{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import lzma\n", "\n", "# RTead file with lzma\n", "NDAs = []\n", "\n", "with lzma.open('train/in.tsv.xz') as f:\n", " for line in f:\n", " NDAs.append(line.decode('utf-8'))" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Read expected information\n", "expected = []\n", "\n", "with open('train/expected.tsv') as f:\n", " for line in f:\n", " expected.append(line.replace('\\n', '').split(' '))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import re\n", "\n", "months = {'01': 'January', '02': 'February', '03': 'March', \n", " '04': 'April', '05': 'May', '06': 'June',\n", " '07': 'July', '08': 'August', '09': 'September',\n", " '10': 'October', '11': 'November', '12': 'December'}\n", "\n", "def dayToWord(day):\n", " day = int(day)\n", " if day > 3:\n", " return str(day) + 'th'\n", " elif day == 3:\n", " return str(day) + 'rd'\n", " elif day == 2 :\n", " return str(day) + 'nd'\n", " else: return str(day) + 'st'\n", "\n", "def numToWord(number):\n", " try:\n", " number = int(number)\n", " d = {1 : 'one', 2 : 'two', 3 : 'three', 4 : 'four', 5 : 'five',\n", " 6 : 'six', 7 : 'seven', 8 : 'eight', 9 : 'nine', 10 : 'ten',\n", " 11 : 'eleven', 12 : 'twelve', 13 : 'thirteen', 14 : 'fourteen',\n", " 15 : 'fifteen', 16 : 'sixteen', 17 : 'seventeen', 18 : 'eighteen',\n", " 19 : 'nineteen', 20 : 'twenty',\n", " 30 : 'thirty', 40 : 'forty', 50 : 'fifty', 60 : 'sixty',\n", " 70 : 'seventy', 80 : 'eighty', 90 : 'ninety' }\n", " if number < 20:\n", " return d[number]\n", " else:\n", " if number % 10 == 0: return d[number]\n", " else: return d[number // 10 * 10] + '-' + d[number % 10]\n", " except:\n", " return number\n", "\n", "def labelJurisdiction(text, jurisdiction):\n", " jurisdictions = []\n", " jurisdiction = jurisdiction.replace('_', ' ')\n", " for match in re.finditer(jurisdiction, text):\n", " tup = (match.start(), match.end(), 'jurisdiction')\n", " jurisdictions.append(tup)\n", " return jurisdictions\n", "\n", "def labelEffectiveDate(text, date):\n", " dates = []\n", " year, month, day = date.split('-')\n", " \n", " dateFormats = [month + '/' + day + '/' + year,\n", " month + '/' + day + '/' + year[-2:], \n", " month[1] + '/' + day + '/' + year, \n", " month[1] + '/' + day[1] + '/' + year, \n", " month[1] + '/' + day + '/' + year[-2:], \n", " month[1] + '/' + day[1] + '/' + year[-2:],\n", " dayToWord(day) + ' of ' + months[month] + ', ' + year,\n", " dayToWord(day) + ' day of ' + months[month] + ', ' + year,\n", " months[month] + ' ' + day + ', ' + year ]\n", "\n", " for format in dateFormats:\n", " for match in re.finditer(format, text, flags=re.IGNORECASE):\n", " tup = (match.start(), match.end(), 'effective_date')\n", " dates.append(tup)\n", "\n", " return dates\n", "\n", "def labelParties(text, party):\n", " parties = []\n", " if 'Inc' in party:\n", " regular = ''\n", " for word in party.split('_'):\n", " regular += word + '(.*)'\n", " party = regular\n", " party = party.replace('_', ' ')\n", " for match in re.finditer(party, text, flags=re.IGNORECASE):\n", " tup = (match.start(), match.end(), 'party')\n", " parties.append(tup)\n", " return parties\n", "\n", "def labelTerms(text, term):\n", " terms = []\n", " term = term.split('_')\n", " number = numToWord(term[0])\n", " units = term[1]\n", " for match in re.finditer(number + ' ' + units, text, flags=re.IGNORECASE):\n", " tup = (match.start(), match.end(), 'term')\n", " terms.append(tup)\n", " return terms" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "expectEntities = []\n", "\n", "for expect in expected:\n", " # expect = expect.split()\n", " entities = []\n", " for e in expect:\n", " label, entity = e.split('=')\n", " entities.append((label, entity))\n", " expectEntities.append(entities)\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "trainData =[]\n", "\n", "for i in range(len(expectEntities)):\n", " listOfEntities = []\n", " for entity in expectEntities[i]:\n", " if entity[0] == 'effective_date':\n", " listOfEntities.append(labelEffectiveDate(NDAs[i], entity[1]))\n", " elif entity[0] == 'jurisdiction':\n", " listOfEntities.append(labelJurisdiction(NDAs[i], entity[1]))\n", " elif entity[0] == 'party':\n", " listOfEntities.append(labelParties(NDAs[i], entity[1]))\n", " else: listOfEntities.append(labelTerms(NDAs[i], entity[1]))\n", " listOfEntities = [item for sublist in listOfEntities for item in sublist]\n", " trainData.append((NDAs[i], {'entities': listOfEntities}))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Created blank \"en\" model\n" ] } ], "source": [ "import spacy\n", "from spacy.tokens import DocBin\n", "\n", "model = None\n", "nIter = 100\n", "\n", "if model is not None:\n", " nlp = spacy.load(model)\n", " print('Loaded model')\n", "else:\n", " nlp = spacy.blank('en')\n", " print('Created blank \"en\" model')\n", "\n", "if 'ner' not in nlp.pipe_names:\n", " # ner = nlp.create_pipe('ner')\n", " ner = nlp.add_pipe('ner', last=True)\n", "else:\n", " ner = nlp.get_pipe('ner')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "for data in trainData:\n", " for ent in data[1].get('entities'):\n", " ner.add_label(ent[2])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "otherPipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ " 1%| | 3/254 [00:00<01:11, 3.49it/s]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text \"03efbda01358533c167ca9b1e6d72051.pdf\teffective_dat...\" with entities \"[(7513, 7521, 'effective_date'), (15032, 15040, 'e...\". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training.\n", " warnings.warn(\n", " 2%|▏ | 4/254 [00:01<02:28, 1.68it/s]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text \"03fd0e629b617da00c54794a8a78b24d.pdf\teffective_dat...\" with entities \"[(287, 300, 'effective_date'), (25276, 25289, 'eff...\". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training.\n", " warnings.warn(\n", " 2%|▏ | 6/254 [00:04<04:11, 1.01s/it]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text \"04bf0791804e8487c91ab84eaa47a335.pdf\teffective_dat...\" with entities \"[(198, 216, 'effective_date'), (22663, 22681, 'eff...\". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training.\n", " warnings.warn(\n", " 3%|▎ | 8/254 [00:07<04:37, 1.13s/it]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text \"0587275477c6ad6d0d72419383e04b88.pdf\teffective_dat...\" with entities \"[(4528, 4536, 'jurisdiction'), (4604, 4612, 'juris...\". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training.\n", " warnings.warn(\n", " 4%|▎ | 9/254 [00:12<09:04, 2.22s/it]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text \"05947711a24a5b7ce401911d31e19c91.pdf\teffective_dat...\" with entities \"[(18271, 18279, 'jurisdiction'), (18507, 18515, 'j...\". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training.\n", " warnings.warn(\n", " 6%|▌ | 14/254 [00:18<04:18, 1.08s/it]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text \"0859334b76224ff82c1312ae7b2b5da1.pdf\teffective_dat...\" with entities \"[(279, 296, 'effective_date'), (22981, 22998, 'eff...\". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training.\n", " warnings.warn(\n", " 7%|▋ | 17/254 [00:20<03:29, 1.13it/s]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text \"0c3ab1d0c8bb3b1c2f7a64f3ab584368.pdf\teffective_dat...\" with entities \"[(243, 259, 'effective_date'), (35225, 35241, 'eff...\". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training.\n", " warnings.warn(\n", " 7%|▋ | 18/254 [00:23<04:38, 1.18s/it]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text \"0c7b90701575b147c4ac245ca478ee7c.pdf\teffective_dat...\" with entities \"[(10058, 10065, 'jurisdiction'), (10252, 10259, 'j...\". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training.\n", " warnings.warn(\n", " 7%|▋ | 19/254 [00:25<05:25, 1.39s/it]" ] } ], "source": [ "# import random\n", "from tqdm import tqdm\n", "\n", "from spacy.training.example import Example\n", "\n", "with nlp.disable_pipes(*otherPipes):\n", " optimizer = nlp.begin_training()\n", " for itn in range(nIter):\n", " # random.shuffle(trainData)\n", " losses = {}\n", " for text, annotations in tqdm(trainData):\n", " try:\n", " doc = nlp.make_doc(text)\n", " example = Example.from_dict(doc, annotations)\n", " nlp.update([example], drop=0.5, sgd=optimizer, losses=losses)\n", " except:\n", " pass\n", " print(losses)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" }, "kernelspec": { "display_name": "Python 3.9.2 64-bit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.2" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }