Projekt-Grafika-Komputerowa/dependencies/glm/gtx/dual_quaternion.inl

352 lines
10 KiB
Plaintext
Raw Permalink Normal View History

2022-01-23 19:43:27 +01:00
/// @ref gtx_dual_quaternion
/// @file glm/gtx/dual_quaternion.inl
#include "../geometric.hpp"
#include <limits>
namespace glm
{
// -- Component accesses --
template <typename T, precision P>
GLM_FUNC_QUALIFIER typename tdualquat<T, P>::part_type & tdualquat<T, P>::operator[](typename tdualquat<T, P>::length_type i)
{
assert(i >= 0 && i < this->length());
return (&real)[i];
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER typename tdualquat<T, P>::part_type const & tdualquat<T, P>::operator[](typename tdualquat<T, P>::length_type i) const
{
assert(i >= 0 && i < this->length());
return (&real)[i];
}
// -- Implicit basic constructors --
# if !GLM_HAS_DEFAULTED_FUNCTIONS || !defined(GLM_FORCE_NO_CTOR_INIT)
template <typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat()
# ifndef GLM_FORCE_NO_CTOR_INIT
: real(tquat<T, P>())
, dual(tquat<T, P>(0, 0, 0, 0))
# endif
{}
# endif
# if !GLM_HAS_DEFAULTED_FUNCTIONS
template <typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tdualquat<T, P> const & d)
: real(d.real)
, dual(d.dual)
{}
# endif//!GLM_HAS_DEFAULTED_FUNCTIONS
template <typename T, precision P>
template <precision Q>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tdualquat<T, Q> const & d)
: real(d.real)
, dual(d.dual)
{}
// -- Explicit basic constructors --
template <typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR_CTOR tdualquat<T, P>::tdualquat(ctor)
{}
template <typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tquat<T, P> const & r)
: real(r), dual(tquat<T, P>(0, 0, 0, 0))
{}
template <typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tquat<T, P> const & q, tvec3<T, P> const& p)
: real(q), dual(
T(-0.5) * ( p.x*q.x + p.y*q.y + p.z*q.z),
T(+0.5) * ( p.x*q.w + p.y*q.z - p.z*q.y),
T(+0.5) * (-p.x*q.z + p.y*q.w + p.z*q.x),
T(+0.5) * ( p.x*q.y - p.y*q.x + p.z*q.w))
{}
template <typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tquat<T, P> const & r, tquat<T, P> const & d)
: real(r), dual(d)
{}
// -- Conversion constructors --
template <typename T, precision P>
template <typename U, precision Q>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR tdualquat<T, P>::tdualquat(tdualquat<U, Q> const & q)
: real(q.real)
, dual(q.dual)
{}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat(tmat2x4<T, P> const & m)
{
*this = dualquat_cast(m);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P>::tdualquat(tmat3x4<T, P> const & m)
{
*this = dualquat_cast(m);
}
// -- Unary arithmetic operators --
# if !GLM_HAS_DEFAULTED_FUNCTIONS
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator=(tdualquat<T, P> const & q)
{
this->real = q.real;
this->dual = q.dual;
return *this;
}
# endif//!GLM_HAS_DEFAULTED_FUNCTIONS
template <typename T, precision P>
template <typename U>
GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator=(tdualquat<U, P> const & q)
{
this->real = q.real;
this->dual = q.dual;
return *this;
}
template <typename T, precision P>
template <typename U>
GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator*=(U s)
{
this->real *= static_cast<T>(s);
this->dual *= static_cast<T>(s);
return *this;
}
template <typename T, precision P>
template <typename U>
GLM_FUNC_QUALIFIER tdualquat<T, P> & tdualquat<T, P>::operator/=(U s)
{
this->real /= static_cast<T>(s);
this->dual /= static_cast<T>(s);
return *this;
}
// -- Unary bit operators --
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> operator+(tdualquat<T, P> const & q)
{
return q;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> operator-(tdualquat<T, P> const & q)
{
return tdualquat<T, P>(-q.real, -q.dual);
}
// -- Binary operators --
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> operator+(tdualquat<T, P> const & q, tdualquat<T, P> const & p)
{
return tdualquat<T, P>(q.real + p.real,q.dual + p.dual);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> operator*(tdualquat<T, P> const & p, tdualquat<T, P> const & o)
{
return tdualquat<T, P>(p.real * o.real,p.real * o.dual + p.dual * o.real);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tdualquat<T, P> const & q, tvec3<T, P> const & v)
{
tvec3<T, P> const real_v3(q.real.x,q.real.y,q.real.z);
tvec3<T, P> const dual_v3(q.dual.x,q.dual.y,q.dual.z);
return (cross(real_v3, cross(real_v3,v) + v * q.real.w + dual_v3) + dual_v3 * q.real.w - real_v3 * q.dual.w) * T(2) + v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tvec3<T, P> const & v, tdualquat<T, P> const & q)
{
return glm::inverse(q) * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tdualquat<T, P> const & q, tvec4<T, P> const & v)
{
return tvec4<T, P>(q * tvec3<T, P>(v), v.w);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tvec4<T, P> const & v, tdualquat<T, P> const & q)
{
return glm::inverse(q) * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> operator*(tdualquat<T, P> const & q, T const & s)
{
return tdualquat<T, P>(q.real * s, q.dual * s);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> operator*(T const & s, tdualquat<T, P> const & q)
{
return q * s;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> operator/(tdualquat<T, P> const & q, T const & s)
{
return tdualquat<T, P>(q.real / s, q.dual / s);
}
// -- Boolean operators --
template <typename T, precision P>
GLM_FUNC_QUALIFIER bool operator==(tdualquat<T, P> const & q1, tdualquat<T, P> const & q2)
{
return (q1.real == q2.real) && (q1.dual == q2.dual);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER bool operator!=(tdualquat<T, P> const & q1, tdualquat<T, P> const & q2)
{
return (q1.real != q2.dual) || (q1.real != q2.dual);
}
// -- Operations --
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> normalize(tdualquat<T, P> const & q)
{
return q / length(q.real);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> lerp(tdualquat<T, P> const & x, tdualquat<T, P> const & y, T const & a)
{
// Dual Quaternion Linear blend aka DLB:
// Lerp is only defined in [0, 1]
assert(a >= static_cast<T>(0));
assert(a <= static_cast<T>(1));
T const k = dot(x.real,y.real) < static_cast<T>(0) ? -a : a;
T const one(1);
return tdualquat<T, P>(x * (one - a) + y * k);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> inverse(tdualquat<T, P> const & q)
{
const glm::tquat<T, P> real = conjugate(q.real);
const glm::tquat<T, P> dual = conjugate(q.dual);
return tdualquat<T, P>(real, dual + (real * (-2.0f * dot(real,dual))));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat2x4<T, P> mat2x4_cast(tdualquat<T, P> const & x)
{
return tmat2x4<T, P>( x[0].x, x[0].y, x[0].z, x[0].w, x[1].x, x[1].y, x[1].z, x[1].w );
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat3x4<T, P> mat3x4_cast(tdualquat<T, P> const & x)
{
tquat<T, P> r = x.real / length2(x.real);
tquat<T, P> const rr(r.w * x.real.w, r.x * x.real.x, r.y * x.real.y, r.z * x.real.z);
r *= static_cast<T>(2);
T const xy = r.x * x.real.y;
T const xz = r.x * x.real.z;
T const yz = r.y * x.real.z;
T const wx = r.w * x.real.x;
T const wy = r.w * x.real.y;
T const wz = r.w * x.real.z;
tvec4<T, P> const a(
rr.w + rr.x - rr.y - rr.z,
xy - wz,
xz + wy,
-(x.dual.w * r.x - x.dual.x * r.w + x.dual.y * r.z - x.dual.z * r.y));
tvec4<T, P> const b(
xy + wz,
rr.w + rr.y - rr.x - rr.z,
yz - wx,
-(x.dual.w * r.y - x.dual.x * r.z - x.dual.y * r.w + x.dual.z * r.x));
tvec4<T, P> const c(
xz - wy,
yz + wx,
rr.w + rr.z - rr.x - rr.y,
-(x.dual.w * r.z + x.dual.x * r.y - x.dual.y * r.x - x.dual.z * r.w));
return tmat3x4<T, P>(a, b, c);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> dualquat_cast(tmat2x4<T, P> const & x)
{
return tdualquat<T, P>(
tquat<T, P>( x[0].w, x[0].x, x[0].y, x[0].z ),
tquat<T, P>( x[1].w, x[1].x, x[1].y, x[1].z ));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tdualquat<T, P> dualquat_cast(tmat3x4<T, P> const & x)
{
tquat<T, P> real(uninitialize);
T const trace = x[0].x + x[1].y + x[2].z;
if(trace > static_cast<T>(0))
{
T const r = sqrt(T(1) + trace);
T const invr = static_cast<T>(0.5) / r;
real.w = static_cast<T>(0.5) * r;
real.x = (x[2].y - x[1].z) * invr;
real.y = (x[0].z - x[2].x) * invr;
real.z = (x[1].x - x[0].y) * invr;
}
else if(x[0].x > x[1].y && x[0].x > x[2].z)
{
T const r = sqrt(T(1) + x[0].x - x[1].y - x[2].z);
T const invr = static_cast<T>(0.5) / r;
real.x = static_cast<T>(0.5)*r;
real.y = (x[1].x + x[0].y) * invr;
real.z = (x[0].z + x[2].x) * invr;
real.w = (x[2].y - x[1].z) * invr;
}
else if(x[1].y > x[2].z)
{
T const r = sqrt(T(1) + x[1].y - x[0].x - x[2].z);
T const invr = static_cast<T>(0.5) / r;
real.x = (x[1].x + x[0].y) * invr;
real.y = static_cast<T>(0.5) * r;
real.z = (x[2].y + x[1].z) * invr;
real.w = (x[0].z - x[2].x) * invr;
}
else
{
T const r = sqrt(T(1) + x[2].z - x[0].x - x[1].y);
T const invr = static_cast<T>(0.5) / r;
real.x = (x[0].z + x[2].x) * invr;
real.y = (x[2].y + x[1].z) * invr;
real.z = static_cast<T>(0.5) * r;
real.w = (x[1].x - x[0].y) * invr;
}
tquat<T, P> dual(uninitialize);
dual.x = static_cast<T>(0.5) * ( x[0].w * real.w + x[1].w * real.z - x[2].w * real.y);
dual.y = static_cast<T>(0.5) * (-x[0].w * real.z + x[1].w * real.w + x[2].w * real.x);
dual.z = static_cast<T>(0.5) * ( x[0].w * real.y - x[1].w * real.x + x[2].w * real.w);
dual.w = -static_cast<T>(0.5) * ( x[0].w * real.x + x[1].w * real.y + x[2].w * real.z);
return tdualquat<T, P>(real, dual);
}
}//namespace glm