#!/usr/bin/env python # -*- coding: utf-8 -*- def wczytaj_dane(): return pd.read_csv('mieszkania.csv') def most_common_room_number(dane): return dane['Rooms'].mode()[0] def cheapest_flats(dane, n): return dane.sort_values('Expected', axis=0, ascending=True)[:n] def find_borough(desc): dzielnice = ['Stare Miasto', 'Wilda', 'Jeżyce', 'Rataje', 'Piątkowo', 'Winogrady', 'Miłostowo', 'Dębiec'] for dzielnica in dzielnice: if dzielnica in desc: return dzielnica return 'Inne' def add_borough(dane): dane['Borough'] = dane['Location'].apply(find_borough) def write_plot(dane, filename): # TODO pass def mean_price(dane, room_number): return dane[dane['Rooms'] == room_number]['Expected'].mean() def find_13(dane): return dane[dane['Floor'] == 13]['Borough'].unique() def find_best_flats(dane): return dane[(dane['Borough'] == 'Winogrady') & (dane['Floor'] == 1) & (dane['Rooms'] == 3)] def main(): dane = wczytaj_dane() print(dane[:5]) print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}" .format(most_common_room_number(dane))) print("{} to najłądniejsza dzielnica w Poznaniu." .format(find_borough("Grunwald i Jeżyce"))) print("Średnia cena mieszkania 3-pokojowego, to: {}" .format(mean_price(dane, 3)))