forked from s444519/Waiter_group
Merge branch 'master' of s444523/Waiter_group into master
This commit is contained in:
commit
21b2f6328b
59
CNN Plates Classification.md
Normal file
59
CNN Plates Classification.md
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
# CNN Plates Classification
|
||||||
|
Author: Weronika Skowrońska, s444523
|
||||||
|
|
||||||
|
As my individual project, I decided to perform a classification of plates images using a Convolutional Neural Network. The goal of the project is to classify a photo of the client's plate as empty, full or dirty, and assign an appropriate value to the given instance of the "Table" class.
|
||||||
|
|
||||||
|
# Architecture
|
||||||
|
|
||||||
|
Architecture of my CNN is very simple. I decided to use two convolutions, each using 32 feature detectors of size 3 by 3, followed by the ReLU activation function and MaxPooling of size 2 by 2.
|
||||||
|
```sh
|
||||||
|
classifier = Sequential()
|
||||||
|
|
||||||
|
classifier.add(Convolution2D(32, (3, 3), input_shape =(256, 256, 3), activation = "relu"))
|
||||||
|
classifier.add(MaxPooling2D(pool_size = (2,2)))
|
||||||
|
|
||||||
|
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
|
||||||
|
classifier.add(MaxPooling2D(pool_size = (2, 2)))
|
||||||
|
|
||||||
|
classifier.add(Flatten())
|
||||||
|
```
|
||||||
|
After flattening, I added a fully connected layer of size 128 (again with ReLU activation function). The output layer consists of 3 neurons with softmax activation function, as I am using the Network for multiclass classification (3 possible outcomes).
|
||||||
|
```sh
|
||||||
|
classifier.add(Dense(units = 128, activation = "relu"))
|
||||||
|
classifier.add(Dense(units = 3, activation = "softmax"))
|
||||||
|
```
|
||||||
|
The optimizer of my network is adam, and categorical cross entropy was my choice for a loss function.
|
||||||
|
```sh
|
||||||
|
classifier.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"])
|
||||||
|
```
|
||||||
|
# Library
|
||||||
|
|
||||||
|
I used keras to implement the network. It let me add some specific features to my network, such as early stopping and a few methods of data augmentation.
|
||||||
|
```sh
|
||||||
|
train_datagen = ImageDataGenerator(
|
||||||
|
rescale=1./255,
|
||||||
|
shear_range=0.2,
|
||||||
|
zoom_range=0.2,
|
||||||
|
horizontal_flip=True,
|
||||||
|
width_shift_range=0.2,
|
||||||
|
height_shift_range=0.1,
|
||||||
|
fill_mode='nearest')
|
||||||
|
```
|
||||||
|
This last issue was very important to me, as I did not have many photos to train the network with (altogether there were approximately 1200 of them).
|
||||||
|
|
||||||
|
# Project implementation
|
||||||
|
|
||||||
|
After training the Network, I saved the model which gave me the best results (two keras callbacks, EarlyStopping and ModelCheckpoint were very useful) to a file named "best_model.h5".
|
||||||
|
```sh
|
||||||
|
# callbacks:
|
||||||
|
es = EarlyStopping(monitor='val_loss', mode='min', baseline=1, patience = 10)
|
||||||
|
mc = ModelCheckpoint('best_model.h5', monitor='val_loss', mode='min', save_best_only=True, verbose = 1, period = 10)
|
||||||
|
|
||||||
|
```
|
||||||
|
Then, I imported the model into our project (The Waiter) using "load_model" utility of keras.models:
|
||||||
|
```sh
|
||||||
|
from keras.models import load_model
|
||||||
|
...
|
||||||
|
saved_model = load_model('best_model.h5')
|
||||||
|
```
|
||||||
|
After coming to each table, the Agent (the waiter) evaluates a randomly selected photo of a plate using the saved model, and assigns the number of predicted class into the "state" attribute of a given table. This information will let perform further actions, based on the predicted outcome.
|
BIN
plates.rar
Normal file
BIN
plates.rar
Normal file
Binary file not shown.
BIN
s444523.rar
Normal file
BIN
s444523.rar
Normal file
Binary file not shown.
369
waiter_v3.py
Normal file
369
waiter_v3.py
Normal file
@ -0,0 +1,369 @@
|
|||||||
|
import pygame
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
|
||||||
|
########################
|
||||||
|
### WS ###
|
||||||
|
########################
|
||||||
|
# For CNN:
|
||||||
|
|
||||||
|
import keras
|
||||||
|
from keras.preprocessing import image
|
||||||
|
from keras.models import Sequential
|
||||||
|
from keras.layers import Convolution2D
|
||||||
|
from keras.layers import MaxPooling2D
|
||||||
|
from keras.layers import Flatten
|
||||||
|
from keras.layers import Dense
|
||||||
|
|
||||||
|
|
||||||
|
#initializing:
|
||||||
|
classifier = Sequential()
|
||||||
|
#Convolution:
|
||||||
|
classifier.add(Convolution2D(32, (3, 3), input_shape =(256, 256, 3), activation = "relu"))
|
||||||
|
#Pooling:
|
||||||
|
classifier.add(MaxPooling2D(pool_size = (2,2)))
|
||||||
|
|
||||||
|
# Adding a second convolutional layer
|
||||||
|
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
|
||||||
|
classifier.add(MaxPooling2D(pool_size = (2, 2)))
|
||||||
|
|
||||||
|
#Flattening:
|
||||||
|
classifier.add(Flatten())
|
||||||
|
|
||||||
|
#Fully connected layers::
|
||||||
|
classifier.add(Dense(units = 128, activation = "relu"))
|
||||||
|
classifier.add(Dense(units = 3, activation = "softmax"))
|
||||||
|
|
||||||
|
# loading weigjts:
|
||||||
|
classifier.load_weights('s444523/best_model_weights2.h5')
|
||||||
|
#Making CNN:
|
||||||
|
classifier.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"])
|
||||||
|
|
||||||
|
|
||||||
|
########################
|
||||||
|
### WS ###
|
||||||
|
########################
|
||||||
|
# Colors:
|
||||||
|
# Define some colors
|
||||||
|
BLACK = (0, 0, 0)
|
||||||
|
WHITE = (255, 255, 255)
|
||||||
|
GREEN = (0, 255, 0)
|
||||||
|
RED = (255, 0, 0)
|
||||||
|
BLUE = (0, 0, 240)
|
||||||
|
|
||||||
|
#Width and Height of each square:
|
||||||
|
WIDTH = 20
|
||||||
|
HEIGHT = 20
|
||||||
|
|
||||||
|
#Margin:
|
||||||
|
MARGIN = 5
|
||||||
|
grid = [[0 for x in range(16)] for y in range(16)]
|
||||||
|
|
||||||
|
def change_value(i, j, width, n):
|
||||||
|
for r in range (i, i+width):
|
||||||
|
for c in range (j, j+width):
|
||||||
|
grid[r][c] = n
|
||||||
|
|
||||||
|
# the class "Table"
|
||||||
|
class Table:
|
||||||
|
def __init__(self, coordinate_i, coordinate_j, state = 0):
|
||||||
|
self.coordinate_i = coordinate_i
|
||||||
|
self.coordinate_j = coordinate_j
|
||||||
|
self.state = state
|
||||||
|
change_value(coordinate_i, coordinate_j, 2, 1)
|
||||||
|
def get_destination_coor(self):
|
||||||
|
return [self.coordinate_i, self.coordinate_j-1]
|
||||||
|
|
||||||
|
########################
|
||||||
|
### WS ###
|
||||||
|
########################
|
||||||
|
|
||||||
|
# The finction "state of meal" chooses a photo of a plate at the given table.
|
||||||
|
def state_of_meal(self):
|
||||||
|
## !!!!!!###
|
||||||
|
num = np.random.randint(67, 100)
|
||||||
|
## !!!!!!###
|
||||||
|
|
||||||
|
if num<=67:
|
||||||
|
img_name = 'plates/{}.png'.format(num)
|
||||||
|
else:
|
||||||
|
img_name = 'plates/{}.jpg'.format(num)
|
||||||
|
return img_name
|
||||||
|
|
||||||
|
# The function "change state" changes the value of the state variable.
|
||||||
|
# It informs, whether the client are waiting for the waiter to make an order
|
||||||
|
# (0 - empty plates) are eating (2 - full plates) or are waiting for the
|
||||||
|
# waiter to get a recipt (1 - dirty plates)
|
||||||
|
|
||||||
|
def change_state(self, st):
|
||||||
|
self.state = st
|
||||||
|
|
||||||
|
########################
|
||||||
|
### /WS ###
|
||||||
|
########################
|
||||||
|
|
||||||
|
|
||||||
|
class Kitchen:
|
||||||
|
def __init__(self, coordinate_i, coordinate_j):
|
||||||
|
self.coordinate_i = coordinate_i
|
||||||
|
self.coordinate_j = coordinate_j
|
||||||
|
change_value(coordinate_i, coordinate_j, 3, 2)
|
||||||
|
|
||||||
|
class Agent:
|
||||||
|
def __init__(self,orig_coordinate_i, orig_coordinate_j):
|
||||||
|
self.orig_coordinate_i = orig_coordinate_i
|
||||||
|
self.orig_coordinate_j = orig_coordinate_j
|
||||||
|
self.state = np.array([1,2])
|
||||||
|
change_value(orig_coordinate_j, orig_coordinate_j, 1, 3)
|
||||||
|
self.state_update(orig_coordinate_i, orig_coordinate_j)
|
||||||
|
self.previous_grid = np.array([-1, -1])
|
||||||
|
|
||||||
|
def state_update(self, c1, c2):
|
||||||
|
self.state[0] = c1
|
||||||
|
self.state[1] = c2
|
||||||
|
|
||||||
|
def leave(self):
|
||||||
|
change_value(self.state[0], self.state[1], 1, 0)
|
||||||
|
|
||||||
|
def previous_grid_update(self):
|
||||||
|
self.previous_grid[0] = self.state[0]
|
||||||
|
self.previous_grid[1] = self.state[1]
|
||||||
|
|
||||||
|
def move_to(self, nextPos):
|
||||||
|
self.previous_grid_update()
|
||||||
|
self.leave()
|
||||||
|
self.state_update(x + nextPos[0], y + nextPos[1])
|
||||||
|
change_value(self.state[0], self.state[1], 1, 3)
|
||||||
|
|
||||||
|
########################
|
||||||
|
### WS ###
|
||||||
|
########################
|
||||||
|
|
||||||
|
#The function "define_table" serches for the apropriate table in the
|
||||||
|
# table_dict (to enable the usage of class attributes and methods)
|
||||||
|
def define_table(self, t_num):
|
||||||
|
t_num = 'table{}'.format(t_num)
|
||||||
|
t_num = table_dict[t_num]
|
||||||
|
return t_num
|
||||||
|
|
||||||
|
# The function "check_plates" uses the pretrained CNN model to classify
|
||||||
|
# the plate on the table as empty(0), full(2) or dirty(1)
|
||||||
|
def check_plates(self, table_number):
|
||||||
|
table = self.define_table(table_number)
|
||||||
|
plate = table.state_of_meal()
|
||||||
|
plate= image.load_img(plate, target_size = (256, 256))
|
||||||
|
plate = image.img_to_array(plate)
|
||||||
|
plate = np.expand_dims(plate, axis = 0)
|
||||||
|
result = classifier.predict(plate)[0]
|
||||||
|
print (result)
|
||||||
|
if result[1] == 1:
|
||||||
|
result[1] = 0
|
||||||
|
x = int(input("Excuse me, have You done eating? 1=Yes, 2 = No \n"))
|
||||||
|
result[x] = 1
|
||||||
|
for i, x in enumerate(result):
|
||||||
|
if result[i] == 1:
|
||||||
|
table.change_state(i)
|
||||||
|
|
||||||
|
########################
|
||||||
|
### /WS ###
|
||||||
|
########################
|
||||||
|
# check the next grid is not the previous grid to prevent the loop
|
||||||
|
def next_is_previous(self, x, y):
|
||||||
|
return np.array_equal(self.previous_grid, np.array([x, y]))
|
||||||
|
|
||||||
|
def check_done():
|
||||||
|
for event in pygame.event.get(): # Checking for the event
|
||||||
|
if event.type == pygame.QUIT: # If the program is closed:
|
||||||
|
return True # To exit the loop
|
||||||
|
|
||||||
|
def draw_grid():
|
||||||
|
for row in range(16): # Drawing the grid
|
||||||
|
for column in range(16):
|
||||||
|
color = WHITE
|
||||||
|
if grid[row][column] == 1:
|
||||||
|
color = GREEN
|
||||||
|
if grid[row][column] == 2:
|
||||||
|
color = RED
|
||||||
|
if grid[row][column] == 3:
|
||||||
|
color = BLUE
|
||||||
|
pygame.draw.rect(screen,
|
||||||
|
color,
|
||||||
|
[(MARGIN + WIDTH) * column + MARGIN,
|
||||||
|
(MARGIN + HEIGHT) * row + MARGIN,
|
||||||
|
WIDTH,
|
||||||
|
HEIGHT])
|
||||||
|
|
||||||
|
# calculate the distance between two points
|
||||||
|
def distance(point1, point2):
|
||||||
|
return math.sqrt((point2[0] - point1[0])**2 + (point2[1] - point1[1])**2)
|
||||||
|
|
||||||
|
## default positions of the agent:
|
||||||
|
x = 12
|
||||||
|
y = 12
|
||||||
|
agent = Agent(x, y)
|
||||||
|
|
||||||
|
table1 = Table(2, 2)
|
||||||
|
table2 = Table (2,7)
|
||||||
|
table3 = Table(2, 12)
|
||||||
|
table4 = Table(7, 2)
|
||||||
|
table5 = Table(7, 7)
|
||||||
|
table6 = Table(7, 12)
|
||||||
|
table7 = Table(12, 2)
|
||||||
|
table8 = Table(12, 7)
|
||||||
|
|
||||||
|
|
||||||
|
################### WS #####################
|
||||||
|
# I added the dict to loop through tables.
|
||||||
|
table_dict = {"table1":table1, "table2":table2, "table3":table3,"table4":table4,
|
||||||
|
"table5":table5,"table6":table6,"table7":table7,"table8":table8
|
||||||
|
}
|
||||||
|
################### WS #####################
|
||||||
|
|
||||||
|
#class Kitchen:
|
||||||
|
kitchen = Kitchen(13, 13)
|
||||||
|
|
||||||
|
# destination array
|
||||||
|
destination_tables = []
|
||||||
|
|
||||||
|
|
||||||
|
pygame.init()
|
||||||
|
WINDOW_SIZE = [405, 405]
|
||||||
|
screen = pygame.display.set_mode(WINDOW_SIZE)
|
||||||
|
|
||||||
|
pygame.display.set_caption("Waiter_Grid3")
|
||||||
|
|
||||||
|
done = False
|
||||||
|
|
||||||
|
clock = pygame.time.Clock()
|
||||||
|
|
||||||
|
# -------- Main Program Loop -----------
|
||||||
|
while not done:
|
||||||
|
screen.fill(BLACK) # Background color
|
||||||
|
|
||||||
|
draw_grid()
|
||||||
|
done = check_done()
|
||||||
|
for value in table_dict.values(): destination_tables.append(value.get_destination_coor())
|
||||||
|
# We need to define the number of the table by which we are in:
|
||||||
|
|
||||||
|
num_of_table = 1
|
||||||
|
while len(destination_tables) != 0:
|
||||||
|
|
||||||
|
# set the first element(table) in array as currDestination
|
||||||
|
currDestination = destination_tables[0]
|
||||||
|
# from kitchen to table
|
||||||
|
while agent.state[0] != currDestination[0] or agent.state[1] != currDestination[1]:
|
||||||
|
|
||||||
|
#///////////////////////////////////////
|
||||||
|
x = agent.state[0]
|
||||||
|
y = agent.state[1]
|
||||||
|
|
||||||
|
# set a huge default number
|
||||||
|
minDis = 9999
|
||||||
|
nextPos = []
|
||||||
|
# check whether the agent goes left
|
||||||
|
if y-1 >= 0 and grid[x][y-1] != 1 and not agent.next_is_previous(x, y-1):
|
||||||
|
minDis = distance([x, y-1], currDestination)
|
||||||
|
nextPos = [0, -1] # means go left
|
||||||
|
|
||||||
|
# check whether the agent goes right
|
||||||
|
if y+1 <= 15 and grid[x][y+1] != 1 and grid[x][y+1] != 2 and not agent.next_is_previous(x, y+1):
|
||||||
|
d = distance([x, y+1], currDestination)
|
||||||
|
if d < minDis:
|
||||||
|
minDis = d
|
||||||
|
nextPos = [0, 1] # means go right
|
||||||
|
|
||||||
|
# check whether the agent goes up
|
||||||
|
if x-1 >= 0 and grid[x-1][y] != 1 and not agent.next_is_previous(x-1, y):
|
||||||
|
d = distance([x-1, y], currDestination)
|
||||||
|
if d < minDis:
|
||||||
|
minDis = d
|
||||||
|
nextPos = [-1, 0] # means go up
|
||||||
|
|
||||||
|
# check whether the agent goes down
|
||||||
|
if x+1 <= 15 and grid[x+1][y] != 1 and grid[x+1][y] != 2 and not agent.next_is_previous(x+1, y):
|
||||||
|
d = distance([x+1, y], currDestination)
|
||||||
|
if d < minDis:
|
||||||
|
minDis = d
|
||||||
|
nextPos = [1, 0] # means go down
|
||||||
|
|
||||||
|
# print(agent.previous_grid)
|
||||||
|
agent.move_to(nextPos)
|
||||||
|
#////////////////////////////////////////////////
|
||||||
|
|
||||||
|
pygame.time.delay(100)
|
||||||
|
screen.fill(BLACK) # Background color
|
||||||
|
draw_grid() # Drawing the grid
|
||||||
|
clock.tick(60) # Limit to 60 frames per second
|
||||||
|
pygame.display.flip() # Updating the screen
|
||||||
|
|
||||||
|
|
||||||
|
########################
|
||||||
|
### WS ###
|
||||||
|
########################
|
||||||
|
#pygame.time.delay(100)
|
||||||
|
print("I'm at a table no. {}".format(num_of_table))
|
||||||
|
## Checking at what state are the plates:
|
||||||
|
agent.check_plates(num_of_table)
|
||||||
|
num_of_table +=1
|
||||||
|
|
||||||
|
########################
|
||||||
|
### /WS ###
|
||||||
|
########################
|
||||||
|
# set the kitchen as currDestination
|
||||||
|
currDestination = [13, 12]
|
||||||
|
# from table to kitchen
|
||||||
|
while agent.state[0] != currDestination[0] or agent.state[1] != currDestination[1]:
|
||||||
|
|
||||||
|
#///////////////////////////////////////
|
||||||
|
x = agent.state[0]
|
||||||
|
y = agent.state[1]
|
||||||
|
|
||||||
|
# set a huge default number
|
||||||
|
minDis = 9999
|
||||||
|
nextPos = []
|
||||||
|
# check whether the agent goes left
|
||||||
|
if y-1 >= 0 and grid[x][y-1] != 1 and not agent.next_is_previous(x, y-1):
|
||||||
|
minDis = distance([x, y-1], currDestination)
|
||||||
|
nextPos = [0, -1] # means go left
|
||||||
|
|
||||||
|
# check whether the agent goes right
|
||||||
|
if y+1 <= 15 and grid[x][y+1] != 1 and grid[x][y+1] != 2 and not agent.next_is_previous(x, y+1):
|
||||||
|
d = distance([x, y+1], currDestination)
|
||||||
|
if d < minDis:
|
||||||
|
minDis = d
|
||||||
|
nextPos = [0, 1] # means go right
|
||||||
|
|
||||||
|
# check whether the agent goes up
|
||||||
|
if x-1 >= 0 and grid[x-1][y] != 1 and grid[x-1][y] != 2 and not agent.next_is_previous(x-1, y):
|
||||||
|
d = distance([x-1, y], currDestination)
|
||||||
|
if d < minDis:
|
||||||
|
minDis = d
|
||||||
|
nextPos = [-1, 0] # means go up
|
||||||
|
|
||||||
|
# check whether the agent goes down
|
||||||
|
if x+1 <= 15 and grid[x+1][y] != 1 and grid[x+1][y] != 2 and not agent.next_is_previous(x+1, y):
|
||||||
|
d = distance([x+1, y], currDestination)
|
||||||
|
if d < minDis:
|
||||||
|
minDis = d
|
||||||
|
nextPos = [1, 0] # means go down
|
||||||
|
|
||||||
|
agent.move_to(nextPos)
|
||||||
|
#////////////////////////////////////////////////
|
||||||
|
|
||||||
|
pygame.time.delay(100)
|
||||||
|
screen.fill(BLACK) # Background color
|
||||||
|
draw_grid() # Drawing the grid
|
||||||
|
clock.tick(60) # Limit to 60 frames per second
|
||||||
|
pygame.display.flip() # Updating the screen
|
||||||
|
|
||||||
|
|
||||||
|
destination_tables = destination_tables[1:] # remove the first element in the list
|
||||||
|
# After each fool loop, we can quit the program:.
|
||||||
|
if len(destination_tables) == 0:
|
||||||
|
play_again = 1
|
||||||
|
play_again = int(input("Exit? 0=No, 1=Yes \n"))
|
||||||
|
if play_again:
|
||||||
|
pygame.quit()
|
||||||
|
|
||||||
|
|
||||||
|
pygame.quit()
|
69
which_plate_CNN.py
Normal file
69
which_plate_CNN.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
##My cnn, classyfing the plates as dirty, clean or full.
|
||||||
|
#imports
|
||||||
|
from keras.models import Sequential
|
||||||
|
from keras.layers import Convolution2D
|
||||||
|
from keras.layers import MaxPooling2D
|
||||||
|
from keras.layers import Flatten
|
||||||
|
from keras.layers import Dense
|
||||||
|
from keras.callbacks import EarlyStopping
|
||||||
|
from keras.callbacks import ModelCheckpoint
|
||||||
|
|
||||||
|
#initializing:
|
||||||
|
classifier = Sequential()
|
||||||
|
|
||||||
|
#Convolution:
|
||||||
|
classifier.add(Convolution2D(32, (3, 3), input_shape =(256, 256, 3), activation = "relu"))
|
||||||
|
|
||||||
|
#Pooling:
|
||||||
|
classifier.add(MaxPooling2D(pool_size = (2,2)))
|
||||||
|
|
||||||
|
# Adding a second convolutional layer
|
||||||
|
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
|
||||||
|
classifier.add(MaxPooling2D(pool_size = (2, 2)))
|
||||||
|
|
||||||
|
|
||||||
|
#Flattening:
|
||||||
|
classifier.add(Flatten())
|
||||||
|
|
||||||
|
#Fully connected layers::
|
||||||
|
classifier.add(Dense(units = 128, activation = "relu"))
|
||||||
|
classifier.add(Dense(units = 3, activation = "softmax"))
|
||||||
|
|
||||||
|
#Making CNN:
|
||||||
|
classifier.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"])
|
||||||
|
|
||||||
|
#From KERAS:
|
||||||
|
from keras.preprocessing.image import ImageDataGenerator
|
||||||
|
|
||||||
|
#Data augmentation:
|
||||||
|
train_datagen = ImageDataGenerator(
|
||||||
|
rescale=1./255,
|
||||||
|
shear_range=0.2,
|
||||||
|
zoom_range=0.2,
|
||||||
|
horizontal_flip=True,
|
||||||
|
width_shift_range=0.2,
|
||||||
|
height_shift_range=0.1,
|
||||||
|
fill_mode='nearest')
|
||||||
|
|
||||||
|
test_datagen = ImageDataGenerator(rescale=1./255)
|
||||||
|
|
||||||
|
training_set = train_datagen.flow_from_directory('plates/training_set',
|
||||||
|
target_size=(256, 256),
|
||||||
|
batch_size=16,
|
||||||
|
class_mode='categorical')
|
||||||
|
|
||||||
|
test_set = test_datagen.flow_from_directory('plates/test_set',
|
||||||
|
target_size=(256, 256),
|
||||||
|
batch_size=16,
|
||||||
|
class_mode='categorical')
|
||||||
|
|
||||||
|
# callbacks:
|
||||||
|
es = EarlyStopping(monitor='val_loss', mode='min', baseline=1, patience = 10)
|
||||||
|
mc = ModelCheckpoint('best_model.h5', monitor='val_loss', mode='min', save_best_only=True, verbose = 1, period = 10)
|
||||||
|
classifier.fit_generator(
|
||||||
|
training_set,
|
||||||
|
steps_per_epoch = 88,
|
||||||
|
epochs=200,
|
||||||
|
callbacks=[es, mc],
|
||||||
|
validation_data=test_set,
|
||||||
|
validation_steps=10)
|
Loading…
Reference in New Issue
Block a user