pipeline { agent { dockerfile true } parameters{ buildSelector( defaultSelector: lastSuccessful(), description: 'Which build to use for copying artifacts', name: 'WHICH_BUILD' ) string( defaultValue: '16', description: 'batch size', name: 'BATCH_SIZE' ) string( defaultValue: '15', description: 'epochs', name: 'EPOCHS' ) } stages { stage('checkout') { steps { copyArtifacts fingerprintArtifacts: true, projectName: 's440058-create-dataset', selector: buildParameter('WHICH_BUILD') } } stage('Docker'){ steps{ sh 'python3 "./pytorch-example.py" ${BATCH_SIZE} ${EPOCHS} > model.txt' sh 'python3 "./sacred-example-file.py"' sh 'python3 "./sacred-example-mongo.py"' } } stage('archiveArtifacts') { steps{ archiveArtifacts 'model.txt' archiveArtifacts 'diabetes.pkl' archiveArtifacts 'diabetes.pth' } } } post { success { build job: 's440058-evaluation/master' mail body: 'SUCCESS TRAINING', subject: 's440058', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms' } failure { mail body: 'FAILURE TRAINING', subject: 's440058', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms' } } }