fix missing correct files
This commit is contained in:
parent
b13b78e58e
commit
1f224ccd28
@ -1,3 +1,3 @@
|
|||||||
## challenging-america-word-gap-prediction
|
## challenging-america-word-gap-prediction
|
||||||
### using simple trigram nn
|
### using simple trigram nn
|
||||||
calculated perplexity: 583.35
|
calculated perplexity: 653.89
|
||||||
|
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
75
run.py
75
run.py
@ -17,12 +17,12 @@ import torch
|
|||||||
|
|
||||||
from tqdm.notebook import tqdm
|
from tqdm.notebook import tqdm
|
||||||
|
|
||||||
embed_size = 100
|
embed_size = 30
|
||||||
vocab_size = 25_000
|
vocab_size = 10_000
|
||||||
num_epochs = 1
|
num_epochs = 2
|
||||||
device = 'cuda'
|
device = 'cuda'
|
||||||
batch_size = 2048
|
batch_size = 8192
|
||||||
train_file_path = 'train/train.txt'
|
train_file_path = 'train/nano.txt'
|
||||||
|
|
||||||
with open(train_file_path, 'r', encoding='utf-8') as file:
|
with open(train_file_path, 'r', encoding='utf-8') as file:
|
||||||
total = len(file.readlines())
|
total = len(file.readlines())
|
||||||
@ -43,7 +43,7 @@ def get_words_from_line(line):
|
|||||||
def get_word_lines_from_file(file_name):
|
def get_word_lines_from_file(file_name):
|
||||||
limit = total * 2
|
limit = total * 2
|
||||||
with open(file_name, 'r', encoding='utf8') as fh:
|
with open(file_name, 'r', encoding='utf8') as fh:
|
||||||
for line in tqdm(fh, total=total):
|
for line in fh:
|
||||||
limit -= 1
|
limit -= 1
|
||||||
if not limit:
|
if not limit:
|
||||||
break
|
break
|
||||||
@ -82,7 +82,6 @@ train_dataset = Trigrams(train_file_path, vocab_size)
|
|||||||
# In[3]:
|
# In[3]:
|
||||||
|
|
||||||
|
|
||||||
# Neural network model for trigram language modeling
|
|
||||||
class SimpleTrigramNeuralLanguageModel(nn.Module):
|
class SimpleTrigramNeuralLanguageModel(nn.Module):
|
||||||
def __init__(self, vocabulary_size, embedding_size):
|
def __init__(self, vocabulary_size, embedding_size):
|
||||||
super(SimpleTrigramNeuralLanguageModel, self).__init__()
|
super(SimpleTrigramNeuralLanguageModel, self).__init__()
|
||||||
@ -93,48 +92,50 @@ class SimpleTrigramNeuralLanguageModel(nn.Module):
|
|||||||
self.embedding_size = embedding_size
|
self.embedding_size = embedding_size
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
embeds = self.embedding(x).view(-1, self.embedding_size * 2)
|
embeds = self.embedding(x).view(x.size(0), -1)
|
||||||
out = torch.relu(self.linear1(embeds))
|
out = self.linear1(embeds)
|
||||||
out = self.linear2(out)
|
out = self.linear2(out)
|
||||||
return self.softmax(out)
|
return self.softmax(out)
|
||||||
|
|
||||||
# Instantiate the model
|
model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
||||||
model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size)
|
|
||||||
|
|
||||||
|
|
||||||
# In[4]:
|
# In[4]:
|
||||||
|
|
||||||
|
|
||||||
model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
|
||||||
data = DataLoader(train_dataset, batch_size=batch_size)
|
data = DataLoader(train_dataset, batch_size=batch_size)
|
||||||
optimizer = torch.optim.Adam(model.parameters())
|
optimizer = torch.optim.Adam(model.parameters())
|
||||||
criterion = torch.nn.NLLLoss()
|
criterion = torch.nn.CrossEntropyLoss()
|
||||||
|
|
||||||
|
|
||||||
|
# In[5]:
|
||||||
|
|
||||||
|
|
||||||
model.train()
|
model.train()
|
||||||
step = 0
|
step = 0
|
||||||
for _ in range(num_epochs):
|
for _ in range(num_epochs):
|
||||||
for x1,x2,y in tqdm(data, total=total):
|
for x1,x2,y in tqdm(data, desc="Train loop"):
|
||||||
x = torch.cat((x1,x2), dim=0).to(device)
|
y = y.to(device)
|
||||||
y = y.to(device)
|
x = torch.cat((x1.unsqueeze(1),x2.unsqueeze(1)), dim=1).to(device)
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
ypredicted = model(x)
|
ypredicted = model(x)
|
||||||
loss = criterion(torch.log(ypredicted), y)
|
|
||||||
if step % 5000 == 0:
|
|
||||||
print(step, loss)
|
|
||||||
step += 1
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
|
loss = criterion(torch.log(ypredicted), y)
|
||||||
|
if step % 5000 == 0:
|
||||||
|
print(step, loss)
|
||||||
|
step += 1
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
step = 0
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
|
|
||||||
# In[10]:
|
# In[6]:
|
||||||
|
|
||||||
|
|
||||||
def get_gap_candidates(words, n=10, vocab=train_dataset.vocab):
|
def get_gap_candidates(words, n=10, vocab=train_dataset.vocab):
|
||||||
ixs = vocab.forward(words)
|
ixs = vocab(words)
|
||||||
ixs = torch.tensor(ixs)
|
ixs = torch.tensor(ixs).unsqueeze(0).to(device)
|
||||||
ixs = torch.cat(tuple([ixs]), dim=0).to(device)
|
|
||||||
|
|
||||||
out = model(ixs)
|
out = model(ixs)
|
||||||
top = torch.topk(out[0], n)
|
top = torch.topk(out[0], n)
|
||||||
@ -144,7 +145,7 @@ def get_gap_candidates(words, n=10, vocab=train_dataset.vocab):
|
|||||||
return list(zip(top_words, top_probs))
|
return list(zip(top_words, top_probs))
|
||||||
|
|
||||||
|
|
||||||
# In[11]:
|
# In[7]:
|
||||||
|
|
||||||
|
|
||||||
def clean(text):
|
def clean(text):
|
||||||
@ -172,13 +173,7 @@ def predictor(prefix):
|
|||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
# In[12]:
|
# In[8]:
|
||||||
|
|
||||||
|
|
||||||
predictor("I really bug")
|
|
||||||
|
|
||||||
|
|
||||||
# In[13]:
|
|
||||||
|
|
||||||
|
|
||||||
def generate_result(input_path, output_path='out.tsv'):
|
def generate_result(input_path, output_path='out.tsv'):
|
||||||
@ -191,14 +186,8 @@ def generate_result(input_path, output_path='out.tsv'):
|
|||||||
output_file.write(result + '\n')
|
output_file.write(result + '\n')
|
||||||
|
|
||||||
|
|
||||||
# In[14]:
|
# In[9]:
|
||||||
|
|
||||||
|
|
||||||
generate_result('dev-0/in.tsv', output_path='dev-0/out.tsv')
|
generate_result('dev-0/in.tsv', output_path='dev-0/out.tsv')
|
||||||
|
|
||||||
|
|
||||||
# In[ ]:
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
187
trigram.ipynb
187
trigram.ipynb
@ -10,11 +10,11 @@
|
|||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"S:\\WENV\\Lib\\site-packages\\torchtext\\vocab\\__init__.py:4: UserWarning: \n",
|
"S:\\WENV_TORCHTEXT\\Lib\\site-packages\\torchtext\\vocab\\__init__.py:4: UserWarning: \n",
|
||||||
"/!\\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\\ \n",
|
"/!\\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\\ \n",
|
||||||
"Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: `import torchtext; torchtext.disable_torchtext_deprecation_warning()`\n",
|
"Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: `import torchtext; torchtext.disable_torchtext_deprecation_warning()`\n",
|
||||||
" warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG)\n",
|
" warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG)\n",
|
||||||
"S:\\WENV\\Lib\\site-packages\\torchtext\\utils.py:4: UserWarning: \n",
|
"S:\\WENV_TORCHTEXT\\Lib\\site-packages\\torchtext\\utils.py:4: UserWarning: \n",
|
||||||
"/!\\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\\ \n",
|
"/!\\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\\ \n",
|
||||||
"Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: `import torchtext; torchtext.disable_torchtext_deprecation_warning()`\n",
|
"Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: `import torchtext; torchtext.disable_torchtext_deprecation_warning()`\n",
|
||||||
" warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG)\n"
|
" warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG)\n"
|
||||||
@ -35,12 +35,12 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"from tqdm.notebook import tqdm\n",
|
"from tqdm.notebook import tqdm\n",
|
||||||
"\n",
|
"\n",
|
||||||
"embed_size = 100\n",
|
"embed_size = 30\n",
|
||||||
"vocab_size = 25_000\n",
|
"vocab_size = 10_000\n",
|
||||||
"num_epochs = 1\n",
|
"num_epochs = 2\n",
|
||||||
"device = 'cuda'\n",
|
"device = 'cuda'\n",
|
||||||
"batch_size = 2048\n",
|
"batch_size = 8192\n",
|
||||||
"train_file_path = 'train/train.txt'\n",
|
"train_file_path = 'train/nano.txt'\n",
|
||||||
"\n",
|
"\n",
|
||||||
"with open(train_file_path, 'r', encoding='utf-8') as file:\n",
|
"with open(train_file_path, 'r', encoding='utf-8') as file:\n",
|
||||||
" total = len(file.readlines())"
|
" total = len(file.readlines())"
|
||||||
@ -51,22 +51,7 @@
|
|||||||
"execution_count": 2,
|
"execution_count": 2,
|
||||||
"id": "40392665-79bc-4032-a5de-9d189545c9f7",
|
"id": "40392665-79bc-4032-a5de-9d189545c9f7",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
|
||||||
"model_id": "5049d1e295954b7baf71ac05a793071a",
|
|
||||||
"version_major": 2,
|
|
||||||
"version_minor": 0
|
|
||||||
},
|
|
||||||
"text/plain": [
|
|
||||||
" 0%| | 0/432022 [00:00<?, ?it/s]"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"# Function to extract words from a line of text\n",
|
"# Function to extract words from a line of text\n",
|
||||||
"def get_words_from_line(line):\n",
|
"def get_words_from_line(line):\n",
|
||||||
@ -80,7 +65,7 @@
|
|||||||
"def get_word_lines_from_file(file_name):\n",
|
"def get_word_lines_from_file(file_name):\n",
|
||||||
" limit = total * 2\n",
|
" limit = total * 2\n",
|
||||||
" with open(file_name, 'r', encoding='utf8') as fh:\n",
|
" with open(file_name, 'r', encoding='utf8') as fh:\n",
|
||||||
" for line in tqdm(fh, total=total):\n",
|
" for line in fh:\n",
|
||||||
" limit -= 1\n",
|
" limit -= 1\n",
|
||||||
" if not limit:\n",
|
" if not limit:\n",
|
||||||
" break\n",
|
" break\n",
|
||||||
@ -123,7 +108,6 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# Neural network model for trigram language modeling\n",
|
|
||||||
"class SimpleTrigramNeuralLanguageModel(nn.Module):\n",
|
"class SimpleTrigramNeuralLanguageModel(nn.Module):\n",
|
||||||
" def __init__(self, vocabulary_size, embedding_size):\n",
|
" def __init__(self, vocabulary_size, embedding_size):\n",
|
||||||
" super(SimpleTrigramNeuralLanguageModel, self).__init__()\n",
|
" super(SimpleTrigramNeuralLanguageModel, self).__init__()\n",
|
||||||
@ -134,44 +118,41 @@
|
|||||||
" self.embedding_size = embedding_size\n",
|
" self.embedding_size = embedding_size\n",
|
||||||
"\n",
|
"\n",
|
||||||
" def forward(self, x):\n",
|
" def forward(self, x):\n",
|
||||||
" embeds = self.embedding(x).view(-1, self.embedding_size * 2)\n",
|
" embeds = self.embedding(x).view(x.size(0), -1)\n",
|
||||||
" out = torch.relu(self.linear1(embeds))\n",
|
" out = self.linear1(embeds)\n",
|
||||||
" out = self.linear2(out)\n",
|
" out = self.linear2(out)\n",
|
||||||
" return self.softmax(out)\n",
|
" return self.softmax(out)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Instantiate the model\n",
|
"model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size).to(device)"
|
||||||
"model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 4,
|
||||||
|
"id": "32ea22db-7259-4549-a9d5-4781d9bc99bc",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"data = DataLoader(train_dataset, batch_size=batch_size)\n",
|
||||||
|
"optimizer = torch.optim.Adam(model.parameters())\n",
|
||||||
|
"criterion = torch.nn.CrossEntropyLoss()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 5,
|
||||||
"id": "0858967e-5143-4253-921d-a009dbbdca27",
|
"id": "0858967e-5143-4253-921d-a009dbbdca27",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "c422bb888518406e9f6a4a8f10f2b473",
|
"model_id": "5e4b6ce6edf94b90a70d415d75be7eb6",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
" 0%| | 0/432022 [00:00<?, ?it/s]"
|
"Train loop: 0it [00:00, ?it/s]"
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
|
||||||
"model_id": "4020a53c31544ef3b4017c43798aa305",
|
|
||||||
"version_major": 2,
|
|
||||||
"version_minor": 0
|
|
||||||
},
|
|
||||||
"text/plain": [
|
|
||||||
" 0%| | 0/432022 [00:00<?, ?it/s]"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -181,73 +162,76 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"0 tensor(10.1654, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
"0 tensor(9.2450, device='cuda:0', grad_fn=<NllLossBackward0>)\n"
|
||||||
"5000 tensor(6.5147, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
]
|
||||||
"10000 tensor(6.6747, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
},
|
||||||
"15000 tensor(6.9061, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
{
|
||||||
"20000 tensor(6.8899, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
"data": {
|
||||||
"25000 tensor(6.8373, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"30000 tensor(6.8942, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
"model_id": "044c2ea05e344306881002e34d89bd54",
|
||||||
"35000 tensor(6.9564, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
"version_major": 2,
|
||||||
"40000 tensor(6.9709, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
"version_minor": 0
|
||||||
"45000 tensor(6.9592, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
},
|
||||||
"50000 tensor(6.8195, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
"text/plain": [
|
||||||
"55000 tensor(6.7074, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
"Train loop: 0it [00:00, ?it/s]"
|
||||||
"60000 tensor(6.8755, device='cuda:0', grad_fn=<NllLossBackward0>)\n",
|
]
|
||||||
"65000 tensor(6.9605, device='cuda:0', grad_fn=<NllLossBackward0>)\n"
|
},
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "display_data"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"0 tensor(6.2669, device='cuda:0', grad_fn=<NllLossBackward0>)\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
"SimpleTrigramNeuralLanguageModel(\n",
|
"SimpleTrigramNeuralLanguageModel(\n",
|
||||||
" (embedding): Embedding(25000, 100)\n",
|
" (embedding): Embedding(10000, 30)\n",
|
||||||
" (linear1): Linear(in_features=200, out_features=100, bias=True)\n",
|
" (linear1): Linear(in_features=60, out_features=30, bias=True)\n",
|
||||||
" (linear2): Linear(in_features=100, out_features=25000, bias=True)\n",
|
" (linear2): Linear(in_features=30, out_features=10000, bias=True)\n",
|
||||||
" (softmax): Softmax(dim=1)\n",
|
" (softmax): Softmax(dim=1)\n",
|
||||||
")"
|
")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 4,
|
"execution_count": 5,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size).to(device)\n",
|
|
||||||
"data = DataLoader(train_dataset, batch_size=batch_size)\n",
|
|
||||||
"optimizer = torch.optim.Adam(model.parameters())\n",
|
|
||||||
"criterion = torch.nn.NLLLoss()\n",
|
|
||||||
"\n",
|
|
||||||
"model.train()\n",
|
"model.train()\n",
|
||||||
"step = 0\n",
|
"step = 0\n",
|
||||||
"for _ in range(num_epochs):\n",
|
"for _ in range(num_epochs):\n",
|
||||||
" for x1,x2,y in tqdm(data, total=total):\n",
|
" for x1,x2,y in tqdm(data, desc=\"Train loop\"):\n",
|
||||||
" x = torch.cat((x1,x2), dim=0).to(device)\n",
|
" y = y.to(device)\n",
|
||||||
" y = y.to(device)\n",
|
" x = torch.cat((x1.unsqueeze(1),x2.unsqueeze(1)), dim=1).to(device)\n",
|
||||||
" optimizer.zero_grad()\n",
|
" optimizer.zero_grad()\n",
|
||||||
" ypredicted = model(x)\n",
|
" ypredicted = model(x)\n",
|
||||||
" loss = criterion(torch.log(ypredicted), y)\n",
|
" \n",
|
||||||
" if step % 5000 == 0:\n",
|
" loss = criterion(torch.log(ypredicted), y)\n",
|
||||||
" print(step, loss)\n",
|
" if step % 5000 == 0:\n",
|
||||||
" step += 1\n",
|
" print(step, loss)\n",
|
||||||
" loss.backward()\n",
|
" step += 1\n",
|
||||||
" optimizer.step()\n",
|
" loss.backward()\n",
|
||||||
"\n",
|
" optimizer.step()\n",
|
||||||
|
" step = 0\n",
|
||||||
"model.eval()"
|
"model.eval()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 10,
|
"execution_count": 6,
|
||||||
"id": "da4d116c-beec-436d-84d8-577282507226",
|
"id": "da4d116c-beec-436d-84d8-577282507226",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"def get_gap_candidates(words, n=10, vocab=train_dataset.vocab):\n",
|
"def get_gap_candidates(words, n=10, vocab=train_dataset.vocab):\n",
|
||||||
" ixs = vocab.forward(words)\n",
|
" ixs = vocab(words)\n",
|
||||||
" ixs = torch.tensor(ixs)\n",
|
" ixs = torch.tensor(ixs).unsqueeze(0).to(device)\n",
|
||||||
" ixs = torch.cat(tuple([ixs]), dim=0).to(device)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
" out = model(ixs)\n",
|
" out = model(ixs)\n",
|
||||||
" top = torch.topk(out[0], n)\n",
|
" top = torch.topk(out[0], n)\n",
|
||||||
@ -259,7 +243,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 11,
|
"execution_count": 7,
|
||||||
"id": "0cafd70a-29b3-4a49-b40f-b8ce3143084a",
|
"id": "0cafd70a-29b3-4a49-b40f-b8ce3143084a",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -291,28 +275,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 12,
|
"execution_count": 8,
|
||||||
"id": "2084fb5f-6405-4e44-a06f-953db852e526",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/plain": [
|
|
||||||
"'the:0.07267232984304428 of:0.043321046978235245 and:0.032147664576768875 to:0.02692588046193123 a:0.020654045045375824 in:0.020213929936289787 that:0.010836434550583363 is:0.00959325022995472 it:0.008407277055084705 :0.755228141322732'"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"execution_count": 12,
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "execute_result"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"predictor(\"I really bug\")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 13,
|
|
||||||
"id": "965ebaf3-4c0b-4462-8ac5-4746ec9489ab",
|
"id": "965ebaf3-4c0b-4462-8ac5-4746ec9489ab",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -329,21 +292,13 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 14,
|
"execution_count": 9,
|
||||||
"id": "80547ba7-9d01-4d2b-9e83-269919513de9",
|
"id": "80547ba7-9d01-4d2b-9e83-269919513de9",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"generate_result('dev-0/in.tsv', output_path='dev-0/out.tsv')"
|
"generate_result('dev-0/in.tsv', output_path='dev-0/out.tsv')"
|
||||||
]
|
]
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"id": "1d7d72b0-d629-487e-bcec-4756fa88ae49",
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": []
|
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
Loading…
Reference in New Issue
Block a user