diff --git a/lab06/jenkinsfile-evaluate b/lab06/jenkinsfile-evaluate new file mode 100644 index 0000000..9d44104 --- /dev/null +++ b/lab06/jenkinsfile-evaluate @@ -0,0 +1,39 @@ +pipeline { + agent { + dockerfile true + } + parameters{ + buildSelector( + defaultSelector: lastSuccessful(), + description: 'Which build to use for copying artifacts', + name: 'WHICH_BUILD' + ) + } + stages { + stage('checkout') { + steps { + copyArtifacts fingerprintArtifacts: true, projectName: 's440058-create-dataset', selector: buildParameter('WHICH_BUILD') + } + } + stage('Docker'){ + steps{ + sh 'python3 "./pytorch-example-evaluate.py" > eval-acc-result.txt' + } + } + stage('archiveArtifacts') { + steps{ + archiveArtifacts 'eval-acc-result.txt' + } + } + } + post { + success { + mail body: 'SUCCESS TRAINING', subject: 's440058', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms' + } + + failure { + mail body: 'FAILURE TRAINING', subject: 's440058', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms' + } + + } +} \ No newline at end of file diff --git a/pytorch-example-evaluate.py b/pytorch-example-evaluate.py new file mode 100644 index 0000000..b5a50c4 --- /dev/null +++ b/pytorch-example-evaluate.py @@ -0,0 +1,47 @@ +from sklearn.model_selection import train_test_split +import torch +import torch.nn as nn +import pandas as pd +import numpy as np +import torch.nn.functional as F +from torch.utils.data import DataLoader, TensorDataset, random_split +from sklearn import preprocessing +import sys + +class LogisticRegressionModel(torch.nn.Module): + def __init__(self, input_dim, output_dim): + super(LogisticRegressionModel, self).__init__() + self.linear = nn.Linear(input_dim, output_dim) + self.sigmoid = nn.Sigmoid() + def forward(self, x): + out = self.linear(x) + return self.sigmoid(out) + +results = pd.read_csv('diabetes2.csv') + +results.dropna() + +data_train, data_valid, data_test = np.split(results.sample(frac=1), [int(.6*len(results)), int(.8*len(results))]) +columns_to_train = ['Glucose', 'BloodPressure', 'Insulin', 'Age'] + +x_train = data_train[columns_to_train].astype(np.float32) +y_train = data_train['Outcome'].astype(np.float32) + +x_test = data_test[columns_to_train].astype(np.float32) +y_test = data_test['Outcome'].astype(np.float32) + +fTrain = torch.from_numpy(x_train.values) +tTrain = torch.from_numpy(y_train.values.reshape(460,1)) + +fTest= torch.from_numpy(x_test.values) +tTest = torch.from_numpy(y_test.values) + +input_dim = 4 +output_dim = 1 + +model = LogisticRegressionModel(input_dim, output_dim) + +pred = model(xTest) +accuracy = accuracy_score(fTest, np.argmax(pred.detach(), axis = 1)) + +print(f'Accuracy: {accuracy}') \ No newline at end of file