add hyperparameters search
This commit is contained in:
parent
b05c10444e
commit
b2a20a87e4
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
1215
main.ipynb
1215
main.ipynb
File diff suppressed because one or more lines are too long
160
run.py
160
run.py
@ -15,19 +15,12 @@ from torch import nn
|
||||
import torch
|
||||
|
||||
from tqdm.notebook import tqdm
|
||||
|
||||
embed_size = 300
|
||||
vocab_size = 30_000
|
||||
num_epochs = 1
|
||||
device = 'cuda'
|
||||
batch_size = 8192
|
||||
train_file_path = 'train/train.txt'
|
||||
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
# Function to extract words from a line of text
|
||||
def get_words_from_line(line):
|
||||
line = line.rstrip()
|
||||
yield '<s>'
|
||||
@ -35,13 +28,11 @@ def get_words_from_line(line):
|
||||
yield m.group(0).lower()
|
||||
yield '</s>'
|
||||
|
||||
# Generator to read lines from a file
|
||||
def get_word_lines_from_file(file_name):
|
||||
with open(file_name, 'r', encoding='utf8') as fh:
|
||||
for line in fh:
|
||||
yield get_words_from_line(line)
|
||||
|
||||
# Function to create 5-grams from a sequence
|
||||
def look_ahead_iterator(gen):
|
||||
prev2, prev1, next1, next2 = None, None, None, None
|
||||
for item in gen:
|
||||
@ -49,7 +40,10 @@ def look_ahead_iterator(gen):
|
||||
yield (prev2, prev1, next2, item, next1)
|
||||
prev2, prev1, next1, next2 = prev1, next1, next2, item
|
||||
|
||||
# Dataset class for 5-grams
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
class FiveGrams(IterableDataset):
|
||||
def __init__(self, text_file, vocabulary_size):
|
||||
self.vocab = build_vocab_from_iterator(
|
||||
@ -66,20 +60,6 @@ class FiveGrams(IterableDataset):
|
||||
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file)))
|
||||
)
|
||||
|
||||
# Instantiate the dataset
|
||||
train_dataset = FiveGrams(train_file_path, vocab_size)
|
||||
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
i = 0
|
||||
for x in train_dataset:
|
||||
print(train_dataset.vocab.lookup_tokens(x))
|
||||
if i >= 1:
|
||||
break
|
||||
i += 1
|
||||
|
||||
|
||||
# In[4]:
|
||||
|
||||
@ -99,12 +79,14 @@ class SimpleFiveGramNeuralLanguageModel(nn.Module):
|
||||
out = self.linear2(out)
|
||||
return self.softmax(out)
|
||||
|
||||
model = SimpleFiveGramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
||||
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
def train(embed_size,vocab_size,num_epochs,batch_size,train_file_path):
|
||||
train_dataset = FiveGrams(train_file_path, vocab_size)
|
||||
model = SimpleFiveGramNeuralLanguageModel(vocab_size, embed_size).to(device)
|
||||
|
||||
data = DataLoader(train_dataset, batch_size=batch_size)
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
@ -125,13 +107,16 @@ for _ in range(num_epochs):
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
step = 0
|
||||
break
|
||||
model.eval()
|
||||
|
||||
|
||||
# In[8]:
|
||||
return model, train_dataset.vocab
|
||||
|
||||
|
||||
def get_gap_candidates(words, n=20, vocab=train_dataset.vocab):
|
||||
# In[6]:
|
||||
|
||||
|
||||
def get_gap_candidates(words, model, vocab, n=20):
|
||||
ixs = vocab(words)
|
||||
ixs = torch.tensor(ixs).unsqueeze(0).to(device)
|
||||
|
||||
@ -151,11 +136,11 @@ def clean(text):
|
||||
text = text.strip()
|
||||
return text
|
||||
|
||||
def predictor(prefix, suffix):
|
||||
def predictor(prefix, suffix, model, vocab):
|
||||
prefix = clean(prefix)
|
||||
suffix = clean(suffix)
|
||||
words = prefix.split(' ')[-2:] + suffix.split(' ')[:2]
|
||||
candidates = get_gap_candidates(words)
|
||||
candidates = get_gap_candidates(words, model, vocab)
|
||||
|
||||
probs_sum = 0
|
||||
output = ''
|
||||
@ -169,10 +154,10 @@ def predictor(prefix, suffix):
|
||||
return output
|
||||
|
||||
|
||||
# In[9]:
|
||||
# In[7]:
|
||||
|
||||
|
||||
def generate_result(input_path, output_path='out.tsv'):
|
||||
def generate_result(input_path,model, vocab, output_path='out.tsv'):
|
||||
lines = []
|
||||
with open(input_path, encoding='utf-8') as f:
|
||||
for line in f:
|
||||
@ -183,8 +168,113 @@ def generate_result(input_path, output_path='out.tsv'):
|
||||
|
||||
with open(output_path, 'w', encoding='utf-8') as output_file:
|
||||
for prefix, suffix in tqdm(lines):
|
||||
result = predictor(prefix, suffix)
|
||||
result = predictor(prefix, suffix, model, vocab)
|
||||
output_file.write(result + '\n')
|
||||
|
||||
generate_result('dev-0/in.tsv', output_path='dev-0/out.tsv')
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
import subprocess
|
||||
|
||||
def evaluate():
|
||||
cmd = 'wsl bash -c "cd /mnt/d/UAM/MODELOWANIE/5GRAM && ./geval -t dev-0"'
|
||||
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
||||
return float(result.stdout)
|
||||
|
||||
|
||||
# In[9]:
|
||||
|
||||
|
||||
embed_sizes = [100,200,300]
|
||||
vocab_sizes = [10_000, 20_000, 30_000]
|
||||
num_epochss = [1]
|
||||
batch_sizes = [8192]
|
||||
train_file_paths = ['train/nano.txt', 'train/train.txt']
|
||||
|
||||
results = []
|
||||
|
||||
for embed_size in embed_sizes:
|
||||
for vocab_size in vocab_sizes:
|
||||
for num_epochs in num_epochss:
|
||||
for batch_size in batch_sizes:
|
||||
for train_file_path in train_file_paths:
|
||||
model, vocab = train(embed_size,vocab_size,num_epochs,batch_size,train_file_path)
|
||||
generate_result('dev-0/in.tsv', model, vocab, output_path='dev-0/out.tsv')
|
||||
result = evaluate()
|
||||
|
||||
config = {"embed_size": embed_size, "vocab_size": vocab_size, "num_epochs": num_epochs, "batch_size": batch_size, "train_file_path": train_file_path, "perplexity": result }
|
||||
print(config)
|
||||
results.append( config )
|
||||
|
||||
|
||||
# In[10]:
|
||||
|
||||
|
||||
results
|
||||
|
||||
|
||||
# In[23]:
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from scipy.interpolate import griddata
|
||||
|
||||
# Sample data
|
||||
data = results
|
||||
|
||||
# Extracting data
|
||||
vocab_size = [item['vocab_size'] for item in data if 'nano' not in item['train_file_path'] ]
|
||||
embed_size = [item['embed_size'] for item in data if 'nano' not in item['train_file_path'] ]
|
||||
perplexity = [item['perplexity'] for item in data if 'nano' not in item['train_file_path'] ]
|
||||
|
||||
# Plotting
|
||||
grid_x, grid_y = np.meshgrid(np.linspace(min(vocab_size), max(vocab_size), 100),
|
||||
np.linspace(min(embed_size), max(embed_size), 100))
|
||||
grid_z = griddata((vocab_size, embed_size), perplexity, (grid_x, grid_y), method='cubic')
|
||||
|
||||
# Plotting
|
||||
plt.figure(figsize=(10, 6))
|
||||
contour = plt.contourf(grid_x, grid_y, grid_z, cmap='viridis')
|
||||
plt.colorbar(contour, label='Perplexity')
|
||||
plt.scatter(vocab_size, embed_size, c='red') # Optional: plot actual data points
|
||||
plt.xlabel('Vocab Size')
|
||||
plt.ylabel('Embed Size')
|
||||
plt.title('Embed Size vs Vocab Size with Perplexity for whole training set')
|
||||
plt.show()
|
||||
|
||||
|
||||
# In[22]:
|
||||
|
||||
|
||||
# Extracting data
|
||||
vocab_size = [item['vocab_size'] for item in data if 'nano' in item['train_file_path'] ]
|
||||
embed_size = [item['embed_size'] for item in data if 'nano' in item['train_file_path'] ]
|
||||
perplexity = [item['perplexity'] for item in data if 'nano' in item['train_file_path'] ]
|
||||
|
||||
# Plotting
|
||||
grid_x, grid_y = np.meshgrid(np.linspace(min(vocab_size), max(vocab_size), 100),
|
||||
np.linspace(min(embed_size), max(embed_size), 100))
|
||||
grid_z = griddata((vocab_size, embed_size), perplexity, (grid_x, grid_y), method='cubic')
|
||||
|
||||
# Plotting
|
||||
plt.figure(figsize=(10, 6))
|
||||
contour = plt.contourf(grid_x, grid_y, grid_z, cmap='viridis')
|
||||
plt.colorbar(contour, label='Perplexity')
|
||||
plt.scatter(vocab_size, embed_size, c='red') # Optional: plot actual data points
|
||||
plt.xlabel('Vocab Size')
|
||||
plt.ylabel('Embed Size')
|
||||
plt.title('Embed Size vs Vocab Size with Perplexity for nano training set')
|
||||
plt.show()
|
||||
|
||||
|
||||
# In[26]:
|
||||
|
||||
|
||||
from math import log
|
||||
|
||||
best_model_parameters = min(results, key=lambda x: x['perplexity'])
|
||||
best_model_parameters['logPerplexity'] = log(best_model_parameters['perplexity'])
|
||||
best_model_parameters
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user