#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from statistics import mode import matplotlib.pyplot as plt def wczytaj_dane(): data = pd.read_csv('mieszkania.csv') return data def most_common_room_number(dane): return mode(dane.Rooms) def cheapest_flats(dane, n): sorted = dane.Expected.sort() return sorted.head(n) def find_borough(desc): dzielnice = ['Stare Miasto', 'Wilda', 'Jeżyce', 'Rataje', 'Piątkowo', 'Winogrady', 'Miłostowo', 'Dębiec'] for dzielnica in dzielnice: list = desc.split(' ') for element in list: if len(element) > 2 and element == dzielnica: return dzielnica break return "Inne" def add_borough(dane): dane['Borough'] = dane['Location'].apply(find_borough) return dane def write_plot(dane, filename): plotdata = pd.Series(dane.Location.value_counts()) plotdata.plot(x='Location', y='Liczba ogłoszeń', kind='bar') plt.savefig(filename) def mean_price(dane, room_number): mean_price = dane.Expected[(dane['Rooms'] == room_number)] return mean_price.mean() def find_13(dane): return dane.Location[(dane['Floor'] == 13)].unique() def find_best_flats(dane): return dane[(dane['Location'] == 'Winogrady') & (dane['Rooms'] == 3) & (dane['Floor'] == 1)] def main(): dane = wczytaj_dane() print(dane[:5]) print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}" .format(most_common_room_number(dane))) print("{} to najladniejsza dzielnica w Poznaniu." .format(find_borough("Grunwald i Jeżyce"))) print("Srednia cena mieszkania 3-pokojowego, to: {}" .format(mean_price(dane, 3))) if __name__ == "__main__": main()