,7 @@ pipeline { stage('Docker'){ steps{ sh 'python3 "./pytorch-example.py" ${BATCH_SIZE} ${EPOCHS} > model.txt' - sh 'python3 "./scared-example-file.py"' + sh 'python3 "./sacredd-example-file.py"' } } stage('archiveArtifacts') { diff --git a/scared-example-file.py b/sacred-example-file.py similarity index 100% rename from scared-example-file.py rename to sacred-example-file.py diff --git a/sacred-example-mongo.py b/sacred-example-mongo.py new file mode 100644 index 0000000..69ada91 --- /dev/null +++ b/sacred-example-mongo.py @@ -0,0 +1,98 @@ +from sklearn.model_selection import train_test_split +import torch +import torch.nn as nn +import pandas as pd +import numpy as np +import torch.nn.functional as F +from torch.utils.data import DataLoader, TensorDataset, random_split +from sklearn import preprocessing +import sys +from sacred import Experiment +from sacred.observers import MongoObserver +from sklearn.metrics import accuracy_score +from sklearn.metrics import f1_score +from sklearn.metrics import mean_squared_error + +np.set_printoptions(suppress=False) + +ex = Experiment("ium_s440058", interactive=False, save_git_info=False) +ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', + db_name='s440058')) + +@ex.config +def my_config(): + num_epochs = 10 + batch_size = 20 + +class LogisticRegressionModel(torch.nn.Module): + def __init__(self, input_dim, output_dim): + super(LogisticRegressionModel, self).__init__() + self.linear = nn.Linear(input_dim, output_dim) + self.sigmoid = nn.Sigmoid() + def forward(self, x): + out = self.linear(x) + return self.sigmoid(out) + +@ex.capture +def script(num_epochs, batch_size, _run): + results = pd.read_csv('diabetes2.csv') + + results.dropna() + + data_train, data_valid, data_test = np.split(results.sample(frac=1), [int(.6*len(results)), int(.8*len(results))]) + columns_to_train = ['Glucose', 'BloodPressure', 'Insulin', 'Age'] + + x_train = data_train[columns_to_train].astype(np.float32) + y_train = data_train['Outcome'].astype(np.float32) + + x_test = data_test[columns_to_train].astype(np.float32) + y_test = data_test['Outcome'].astype(np.float32) + + fTrain = torch.from_numpy(x_train.values) + tTrain = torch.from_numpy(y_train.values.reshape(460,1)) + + fTest= torch.from_numpy(x_test.values) + tTest = torch.from_numpy(y_test.values) + + _run.log_scalar("Batch", str(batch_size)) + _run.log_scalar("epoch", str(num_epochs)) + learning_rate = 0.005 + input_dim = 4 + output_dim = 1 + + model = LogisticRegressionModel(input_dim, output_dim) + + criterion = torch.nn.BCELoss(reduction='mean') + optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate) + + for epoch in range(num_epochs): + print ("Epoch - ",epoch) + model.train() + optimizer.zero_grad() + # Forward pass + y_pred = model(fTrain) + # Compute Loss + loss = criterion(y_pred, tTrain) + print(loss.item()) + # Backward pass + loss.backward() + optimizer.step() + + _run.log_scalar("Lost", str(loss.item())) + + + torch.save(model.state_dict(), 'diabetes.pth') + pred = model(fTest) + accuracy = accuracy_score(tTest, np.argmax(pred.detach().numpy(), axis = 1)) + f1 = f1_score(tTest, np.argmax(pred.detach().numpy(), axis = 1), average = None) + rmse = mean_squared_error(tTest, pred.detach().numpy()) + _run.log_scalar("accuracy", accuracy) + _run.log_scalar("f1", f1) + _run.log_scalar("rmse", rmse) + +@ex.automain +def my_main(num_epochs, batch_size, _run): + script() + +ex.run() +ex.add_artifact('diabetes_model/diabetes.pth') \ No newline at end of file