1
0
Waiter_group/which_plate_CNN.py

70 lines
2.2 KiB
Python
Raw Normal View History

##My cnn, classyfing the plates as dirty, clean or full.
#imports
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
#initializing:
classifier = Sequential()
#Convolution:
classifier.add(Convolution2D(32, (3, 3), input_shape =(256, 256, 3), activation = "relu"))
#Pooling:
classifier.add(MaxPooling2D(pool_size = (2,2)))
# Adding a second convolutional layer
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
#Flattening:
classifier.add(Flatten())
#Fully connected layers::
classifier.add(Dense(units = 128, activation = "relu"))
classifier.add(Dense(units = 3, activation = "softmax"))
#Making CNN:
classifier.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"])
#From KERAS:
from keras.preprocessing.image import ImageDataGenerator
#Data augmentation:
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
width_shift_range=0.2,
height_shift_range=0.1,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory('plates/training_set',
target_size=(256, 256),
batch_size=16,
class_mode='categorical')
test_set = test_datagen.flow_from_directory('plates/test_set',
target_size=(256, 256),
batch_size=16,
class_mode='categorical')
# callbacks:
es = EarlyStopping(monitor='val_loss', mode='min', baseline=1, patience = 10)
mc = ModelCheckpoint('best_model.h5', monitor='val_loss', mode='min', save_best_only=True, verbose = 1, period = 10)
classifier.fit_generator(
training_set,
steps_per_epoch = 88,
epochs=200,
callbacks=[es, mc],
validation_data=test_set,
validation_steps=10)