This commit is contained in:
Szymon Parafiński 2023-04-25 00:27:37 +02:00
parent 52c529193d
commit 8c25eb8da8
2 changed files with 196 additions and 0 deletions

97
lab6/kenlm.ipynb Normal file
View File

@ -0,0 +1,97 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!xzcat -f1 ../train/in.tsv.xz | cut -f7,8 | sed 's/-\\\\n/ /g' | sed 's/\\\\n//g' | sed 's/\\\\//g' | ../../kenlm/build/bin/lmplz -o 3 > kenlm_model.arpa\n",
"!../../kenlm/build/bin/build_binary kenlm_model.arpa kenlm_model.binary"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": true
}
},
"outputs": [],
"source": [
"import re\n",
"\n",
"CONTRACTIONS = {\n",
" \"I'm\": \"I am\",\n",
" \"you're\": \"you are\",\n",
" \"he's\": \"he is\",\n",
" \"she's\": \"she is\",\n",
" \"it's\": \"it is\",\n",
" \"we're\": \"we are\",\n",
" \"they're\": \"they are\",\n",
" \"aren't\": \"are not\",\n",
" \"don't\": \"do not\",\n",
" \"doesn't\": \"does not\",\n",
" \"weren't\": \"were not\",\n",
" \"'ll\": \" will\",\n",
"}\n",
"\n",
"\n",
"def formalize_text(text):\n",
" # Replace contractions using regular expressions\n",
" pattern = re.compile(r'\\b(' + '|'.join(CONTRACTIONS.keys()) + r')\\b')\n",
" text = pattern.sub(lambda x: CONTRACTIONS[x.group()], text)\n",
"\n",
" # Remove hyphens at the end of lines and replace newlines with spaces\n",
" text = text.replace('-\\n', '')\n",
" text = text.replace('\\n', ' ')\n",
"\n",
" return text\n",
"\n",
"\n",
"def clean_string(text):\n",
" text = formalize_text(text)\n",
" text = re.sub(r\" -\\\\*\\\\n\", \"\", text)\n",
" text = re.sub(r\"\\\\n\", \" \", text)\n",
" text = text.strip()\n",
" return text\n",
"\n",
"\n",
"train_text = \"\"\n",
"print(\"Reading train data...\")\n",
"with open(\"../train/in.tsv\", encoding=\"utf8\", mode=\"rt\") as file, open(\"../train/expected.tsv\", encoding=\"utf8\", mode=\"rt\") as expected:\n",
" for t_line, e_line in zip(file, expected):\n",
" t_line = t_line.split(\"\\t\")\n",
" train_text += clean_string(t_line[-2]) + f\" {clean_string(e_line)} \" + clean_string(t_line[-1])\n",
"\n",
"# save train_text to file\n",
"print(\"saving to file...\")\n",
"with open(\"train_text.txt\", encoding=\"utf8\", mode=\"w\") as file:\n",
" file.write(train_text)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "python11",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

99
lab6/kenlm_script.py Normal file
View File

@ -0,0 +1,99 @@
from tqdm import tqdm
import regex as re
from english_words import get_english_words_set
import kenlm
import pickle
import math
import numpy as np
path = 'kenlm_model.binary'
model = kenlm.Model(path)
CONTRACTIONS = {
"I'm": "I am",
"you're": "you are",
"he's": "he is",
"she's": "she is",
"it's": "it is",
"we're": "we are",
"they're": "they are",
"aren't": "are not",
"don't": "do not",
"doesn't": "does not",
"weren't": "were not",
"'ll": " will",
}
def formalize_text(text):
# Replace contractions using regular expressions
pattern = re.compile(r'\b(' + '|'.join(CONTRACTIONS.keys()) + r')\b')
text = pattern.sub(lambda x: CONTRACTIONS[x.group()], text)
# Remove hyphens at the end of lines and replace newlines with spaces
text = text.replace('-\n', '')
text = text.replace('\n', ' ')
return text
def clean_string(text):
text = formalize_text(text)
text = re.sub(r" -\\*\\n", "", text)
text = re.sub(r"\\n", " ", text)
text = text.strip()
return text
def p(text):
return 1 / (1 + math.exp(-(model.score(text, bos=False, eos=False))))
def perplexity(text):
return model.perplexity(text)
def predict_probs_w1w2wi(w1, w2):
best_scores = []
pred_str = ""
for word in V_counter:
w1w2 = ' '.join([w2, word])
w1w2w3 = ' '.join([w1, w2, word])
text_score = 0.1 * p(word) + 0.3 * p(w1w2) + 0.6 * p(w1w2w3)
if len(best_scores) < 5:
best_scores.append((word, text_score))
else:
worst_score = best_scores[-1]
if worst_score[1] < text_score:
best_scores[-1] = (word, text_score)
best_scores = sorted(best_scores, key=lambda tup: tup[1], reverse=True)
for word, prob in best_scores:
pred_str += f'{word}:{prob} '
pred_str += f':{1 - sum([p for _, p in best_scores])}'
return pred_str
def run_predictions(source_folder):
print(f"Run predictions on {source_folder} data...")
with open(f"{source_folder}/in.tsv", encoding="utf8", mode="rt") as file:
train_data = file.readlines()
with open(f"{source_folder}/out.tsv", "w", encoding="utf-8") as output_file:
for line in tqdm(train_data):
line = line.split("\t")
w1, w2 = clean_string(line[-2]).split()[-2:]
out_line = predict_probs_w1w2wi(w1, w2)
output_file.write(out_line + "\n")
with open('V_3000.pickle', 'rb') as handle:
V_counter = pickle.load(handle)
run_predictions("../dev-0")
# run_predictions("../test-A")