forked from tdwojak/Python2018
Prześlij pliki do ''
This commit is contained in:
parent
efe847fcae
commit
27938a9f0f
18
README.md
Normal file
18
README.md
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
## Zadania
|
||||||
|
|
||||||
|
** zad. 0 **
|
||||||
|
Sprawdź, czy masz zainstalowany pakiet ``pandas``. Jeżeli nie, zainstaluj go.
|
||||||
|
|
||||||
|
** zad. 2 (domowe) **
|
||||||
|
Jest to zadanie złożone, składające się z kilku części. Całość będzie opierać się o dane zawarte w pliku *mieszkania.csv* i dotyczą cen mieszkań w Poznaniu kilka lat temu.
|
||||||
|
1, Otwórz plik ``task02.py``, który zawiera szkielet kodu, który będziemy rozwijać w tym zadaniu.
|
||||||
|
1. Napisz funkcje, która wczyta zestaw danych z pliku *mieszkania.csv* i zwróci obiekt typu *DataFrame*. Jeżeli wszystko zostało zrobione poprawnie, powinno się wyśtwietlić 5 pierwszych wierszy.
|
||||||
|
1. Uzupełnij funkcję ``most_common_room_number``, która zwróci jaka jest najpopularniejsza liczba pokoi w ogłoszeniach. Funkcji powinna zwrócić liczbę całkowitą.
|
||||||
|
1. Uzupełnij kod w funkcji ``cheapest_flats(dane, n)``, która wzróci *n* najtańszych ofert mieszkań. Wzrócony obiekt typu ``DataFrame``.
|
||||||
|
1. Napisz funkcje ``find_borough(desc)``, która przyjmuje 1 argument typu *string* i zwróci jedną z dzielnic zdefiniowaną w liście ``dzielnice``. Funkcja ma zwrócić pierwszą (wzgledem kolejności) nazwę dzielnicy, która jest zawarta w ``desc``. Jeżeli żadna nazwa nie została odnaleziona, zwróć *Inne*.
|
||||||
|
1. Dodaj kolumnę ``Borough``, która będzie zawierać informacje o dzielnicach i powstanie z kolumny ``Localization``. Wykorzystaj do tego funkcję ``find_borough``.
|
||||||
|
1. Uzupełnił funkcje ``write_plot``, która zapisze do pliku ``filename`` wykres słupkowy przedstawiający liczbę ogłoszeń mieszkań z podziałem na dzielnice.
|
||||||
|
1. Napisz funkcje ``mean_price``, która zwróci średnią cenę mieszkania ``room_numer``-pokojowego.
|
||||||
|
1. Uzupełnij funkcje ``find_13``, która zwróci listę dzielnic, które zawierają ofertę mieszkanie na 13 piętrze.
|
||||||
|
1. Napisz funkcje ``find_best_flats``, która zwróci wszystkie ogłoszenia mieszkań, które znajdują się na Winogradach, mają 3 pokoje i są położone na 1 piętrze.
|
||||||
|
1. *(dodatkowe)*: Korzystając z pakietu *sklearn* zbuduj model regresji liniowej, która będzie wyznaczać cenę mieszkania na podstawie wielkości mieszkania i liczby pokoi.
|
5001
mieszkania.csv
Normal file
5001
mieszkania.csv
Normal file
File diff suppressed because it is too large
Load Diff
55
task02.py
Normal file
55
task02.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
def wczytaj_dane():
|
||||||
|
return pd.read_csv('mieszkania.csv')
|
||||||
|
|
||||||
|
def most_common_room_number(dane):
|
||||||
|
return dane['Rooms'].mode()[0]
|
||||||
|
|
||||||
|
def cheapest_flats(dane, n):
|
||||||
|
return dane.sort_values('Expected', axis=0, ascending=True)[:n]
|
||||||
|
|
||||||
|
def find_borough(desc):
|
||||||
|
dzielnice = ['Stare Miasto',
|
||||||
|
'Wilda',
|
||||||
|
'Jeżyce',
|
||||||
|
'Rataje',
|
||||||
|
'Piątkowo',
|
||||||
|
'Winogrady',
|
||||||
|
'Miłostowo',
|
||||||
|
'Dębiec']
|
||||||
|
for dzielnica in dzielnice:
|
||||||
|
if dzielnica in desc:
|
||||||
|
return dzielnica
|
||||||
|
return 'Inne'
|
||||||
|
|
||||||
|
|
||||||
|
def add_borough(dane):
|
||||||
|
dane['Borough'] = dane['Location'].apply(find_borough)
|
||||||
|
|
||||||
|
def write_plot(dane, filename):
|
||||||
|
# TODO
|
||||||
|
pass
|
||||||
|
|
||||||
|
def mean_price(dane, room_number):
|
||||||
|
return dane[dane['Rooms'] == room_number]['Expected'].mean()
|
||||||
|
|
||||||
|
def find_13(dane):
|
||||||
|
return dane[dane['Floor'] == 13]['Borough'].unique()
|
||||||
|
|
||||||
|
def find_best_flats(dane):
|
||||||
|
return dane[(dane['Borough'] == 'Winogrady') & (dane['Floor'] == 1) & (dane['Rooms'] == 3)]
|
||||||
|
|
||||||
|
def main():
|
||||||
|
dane = wczytaj_dane()
|
||||||
|
print(dane[:5])
|
||||||
|
|
||||||
|
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
|
||||||
|
.format(most_common_room_number(dane)))
|
||||||
|
|
||||||
|
print("{} to najłądniejsza dzielnica w Poznaniu."
|
||||||
|
.format(find_borough("Grunwald i Jeżyce")))
|
||||||
|
|
||||||
|
print("Średnia cena mieszkania 3-pokojowego, to: {}"
|
||||||
|
.format(mean_price(dane, 3)))
|
80
tasks.py
Normal file
80
tasks.py
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
"""
|
||||||
|
1. Zaimportuj bibliotkę pandas jako pd.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
2. Wczytaj zbiór danych `311.csv` do zniennej data.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
3. Wyświetl 5 pierwszych wierszy z data.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
4. Wyświetl nazwy kolumn.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
5. Wyświetl ile nasz zbiór danych ma kolumn i wierszy.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
6. Wyświetl kolumnę 'City' z powyższego zbioru danych.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
7. Wyświetl jakie wartoścu przyjmuje kolumna 'City'.
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
8. Wyświetl tabelę rozstawną kolumny City.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
9. Wyświetl tylko pierwsze 4 wiersze z wcześniejszego polecenia.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
10. Wyświetl, w ilu przypadkach kolumna City zawiera NaN.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
11. Wyświetl data.info()
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
12. Wyświetl tylko kolumny Borough i Agency i tylko 5 ostatnich linii.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
13. Wyświetl tylko te dane, dla których wartość z kolumny Agency jest równa
|
||||||
|
NYPD. Zlicz ile jest takich przykładów.
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
14. Wyświetl wartość minimalną i maksymalną z kolumny Longitude.
|
||||||
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
15. Dodaj kolumne diff, która powstanie przez sumowanie kolumn Longitude i Latitude.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
16. Wyświetl tablę rozstawną dla kolumny 'Descriptor', dla której Agency jest
|
||||||
|
równe NYPD.
|
||||||
|
"""
|
Loading…
Reference in New Issue
Block a user