add scared fileobserver
Some checks failed
s440058-training/pipeline/head There was a failure building this commit
Some checks failed
s440058-training/pipeline/head There was a failure building this commit
This commit is contained in:
parent
e8fffb09d4
commit
b82de462ef
@ -15,7 +15,7 @@ pipeline {
|
||||
copyArtifacts fingerprintArtifacts: true, projectName: 's440058-create-dataset', selector: buildParameter('WHICH_BUILD')
|
||||
}
|
||||
}
|
||||
stage('Docker'){
|
||||
stage('scripts'){
|
||||
steps{
|
||||
sh 'python3 "./pytorch-example-evaluate.py" > eval-acc-result.txt'
|
||||
}
|
||||
|
@ -29,6 +29,7 @@ pipeline {
|
||||
stage('Docker'){
|
||||
steps{
|
||||
sh 'python3 "./pytorch-example.py" ${BATCH_SIZE} ${EPOCHS} > model.txt'
|
||||
sh 'python3 "./scared-example-file.py"'
|
||||
}
|
||||
}
|
||||
stage('archiveArtifacts') {
|
||||
|
@ -47,6 +47,8 @@ model = LogisticRegressionModel(input_dim, output_dim)
|
||||
|
||||
pred = model(fTest)
|
||||
accuracy = accuracy_score(tTest, np.argmax(pred.detach().numpy(), axis = 1))
|
||||
|
||||
|
||||
f1 = f1_score(tTest, np.argmax(pred.detach().numpy(), axis = 1), average = None)
|
||||
rmse = mean_squared_error(tTest, pred.detach().numpy())
|
||||
|
||||
|
98
scared-example-file.py
Normal file
98
scared-example-file.py
Normal file
@ -0,0 +1,98 @@
|
||||
from sklearn.model_selection import train_test_split
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.data import DataLoader, TensorDataset, random_split
|
||||
from sklearn import preprocessing
|
||||
import sys
|
||||
from sacred import Experiment
|
||||
from sacred.observers import FileStorageObserver
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn.metrics import f1_score
|
||||
from sklearn.metrics import mean_squared_error
|
||||
|
||||
np.set_printoptions(suppress=False)
|
||||
|
||||
ex = Experiment("ium_s440058", interactive=False, save_git_info=False)
|
||||
ex.observers.append(FileStorageObserver('ium_s440058/my_runs_directory'))
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
num_epochs = 10
|
||||
batch_size = 20
|
||||
|
||||
class LogisticRegressionModel(torch.nn.Module):
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super(LogisticRegressionModel, self).__init__()
|
||||
self.linear = nn.Linear(input_dim, output_dim)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
def forward(self, x):
|
||||
out = self.linear(x)
|
||||
return self.sigmoid(out)
|
||||
|
||||
@ex.capture
|
||||
def readAndtrain(num_epochs, batch_size, _run):
|
||||
results = pd.read_csv('diabetes2.csv')
|
||||
|
||||
results.dropna()
|
||||
|
||||
data_train, data_valid, data_test = np.split(results.sample(frac=1), [int(.6*len(results)), int(.8*len(results))])
|
||||
columns_to_train = ['Glucose', 'BloodPressure', 'Insulin', 'Age']
|
||||
|
||||
x_train = data_train[columns_to_train].astype(np.float32)
|
||||
y_train = data_train['Outcome'].astype(np.float32)
|
||||
|
||||
x_test = data_test[columns_to_train].astype(np.float32)
|
||||
y_test = data_test['Outcome'].astype(np.float32)
|
||||
|
||||
fTrain = torch.from_numpy(x_train.values)
|
||||
tTrain = torch.from_numpy(y_train.values.reshape(460,1))
|
||||
|
||||
fTest= torch.from_numpy(x_test.values)
|
||||
tTest = torch.from_numpy(y_test.values)
|
||||
|
||||
_run.log_scalar("Batch", str(batch_size))
|
||||
_run.log_scalar("epoch", str(num_epochs))
|
||||
learning_rate = 0.005
|
||||
input_dim = 4
|
||||
output_dim = 1
|
||||
|
||||
model = LogisticRegressionModel(input_dim, output_dim)
|
||||
model.load_state_dict(torch.load('diabetes.pth'))
|
||||
|
||||
criterion = torch.nn.BCELoss(reduction='mean')
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
print ("Epoch - ",epoch)
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
# Forward pass
|
||||
y_pred = model(fTrain)
|
||||
# Compute Loss
|
||||
loss = criterion(y_pred, tTrain)
|
||||
print(loss.item())
|
||||
# Backward pass
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
_run.log_scalar("Lost", str(loss.item()))
|
||||
|
||||
|
||||
torch.save(model.state_dict(), 'diabetes.pth')
|
||||
pred = model(fTest)
|
||||
accuracy = accuracy_score(tTest, np.argmax(pred.detach().numpy(), axis = 1))
|
||||
f1 = f1_score(tTest, np.argmax(pred.detach().numpy(), axis = 1), average = None)
|
||||
rmse = mean_squared_error(tTest, pred.detach().numpy())
|
||||
_run.log_scalar("accuracy", accuracy)
|
||||
_run.log_scalar("f1", f1)
|
||||
_run.log_scalar("rmse", rmse)
|
||||
|
||||
@ex.automain
|
||||
def my_main(epochs, batch_size, _run):
|
||||
readAndtrain()
|
||||
|
||||
ex.run()
|
||||
ex.add_artifact('diabetes.pth')
|
Loading…
Reference in New Issue
Block a user