140 lines
4.8 KiB
Markdown
140 lines
4.8 KiB
Markdown
# Sztuczna inteligencja 2019 - Raport 1
|
||
|
||
**Czas trwania opisywanych prac:** 06.03.2018 - 26.03.2018
|
||
|
||
**Członkowie zespołu:** Anna Nowak, Magdalena Wilczyńska, Konrad Pierzyński, Michał Starski
|
||
|
||
**Wybrany temat:** Inteligentna śmieciarka
|
||
|
||
**Link do repozytorium projektu:** https://git.wmi.amu.edu.pl/s440556/SZI2019SmieciarzWmi
|
||
|
||
## Środowisko agenta i reprezentacja wiedzy
|
||
|
||
Pracę zaczeliśmy od spisania wszystkiego co będzie nam potrzebne do napisanie działającego środowiska. Notatki
|
||
|
||
można obejrzeć pod [tym linkiem](https://git.wmi.amu.edu.pl/s440556/SZI2019SmieciarzWmi/src/master/README.md). Pod uwagę wzieliśmy następujące czynniki:
|
||
|
||
* Jak dana technologia radzi sobie z graficznym przedstawieniem informacji (render mapy i rozmieszczenie na niej obiektów, zmiana stanów obiektów w zależności od sytuacji ...)
|
||
|
||
* Poziom skomplikowania operacji na strukturach danych
|
||
|
||
* Podejście języka do paradygmatu obiektowego
|
||
|
||
* Trudność w implementacji mechanizmów sztucznej inteligencji
|
||
|
||
* Preferencje programistyczne grupy
|
||
|
||
Po naradzie i sugestiach od strony prowadzącego zdecydowaliśmy, że do projektu najlepiej będzie pasował język **python** z uwagi na jego uniwersalność i łatwość przetwarzania danych.
|
||
|
||
### Plansza po której porusza się agent
|
||
|
||
**Założenia**
|
||
|
||
1. Plansza jest generowana losowo przy każdym uruchomieniu skryptu
|
||
|
||
2. Każda plansza zawiera *n* domów i 3 wysypiska śmieci
|
||
|
||
3. Każdy domek klatkę generuje jeden z 3 rodzajów śmieci z prawdopodobieństwem P (domyślnie 1/25)
|
||
|
||
4. Agent chodzi po domkach zbiera śmieci i wyrzuca je na odpowiednie wysypisko
|
||
|
||
5. Agent ma pojemność 10 na każdy rodzaj śmiecia
|
||
|
||
6. Dom może wygenerować maksymalnie 10 śmieci każdego rodzaju
|
||
|
||
7. Plansza jest dyskretna
|
||
|
||
**Detale implementacyjne**
|
||
|
||
Środowisko powstało przy użyciu biblioteki **pygame**, która udostępnia nam narzędzia do wygodnego zbudowania schludnie wyglądającej symulacji. Plansza ma postać dwuwymiarowiej płaszczyzny kartezjańskiej podzielonej na komórki (Cells). Na komórkach umieszczane są po kolei obiekty, tak, aby nie doszło do sytuacji, w której agent nie ma możliwości ruchu. Środowisko jest generowane dynamicznie w zależności od parametru **home-count**, który podajemy przy starcie skryptu. Dzięki temu możemy testować agenta w możliwie różnych sytuacjach. Opis elementów środowiska został przedstawiony przy użyciu paradygmatu obiektowego, dzięki temu kod jest czytelniejszy i wydzielony.
|
||
|
||
|
||
|
||
Na ten moment na planszy pojawiają się instancje klas:
|
||
|
||
*Grass* - klasa reprezentująca komórkę po której agent może swobodnie się poruszać, wypełnia większość mapy
|
||
|
||
*House* - klasa reprezentująca dom, agent wchodzi z nią w interakcję, zabiera wygenerowane śmieci
|
||
|
||
*Landfill* - klasa reprezentująca wysypisko, agent wchodzi z nią w interakcję, oddaje zebrane śmieci
|
||
|
||
*Garbage_collector* - klasa reprezentująca agenta - porusza się po mapie i wchodzi w interakcję z innymi obiektami
|
||
|
||
*HUD* - klasa reprezentująca HUD aplikacji (jeszcze niezaimplementowany)
|
||
|
||
|
||
|
||
**Struktura plików projektu**
|
||
|
||
--enums => Klasy dziedziczące po klasie *Enum*, ułatwiające parsowanie informacji
|
||
|
||
--fonts => Czcionki
|
||
|
||
--images => Obrazy i ikony używane w aplikacji
|
||
|
||
--raports => Raporty
|
||
|
||
--sprites => Klasy reprezentujące obiekty na mapie
|
||
|
||
.gitignore
|
||
|
||
config.py => Plik przechowujący funkcję zarządzające konfiguracją aplikacji
|
||
|
||
game.py => Plik rozruchowy programu
|
||
|
||
utils.py => Funkcje pomocnicze
|
||
|
||
README.md => Informacje o aplikacji
|
||
|
||
requirements.txt => Przechowuje informacje na temat używanych bibliotek
|
||
|
||
to_do.txt => Lista przyszłych zadań do zrobienia
|
||
|
||
|
||
|
||
### Reprezentacja Wiedzy
|
||
|
||
Przyjeliśmy na potrzeby projektu, że agent będzie wiedział co się dzieje na całym obszarze środowiska. W tym momencie wszystko co wie agent wyświetlane jest w oknie terminala, w czasie rzeczywistym, podczas trwania programu. Do informacji posiadanych przez agenta należą:
|
||
|
||
|
||
|
||
* Ile zebrano śmieci od startu programu
|
||
|
||
* Stopień zapełnienia śmieciarki
|
||
|
||
* Ile śmieci zostało na mapie
|
||
|
||
|
||
|
||
Podczas dalszego rozwoju powyższe informacje będą przedstawiane na ekranie aplikacji.
|
||
|
||
|
||
|
||
### Uruchamianie aplikacji
|
||
|
||
**Linux**
|
||
|
||
Uruchomienie standardowe (z 5 domami)
|
||
|
||
```bash
|
||
make init #stworzenie wirtualnego środowiska
|
||
make install #zainstalowanie zależności
|
||
make start #uruchomienie z domyślnym parametrem home-count=5
|
||
```
|
||
|
||
Uruchomienie niestandardowe
|
||
|
||
```bash
|
||
env/bin/python3 ./game.py home-count=amount #Liczba domów nie może być mniejsza niż 3
|
||
```
|
||
|
||
**Windows**
|
||
|
||
```powershell
|
||
py -m virtualenv env # Stworzenie wirtualnego środowiska
|
||
env\Scripts\pip.exe install -r requirements.txt
|
||
env\Scripts\python.exe ./game.py --home-count=amount
|
||
```
|
||
|
||
|