from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer import random import torch PATHS = ['train/in.tsv', 'train/expected.tsv', 'dev-0/in.tsv', 'test-A/in.tsv', './dev-0/out.tsv', './test-A/out.tsv'] PRE_TRAINED = 'roberta-base' def get_data(path): data = [] with open(path, encoding='utf-8') as f: data = f.readlines() return data class IMDbDataset(torch.utils.data.Dataset): def __init__(self, encodings, labels): self.encodings = encodings self.labels = labels def __getitem__(self, idx): item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()} item['labels'] = torch.tensor(self.labels[idx]) return item def __len__(self): return len(self.labels) def prepare(data_train_X, data_train_Y): tokenizer = AutoTokenizer.from_pretrained(PRE_TRAINED) model = AutoModelForSequenceClassification.from_pretrained(PRE_TRAINED, num_labels=2) encoded_input = tokenizer([text[0] for text in list(zip(data_train_X, data_train_Y))], truncation=True, padding=True) train_dataset = IMDbDataset(encoded_input , [int(text[1]) for text in list(zip(data_train_X, data_train_Y))]) return train_dataset, model def trainer(train_dataset, model): training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=3, # total number of training epochs per_device_train_batch_size=16, # batch size per device during training per_device_eval_batch_size=64, # batch size for evaluation warmup_steps=500, # number of warmup steps for learning rate scheduler weight_decay=0.01, # strength of weight decay logging_dir='./logs', # directory for storing logs logging_steps=10, ) trainer = Trainer( model=model, # the instantiated Transformers model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset ) trainer.train() def main(): #data X_train = get_data(PATHS[0]) y_train = get_data(PATHS[1]) X_dev = get_data(PATHS[2]) X_test = get_data(PATHS[3]) #prepare train_dataset, model = prepare(X_train, y_train) #trainer trainer(train_dataset, model) if __name__ == '__main__': main()