Ready to go

This commit is contained in:
Iwona Christop 2022-05-03 21:54:24 +02:00
parent c2748dc657
commit b9815844a4
3 changed files with 337 additions and 23 deletions

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@ -16,32 +16,41 @@
},
{
"cell_type": "code",
"execution_count": 40,
"execution_count": 2,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/util.py:833: UserWarning: [W095] Model 'en_pipeline' (0.0.0) was trained with spaCy v3.3 and may not be 100% compatible with the current version (3.2.4). If you see errors or degraded performance, download a newer compatible model or retrain your custom model with the current spaCy version. For more details and available updates, run: python -m spacy validate\n",
" warnings.warn(warn_msg)\n"
]
}
],
"source": [
"import spacy\n",
"from spacy import displacy\n",
"\n",
"nlp = spacy.load('NER')\n",
"ner = spacy.load('NER')\n",
"\n",
"text = NDAs[9]\n",
"doc = nlp(text)\n",
"# text = NDAs[9]\n",
"# doc = nlp(text)\n",
"\n",
"effective_date = []\n",
"jurisdiction = []\n",
"party = []\n",
"term = []\n",
"# effective_date = []\n",
"# jurisdiction = []\n",
"# party = []\n",
"# term = []\n",
"\n",
"for word in doc.ents:\n",
" if word.label_ == 'effective_date':\n",
" effective_date.append(word.text)\n",
" elif word.label_ == 'jurisdiction':\n",
" jurisdiction.append(word.text)\n",
" elif word.label_ == 'party':\n",
" party.append(word.text)\n",
" else:\n",
" term.append(word.text)"
"# for word in doc.ents:\n",
"# if word.label_ == 'effective_date':\n",
"# effective_date.append(word.text)\n",
"# elif word.label_ == 'jurisdiction':\n",
"# jurisdiction.append(word.text)\n",
"# elif word.label_ == 'party':\n",
"# party.append(word.text)\n",
"# else:\n",
"# term.append(word.text)"
]
},
{
@ -132,6 +141,189 @@
" print(word.text, '-->', word.label_)"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [],
"source": [
"months = {'01': 'January', '02': 'February', '03': 'March', \n",
" '04': 'April', '05': 'May', '06': 'June',\n",
" '07': 'July', '08': 'August', '09': 'September',\n",
" '10': 'October', '11': 'November', '12': 'December'}\n",
"\n",
"punctuation = '!\"#$%&\\'()*+,-./:;<=>?@[\\\\\\\\]^_`{|}~'\n",
"\n",
"document = ner(NDAs[4])\n",
"\n",
"effectiveDate = []\n",
"\n",
"for word in document.ents:\n",
" if word.label_ == 'effective_date':\n",
" effectiveDate.append(word.text)\n",
"\n",
"try:\n",
" effectiveDate = { date : effectiveDate.count(date) for date in effectiveDate }\n",
" effectiveDate = max(effectiveDate, key=effectiveDate.get)\n",
" for char in punctuation: effectiveDate = effectiveDate.replace(char, '')\n",
" # Get month\n",
" for d in effectiveDate.split():\n",
" if d in list(months.values()):\n",
" month = list(months.keys())[list(months.values()).index(d)]\n",
" elif int(d) < 32:\n",
" day = d\n",
" elif int(d) > 1900 and int(d) < 2030:\n",
" year = d\n",
" effectiveDate = year + '-' + month + '-' + day\n",
"except:\n",
" pass\n",
"\n",
"# effectiveDate = '2011-07-13'"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
"states = ['Alabama', 'New York']\n",
"\n",
"document = ner(NDAs[6])\n",
"\n",
"jurisdiction = []\n",
"\n",
"for word in document.ents:\n",
" if word.label_ == 'jurisdiction':\n",
" if word.text not in states:\n",
" for state in states:\n",
" if word.text in state:\n",
" jurisdiction.append(state)\n",
" else:\n",
" jurisdiction.append(text)\n",
"\n",
"try:\n",
" jurisdiction = { state : jurisdiction.count(state) for state in jurisdiction }\n",
" jurisdiction = max(jurisdiction, key=jurisdiction.get).replace(' ', '_')\n",
"except:\n",
" pass\n",
"\n",
"# jurisdiction = 'New_York'"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'New_York'"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jurisdiction"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"document = ner(NDAs[9])\n",
"\n",
"party = []\n",
"\n",
"for word in document.ents:\n",
" if word.label_ == 'party':\n",
" party.append(word.text)\n",
"\n",
"party = list(dict.fromkeys(party))\n",
"party = [ p.replace(' ', '_') for p in party]\n",
"# party = ['CompuDyne_Corporation']"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"wordToNumber = {1 : 'one', 2 : 'two', 3 : 'three', 4 : 'four', 5 : 'five',\n",
" 6 : 'six', 7 : 'seven', 8 : 'eight', 9 : 'nine', 10 : 'ten',\n",
" 11 : 'eleven', 12 : 'twelve', 13 : 'thirteen', 14 : 'fourteen',\n",
" 15 : 'fifteen', 16 : 'sixteen', 17 : 'seventeen', 18 : 'eighteen',\n",
" 19 : 'nineteen', 20 : 'twenty',\n",
" 30 : 'thirty', 40 : 'forty', 50 : 'fifty', 60 : 'sixty',\n",
" 70 : 'seventy', 80 : 'eighty', 90 : 'ninety' }\n",
"\n",
"document = ner(NDAs[7])\n",
"\n",
"term = []\n",
"\n",
"for word in document.ents:\n",
" if word.label_ == 'term':\n",
" term.append(word.text)\n",
"\n",
"try:\n",
" term = { time : term.count(time) for time in term }\n",
" term = max(term, key=term.get)\n",
" term = term.split()\n",
" term[0] = str(list(wordToNumber.keys())[list(wordToNumber.values()).index(term[0])])\n",
" term = '_'.join(term)\n",
"except:\n",
" pass\n",
"\n",
"# term = '3_years'"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'3_years'"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"term"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(wordToNumber.keys())[list(wordToNumber.values()).index(term[0])]"
]
},
{
"cell_type": "code",
"execution_count": null,
@ -159,7 +351,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
"version": "3.9.2"
},
"orig_nbformat": 4
},

View File

@ -1852,7 +1852,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
"version": "3.9.2"
},
"orig_nbformat": 4
},

126
main.py
View File

@ -1,5 +1,34 @@
import lzma
from matplotlib.pyplot import getp
import spacy
import csv
months = {'01': 'January', '02': 'February', '03': 'March',
'04': 'April', '05': 'May', '06': 'June',
'07': 'July', '08': 'August', '09': 'September',
'10': 'October', '11': 'November', '12': 'December'}
punctuation = '!"#$%&\'()*+,-./:;<=>?@[\\\\]^_`{|}~'
states = ['Alabama', 'Alaska', 'Arizona', 'Arkansas', 'California',
'Colorado', 'Connecticut', 'Delaware', 'Florida', 'Georgia',
'Hawaii', 'Idaho', 'Illinois', 'Indiana', 'Iowa',
'Kansas', 'Kentucky', 'Louisiana', 'Maine', 'Maryland',
'Massachusetts', 'Michigan', 'Minnesota', 'Mississippi', 'Missouri',
'Montana', 'Nebraska', 'Nevada', 'New Hampshire', 'New Jersey',
'New Mexico', 'New York', 'North Carolina', 'North Dakota', 'Ohio',
'Oklahoma', 'Oregon', 'Pennsylvania', 'Rhode Island', 'South Carolina',
'South Dakota', 'Tennessee', 'Texas', 'Utah', 'Vermont',
'Virginia', 'Washington', 'West Virginia', 'Wisconsin', 'Wyoming']
wordToNumber = {1 : 'one', 2 : 'two', 3 : 'three', 4 : 'four', 5 : 'five',
6 : 'six', 7 : 'seven', 8 : 'eight', 9 : 'nine', 10 : 'ten',
11 : 'eleven', 12 : 'twelve', 13 : 'thirteen', 14 : 'fourteen',
15 : 'fifteen', 16 : 'sixteen', 17 : 'seventeen', 18 : 'eighteen',
19 : 'nineteen', 20 : 'twenty',
30 : 'thirty', 40 : 'forty', 50 : 'fifty', 60 : 'sixty',
70 : 'seventy', 80 : 'eighty', 90 : 'ninety' }
def readInput(dir):
@ -9,11 +38,104 @@ def readInput(dir):
NDAs.append(line.decode('utf-8'))
return NDAs
def getEffectiveDate(document):
effectiveDate = []
for word in document.ents:
if word.label_ == 'effective_date':
effectiveDate.append(word.text)
#if len(effectiveDate) > 0:
try:
effectiveDate = { date : effectiveDate.count(date) for date in effectiveDate }
effectiveDate = max(effectiveDate, key=effectiveDate.get)
for char in punctuation: effectiveDate = effectiveDate.replace(char, '')
for d in effectiveDate.split():
if d in list(months.values()):
month = list(months.keys())[list(months.values()).index(d)]
elif int(d) < 32:
day = d
elif int(d) > 1900 and int(d) < 2030:
year = d
effectiveDate = year + '-' + month + '-' + day
except:
effectiveDate = ''
return effectiveDate # effectiveDate = '2011-07-13'
def getJurisdiction(document):
jurisdiction = []
for word in document.ents:
if word.label_ == 'jurisdiction':
if word.text not in states:
for state in states:
if word.text in state:
jurisdiction.append(state)
else:
jurisdiction.append(word.text)
if len(jurisdiction) > 0:
jurisdiction = { state : jurisdiction.count(state) for state in jurisdiction }
jurisdiction = max(jurisdiction, key=jurisdiction.get).replace(' ', '_')
else:
jurisdiction = ''
return jurisdiction # jurisdiction = 'New_York'
def getParties(document):
party = []
for word in document.ents:
if word.label_ == 'party':
party.append(word.text)
party = list(dict.fromkeys(party))
party = [ p.replace(' ', '_') for p in party]
return party # party = ['CompuDyne_Corporation']
def getTerm(document):
term = []
for word in document.ents:
if word.label_ == 'term':
term.append(word.text)
if len(term) > 0:
term = { time : term.count(time) for time in term }
term = max(term, key=term.get)
term = term.split()
term[0] = str(list(wordToNumber.keys())[list(wordToNumber.values()).index(term[0])])
term = '_'.join(term)
else: term = ''
return term # term = '3_years'
if __name__ == '__main__':
NDAs = readInput('train/in.tsv.xz')
ner = spacy.load('NER')
for nda in NDAs:
print('pass')
predicted = [''] * len(NDAs)
document = ner(NDAs[9])
for i in range(len(NDAs)):
document = ner(NDAs[i])
ed = getEffectiveDate(document)
j = getJurisdiction(document)
p = getParties(document)
t = getTerm(document)
if len(ed) > 0: predicted[i] += 'effective_date=' + ed + ' '
if len(j) > 0: predicted[i] += 'jurisdiction=' + j + ' '
if len(p) > 0:
for party in p: predicted[i] += 'party=' + party + ' '
if len(t) > 0: predicted[i] += 'term=' + t
with open('train/out.tsv', 'w', newline='') as f:
writer = csv.writer(f)
writer.writerows(predicted)