2022-05-08 10:16:28 +02:00
|
|
|
import lzma
|
|
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
|
from sklearn.naive_bayes import BernoulliNB
|
|
|
|
import numpy as np
|
|
|
|
import csv
|
|
|
|
|
|
|
|
|
|
|
|
def readInput(dir):
|
|
|
|
X = []
|
|
|
|
if 'xz' in dir:
|
|
|
|
with lzma.open(dir) as f:
|
|
|
|
for line in f:
|
|
|
|
X.append(line.decode('utf-8'))
|
|
|
|
else:
|
|
|
|
with open(dir) as f:
|
|
|
|
for line in f:
|
|
|
|
X. append(line.replace('\n',''))
|
|
|
|
return X
|
|
|
|
|
|
|
|
def writeOutput(output, dir):
|
|
|
|
with open(dir, 'w', newline='') as f:
|
|
|
|
writer = csv.writer(f)
|
|
|
|
writer.writerows(output)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# train
|
|
|
|
trainX = readInput('train/in.tsv.xz')
|
|
|
|
trainY = readInput('train/expected.tsv')
|
|
|
|
vectorizer = TfidfVectorizer()
|
|
|
|
trainX = vectorizer.fit_transform(trainX)
|
|
|
|
trainY = np.array(trainY)
|
|
|
|
bernoulli = BernoulliNB()
|
|
|
|
bernoulli.fit(trainX, trainY)
|
|
|
|
|
|
|
|
# dev-0
|
|
|
|
devX = readInput('dev-0/in.tsv.xz')
|
|
|
|
devX = vectorizer.transform(devX)
|
|
|
|
devPredicted = bernoulli.predict(devX)
|
2022-05-08 10:21:08 +02:00
|
|
|
writeOutput(devPredicted, 'dev-0/out.tsv')
|
2022-05-08 10:16:28 +02:00
|
|
|
|
|
|
|
# test-A
|
|
|
|
testX = readInput('test-A/in.tsv.xz')
|
|
|
|
testX = vectorizer.transform(testX)
|
|
|
|
testPredicted = bernoulli.predict(testX)
|
2022-05-08 10:21:08 +02:00
|
|
|
writeOutput(testPredicted, 'test-A/out.tsv')
|