#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd import matplotlib.pyplot as plt import numpy as np def wczytaj_dane(): mieszkania = pd.read_csv('mieszkania.csv', sep=',', encoding='UTF-8', usecols=[0,1,2,3,4,5,6]) return mieszkania def most_common_room_number(dane): return dane.mode(numeric_only=True)["Rooms"][0] def cheapest_flats(dane, n): return dane.sort_values(by=['Expected'], ascending=False).head(n) def find_borough(desc): dzielnice = ['Stare Miasto', 'Wilda', 'Jeżyce', 'Rataje', 'Piątkowo', 'Winogrady', 'Miłostowo', 'Dębiec'] for i in dzielnice: if desc.find(i) + 1: return (i) return ('Inne') def add_borough(dane): dane['Borough'] = dane['Location'].apply(find_borough) return (dane) def write_plot(dane, filename): bar = dane["Borough"].value_counts().plot(kind="bar", figsize=(6, 6)) fig = bar.get_figure() fig.savefig(filename) def mean_price(dane, room_number): return dane[dane["Rooms"] == room_number]["Expected"].mean() def find_13(dane): return dane[dane["Floor"] == 13]["Borough"].unique() def find_best_flats(dane): return dane[(dane["Borough"] == "Winogrady") & (dane["Floor"] == 1) & (dane["Rooms"] == 3)] def main(): dane = wczytaj_dane() print(dane[:5]) print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}" .format(most_common_room_number(dane))) print("{} to najładniejsza dzielnica w Poznaniu." .format(find_borough("Grunwald i Jeżyce"))) print("Średnia cena mieszkania 3-pokojowego, to: {}" .format(mean_price(dane, 3))) if __name__ == "__main__": main()