371 lines
12 KiB
Plaintext
371 lines
12 KiB
Plaintext
![]() |
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"id": "dfd117bd-5d6f-46e6-979c-092a8065fa0b",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stderr",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"S:\\WENV\\Lib\\site-packages\\torchtext\\vocab\\__init__.py:4: UserWarning: \n",
|
||
|
"/!\\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\\ \n",
|
||
|
"Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: `import torchtext; torchtext.disable_torchtext_deprecation_warning()`\n",
|
||
|
" warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG)\n",
|
||
|
"S:\\WENV\\Lib\\site-packages\\torchtext\\utils.py:4: UserWarning: \n",
|
||
|
"/!\\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\\ \n",
|
||
|
"Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: `import torchtext; torchtext.disable_torchtext_deprecation_warning()`\n",
|
||
|
" warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"from torch.utils.data import IterableDataset, DataLoader\n",
|
||
|
"from torchtext.vocab import build_vocab_from_iterator\n",
|
||
|
"\n",
|
||
|
"import regex as re\n",
|
||
|
"import sys\n",
|
||
|
"import itertools\n",
|
||
|
"from itertools import islice\n",
|
||
|
"\n",
|
||
|
"from torch import nn\n",
|
||
|
"import torch\n",
|
||
|
"\n",
|
||
|
"from tqdm.notebook import tqdm\n",
|
||
|
"\n",
|
||
|
"embed_size = 100\n",
|
||
|
"vocab_size = 25_000\n",
|
||
|
"num_epochs = 1\n",
|
||
|
"device = 'cuda'\n",
|
||
|
"batch_size = 2048\n",
|
||
|
"train_file_path = 'train/train.txt'\n",
|
||
|
"\n",
|
||
|
"with open(train_file_path, 'r', encoding='utf-8') as file:\n",
|
||
|
" total = len(file.readlines())"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"id": "40392665-79bc-4032-a5de-9d189545c9f7",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/vnd.jupyter.widget-view+json": {
|
||
|
"model_id": "5049d1e295954b7baf71ac05a793071a",
|
||
|
"version_major": 2,
|
||
|
"version_minor": 0
|
||
|
},
|
||
|
"text/plain": [
|
||
|
" 0%| | 0/432022 [00:00<?, ?it/s]"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"# Function to extract words from a line of text\n",
|
||
|
"def get_words_from_line(line):\n",
|
||
|
" line = line.rstrip()\n",
|
||
|
" yield '<s>'\n",
|
||
|
" for m in re.finditer(r'[\\p{L}0-9\\*]+|\\p{P}+', line):\n",
|
||
|
" yield m.group(0).lower()\n",
|
||
|
" yield '</s>'\n",
|
||
|
"\n",
|
||
|
"# Generator to read lines from a file\n",
|
||
|
"def get_word_lines_from_file(file_name):\n",
|
||
|
" limit = total * 2\n",
|
||
|
" with open(file_name, 'r', encoding='utf8') as fh:\n",
|
||
|
" for line in tqdm(fh, total=total):\n",
|
||
|
" limit -= 1\n",
|
||
|
" if not limit:\n",
|
||
|
" break\n",
|
||
|
" yield get_words_from_line(line)\n",
|
||
|
"\n",
|
||
|
"# Function to create trigrams from a sequence\n",
|
||
|
"def look_ahead_iterator(gen):\n",
|
||
|
" prev1, prev2 = None, None\n",
|
||
|
" for item in gen:\n",
|
||
|
" if prev1 is not None and prev2 is not None:\n",
|
||
|
" yield (prev2, prev1, item)\n",
|
||
|
" prev2 = prev1\n",
|
||
|
" prev1 = item\n",
|
||
|
"\n",
|
||
|
"# Dataset class for trigrams\n",
|
||
|
"class Trigrams(IterableDataset):\n",
|
||
|
" def __init__(self, text_file, vocabulary_size):\n",
|
||
|
" self.vocab = build_vocab_from_iterator(\n",
|
||
|
" get_word_lines_from_file(text_file),\n",
|
||
|
" max_tokens=vocabulary_size,\n",
|
||
|
" specials=['<unk>']\n",
|
||
|
" )\n",
|
||
|
" self.vocab.set_default_index(self.vocab['<unk>'])\n",
|
||
|
" self.vocabulary_size = vocabulary_size\n",
|
||
|
" self.text_file = text_file\n",
|
||
|
"\n",
|
||
|
" def __iter__(self):\n",
|
||
|
" return look_ahead_iterator(\n",
|
||
|
" (self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file)))\n",
|
||
|
" )\n",
|
||
|
"\n",
|
||
|
"# Instantiate the dataset\n",
|
||
|
"train_dataset = Trigrams(train_file_path, vocab_size)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"id": "0cf7aa68-37aa-48a4-b647-e0e5002ca5c9",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Neural network model for trigram language modeling\n",
|
||
|
"class SimpleTrigramNeuralLanguageModel(nn.Module):\n",
|
||
|
" def __init__(self, vocabulary_size, embedding_size):\n",
|
||
|
" super(SimpleTrigramNeuralLanguageModel, self).__init__()\n",
|
||
|
" self.embedding = nn.Embedding(vocabulary_size, embedding_size)\n",
|
||
|
" self.linear1 = nn.Linear(embedding_size * 2, embedding_size)\n",
|
||
|
" self.linear2 = nn.Linear(embedding_size, vocabulary_size)\n",
|
||
|
" self.softmax = nn.Softmax(dim=1)\n",
|
||
|
" self.embedding_size = embedding_size\n",
|
||
|
"\n",
|
||
|
" def forward(self, x):\n",
|
||
|
" embeds = self.embedding(x).view(-1, self.embedding_size * 2)\n",
|
||
|
" out = torch.relu(self.linear1(embeds))\n",
|
||
|
" out = self.linear2(out)\n",
|
||
|
" return self.softmax(out)\n",
|
||
|
"\n",
|
||
|
"# Instantiate the model\n",
|
||
|
"model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"id": "0858967e-5143-4253-921d-a009dbbdca27",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"application/vnd.jupyter.widget-view+json": {
|
||
|
"model_id": "c422bb888518406e9f6a4a8f10f2b473",
|
||
|
"version_major": 2,
|
||
|
"version_minor": 0
|
||
|
},
|
||
|
"text/plain": [
|
||
|
" 0%| | 0/432022 [00:00<?, ?it/s]"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"application/vnd.jupyter.widget-view+json": {
|
||
|
"model_id": "4020a53c31544ef3b4017c43798aa305",
|
||
|
"version_major": 2,
|
||
|
"version_minor": 0
|
||
|
},
|
||
|
"text/plain": [
|
||
|
" 0%| | 0/432022 [00:00<?, ?it/s]"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
},
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"0 tensor(10.1654, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"5000 tensor(6.5147, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"10000 tensor(6.6747, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"15000 tensor(6.9061, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"20000 tensor(6.8899, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"25000 tensor(6.8373, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"30000 tensor(6.8942, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"35000 tensor(6.9564, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"40000 tensor(6.9709, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"45000 tensor(6.9592, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"50000 tensor(6.8195, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"55000 tensor(6.7074, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"60000 tensor(6.8755, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
||
|
"65000 tensor(6.9605, device='cuda:0', grad_fn=<NllLossBackward0>)\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"SimpleTrigramNeuralLanguageModel(\n",
|
||
|
" (embedding): Embedding(25000, 100)\n",
|
||
|
" (linear1): Linear(in_features=200, out_features=100, bias=True)\n",
|
||
|
" (linear2): Linear(in_features=100, out_features=25000, bias=True)\n",
|
||
|
" (softmax): Softmax(dim=1)\n",
|
||
|
")"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size).to(device)\n",
|
||
|
"data = DataLoader(train_dataset, batch_size=batch_size)\n",
|
||
|
"optimizer = torch.optim.Adam(model.parameters())\n",
|
||
|
"criterion = torch.nn.NLLLoss()\n",
|
||
|
"\n",
|
||
|
"model.train()\n",
|
||
|
"step = 0\n",
|
||
|
"for _ in range(num_epochs):\n",
|
||
|
" for x1,x2,y in tqdm(data, total=total):\n",
|
||
|
" x = torch.cat((x1,x2), dim=0).to(device)\n",
|
||
|
" y = y.to(device)\n",
|
||
|
" optimizer.zero_grad()\n",
|
||
|
" ypredicted = model(x)\n",
|
||
|
" loss = criterion(torch.log(ypredicted), y)\n",
|
||
|
" if step % 5000 == 0:\n",
|
||
|
" print(step, loss)\n",
|
||
|
" step += 1\n",
|
||
|
" loss.backward()\n",
|
||
|
" optimizer.step()\n",
|
||
|
"\n",
|
||
|
"model.eval()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"id": "da4d116c-beec-436d-84d8-577282507226",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def get_gap_candidates(words, n=10, vocab=train_dataset.vocab):\n",
|
||
|
" ixs = vocab.forward(words)\n",
|
||
|
" ixs = torch.tensor(ixs)\n",
|
||
|
" ixs = torch.cat(tuple([ixs]), dim=0).to(device)\n",
|
||
|
"\n",
|
||
|
" out = model(ixs)\n",
|
||
|
" top = torch.topk(out[0], n)\n",
|
||
|
" top_indices = top.indices.tolist()\n",
|
||
|
" top_probs = top.values.tolist()\n",
|
||
|
" top_words = vocab.lookup_tokens(top_indices)\n",
|
||
|
" return list(zip(top_words, top_probs))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 11,
|
||
|
"id": "0cafd70a-29b3-4a49-b40f-b8ce3143084a",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def clean(text):\n",
|
||
|
" text = text.replace('-\\\\n', '').replace('\\\\n', ' ').replace('\\\\t', ' ')\n",
|
||
|
" text = re.sub(r'\\n', ' ', text)\n",
|
||
|
" text = re.sub(r'(?<=\\w)[,-](?=\\w)', '', text)\n",
|
||
|
" text = re.sub(r'\\s+', ' ', text)\n",
|
||
|
" text = re.sub(r'\\p{P}', '', text)\n",
|
||
|
" text = text.strip()\n",
|
||
|
" return text\n",
|
||
|
" \n",
|
||
|
"def predictor(prefix):\n",
|
||
|
" words = clean(prefix)\n",
|
||
|
" candidates = get_gap_candidates(words.strip().split(' ')[-2:])\n",
|
||
|
"\n",
|
||
|
" probs_sum = 0\n",
|
||
|
" output = ''\n",
|
||
|
" for word,prob in candidates:\n",
|
||
|
" if word == \"<unk>\":\n",
|
||
|
" continue\n",
|
||
|
" probs_sum += prob\n",
|
||
|
" output += f\"{word}:{prob} \"\n",
|
||
|
" output += f\":{1-probs_sum}\"\n",
|
||
|
"\n",
|
||
|
" return output"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 12,
|
||
|
"id": "2084fb5f-6405-4e44-a06f-953db852e526",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"'the:0.07267232984304428 of:0.043321046978235245 and:0.032147664576768875 to:0.02692588046193123 a:0.020654045045375824 in:0.020213929936289787 that:0.010836434550583363 is:0.00959325022995472 it:0.008407277055084705 :0.755228141322732'"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 12,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"predictor(\"I really bug\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"id": "965ebaf3-4c0b-4462-8ac5-4746ec9489ab",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def generate_result(input_path, output_path='out.tsv'):\n",
|
||
|
" with open(input_path, encoding='utf-8') as f:\n",
|
||
|
" lines = f.readlines()\n",
|
||
|
"\n",
|
||
|
" with open(output_path, 'w', encoding='utf-8') as output_file:\n",
|
||
|
" for line in lines:\n",
|
||
|
" result = predictor(line)\n",
|
||
|
" output_file.write(result + '\\n')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 14,
|
||
|
"id": "80547ba7-9d01-4d2b-9e83-269919513de9",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"generate_result('dev-0/in.tsv', output_path='dev-0/out.tsv')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "1d7d72b0-d629-487e-bcec-4756fa88ae49",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.12.3"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|