forked from tdwojak/Python2018
56 lines
1.4 KiB
Python
56 lines
1.4 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
def wczytaj_dane():
|
||
|
return pd.read_csv('mieszkania.csv')
|
||
|
|
||
|
def most_common_room_number(dane):
|
||
|
return dane['Rooms'].mode()[0]
|
||
|
|
||
|
def cheapest_flats(dane, n):
|
||
|
return dane.sort_values('Expected', axis=0, ascending=True)[:n]
|
||
|
|
||
|
def find_borough(desc):
|
||
|
dzielnice = ['Stare Miasto',
|
||
|
'Wilda',
|
||
|
'Jeżyce',
|
||
|
'Rataje',
|
||
|
'Piątkowo',
|
||
|
'Winogrady',
|
||
|
'Miłostowo',
|
||
|
'Dębiec']
|
||
|
for dzielnica in dzielnice:
|
||
|
if dzielnica in desc:
|
||
|
return dzielnica
|
||
|
return 'Inne'
|
||
|
|
||
|
|
||
|
def add_borough(dane):
|
||
|
dane['Borough'] = dane['Location'].apply(find_borough)
|
||
|
|
||
|
def write_plot(dane, filename):
|
||
|
# TODO
|
||
|
pass
|
||
|
|
||
|
def mean_price(dane, room_number):
|
||
|
return dane[dane['Rooms'] == room_number]['Expected'].mean()
|
||
|
|
||
|
def find_13(dane):
|
||
|
return dane[dane['Floor'] == 13]['Borough'].unique()
|
||
|
|
||
|
def find_best_flats(dane):
|
||
|
return dane[(dane['Borough'] == 'Winogrady') & (dane['Floor'] == 1) & (dane['Rooms'] == 3)]
|
||
|
|
||
|
def main():
|
||
|
dane = wczytaj_dane()
|
||
|
print(dane[:5])
|
||
|
|
||
|
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
|
||
|
.format(most_common_room_number(dane)))
|
||
|
|
||
|
print("{} to najłądniejsza dzielnica w Poznaniu."
|
||
|
.format(find_borough("Grunwald i Jeżyce")))
|
||
|
|
||
|
print("Średnia cena mieszkania 3-pokojowego, to: {}"
|
||
|
.format(mean_price(dane, 3)))
|