12 KiB
12 KiB
from torch.utils.data import IterableDataset, DataLoader
from torchtext.vocab import build_vocab_from_iterator
import regex as re
import sys
import itertools
from itertools import islice
from torch import nn
import torch
from tqdm.notebook import tqdm
embed_size = 100
vocab_size = 25_000
num_epochs = 1
device = 'cuda'
batch_size = 2048
train_file_path = 'train/train.txt'
with open(train_file_path, 'r', encoding='utf-8') as file:
total = len(file.readlines())
S:\WENV\Lib\site-packages\torchtext\vocab\__init__.py:4: UserWarning: /!\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\ Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: `import torchtext; torchtext.disable_torchtext_deprecation_warning()` warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG) S:\WENV\Lib\site-packages\torchtext\utils.py:4: UserWarning: /!\ IMPORTANT WARNING ABOUT TORCHTEXT STATUS /!\ Torchtext is deprecated and the last released version will be 0.18 (this one). You can silence this warning by calling the following at the beginnign of your scripts: `import torchtext; torchtext.disable_torchtext_deprecation_warning()` warnings.warn(torchtext._TORCHTEXT_DEPRECATION_MSG)
# Function to extract words from a line of text
def get_words_from_line(line):
line = line.rstrip()
yield '<s>'
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
yield m.group(0).lower()
yield '</s>'
# Generator to read lines from a file
def get_word_lines_from_file(file_name):
limit = total * 2
with open(file_name, 'r', encoding='utf8') as fh:
for line in tqdm(fh, total=total):
limit -= 1
if not limit:
break
yield get_words_from_line(line)
# Function to create trigrams from a sequence
def look_ahead_iterator(gen):
prev1, prev2 = None, None
for item in gen:
if prev1 is not None and prev2 is not None:
yield (prev2, prev1, item)
prev2 = prev1
prev1 = item
# Dataset class for trigrams
class Trigrams(IterableDataset):
def __init__(self, text_file, vocabulary_size):
self.vocab = build_vocab_from_iterator(
get_word_lines_from_file(text_file),
max_tokens=vocabulary_size,
specials=['<unk>']
)
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.text_file = text_file
def __iter__(self):
return look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file)))
)
# Instantiate the dataset
train_dataset = Trigrams(train_file_path, vocab_size)
0%| | 0/432022 [00:00<?, ?it/s]
# Neural network model for trigram language modeling
class SimpleTrigramNeuralLanguageModel(nn.Module):
def __init__(self, vocabulary_size, embedding_size):
super(SimpleTrigramNeuralLanguageModel, self).__init__()
self.embedding = nn.Embedding(vocabulary_size, embedding_size)
self.linear1 = nn.Linear(embedding_size * 2, embedding_size)
self.linear2 = nn.Linear(embedding_size, vocabulary_size)
self.softmax = nn.Softmax(dim=1)
self.embedding_size = embedding_size
def forward(self, x):
embeds = self.embedding(x).view(-1, self.embedding_size * 2)
out = torch.relu(self.linear1(embeds))
out = self.linear2(out)
return self.softmax(out)
# Instantiate the model
model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size)
model = SimpleTrigramNeuralLanguageModel(vocab_size, embed_size).to(device)
data = DataLoader(train_dataset, batch_size=batch_size)
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.NLLLoss()
model.train()
step = 0
for _ in range(num_epochs):
for x1,x2,y in tqdm(data, total=total):
x = torch.cat((x1,x2), dim=0).to(device)
y = y.to(device)
optimizer.zero_grad()
ypredicted = model(x)
loss = criterion(torch.log(ypredicted), y)
if step % 5000 == 0:
print(step, loss)
step += 1
loss.backward()
optimizer.step()
model.eval()
0%| | 0/432022 [00:00<?, ?it/s]
0%| | 0/432022 [00:00<?, ?it/s]
0 tensor(10.1654, device='cuda:0', grad_fn=<NllLossBackward0>) 5000 tensor(6.5147, device='cuda:0', grad_fn=<NllLossBackward0>) 10000 tensor(6.6747, device='cuda:0', grad_fn=<NllLossBackward0>) 15000 tensor(6.9061, device='cuda:0', grad_fn=<NllLossBackward0>) 20000 tensor(6.8899, device='cuda:0', grad_fn=<NllLossBackward0>) 25000 tensor(6.8373, device='cuda:0', grad_fn=<NllLossBackward0>) 30000 tensor(6.8942, device='cuda:0', grad_fn=<NllLossBackward0>) 35000 tensor(6.9564, device='cuda:0', grad_fn=<NllLossBackward0>) 40000 tensor(6.9709, device='cuda:0', grad_fn=<NllLossBackward0>) 45000 tensor(6.9592, device='cuda:0', grad_fn=<NllLossBackward0>) 50000 tensor(6.8195, device='cuda:0', grad_fn=<NllLossBackward0>) 55000 tensor(6.7074, device='cuda:0', grad_fn=<NllLossBackward0>) 60000 tensor(6.8755, device='cuda:0', grad_fn=<NllLossBackward0>) 65000 tensor(6.9605, device='cuda:0', grad_fn=<NllLossBackward0>)
SimpleTrigramNeuralLanguageModel( (embedding): Embedding(25000, 100) (linear1): Linear(in_features=200, out_features=100, bias=True) (linear2): Linear(in_features=100, out_features=25000, bias=True) (softmax): Softmax(dim=1) )
def get_gap_candidates(words, n=10, vocab=train_dataset.vocab):
ixs = vocab.forward(words)
ixs = torch.tensor(ixs)
ixs = torch.cat(tuple([ixs]), dim=0).to(device)
out = model(ixs)
top = torch.topk(out[0], n)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
return list(zip(top_words, top_probs))
def clean(text):
text = text.replace('-\\\\n', '').replace('\\\\n', ' ').replace('\\\\t', ' ')
text = re.sub(r'\n', ' ', text)
text = re.sub(r'(?<=\w)[,-](?=\w)', '', text)
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\p{P}', '', text)
text = text.strip()
return text
def predictor(prefix):
words = clean(prefix)
candidates = get_gap_candidates(words.strip().split(' ')[-2:])
probs_sum = 0
output = ''
for word,prob in candidates:
if word == "<unk>":
continue
probs_sum += prob
output += f"{word}:{prob} "
output += f":{1-probs_sum}"
return output
predictor("I really bug")
'the:0.07267232984304428 of:0.043321046978235245 and:0.032147664576768875 to:0.02692588046193123 a:0.020654045045375824 in:0.020213929936289787 that:0.010836434550583363 is:0.00959325022995472 it:0.008407277055084705 :0.755228141322732'
def generate_result(input_path, output_path='out.tsv'):
with open(input_path, encoding='utf-8') as f:
lines = f.readlines()
with open(output_path, 'w', encoding='utf-8') as output_file:
for line in lines:
result = predictor(line)
output_file.write(result + '\n')
generate_result('dev-0/in.tsv', output_path='dev-0/out.tsv')