add Jenkinsfile_train
Some checks failed
s444018-training/pipeline/head There was a failure building this commit

This commit is contained in:
Szymon Parafiński 2022-05-08 23:38:31 +02:00
parent ed0399be0c
commit a804509a00
8 changed files with 1264 additions and 3 deletions

2
.gitignore vendored
View File

@ -1,2 +1,2 @@
.idea .idea
*.csv

38
Jenkinsfile_train Normal file
View File

@ -0,0 +1,38 @@
pipeline {
agent {
dockerfile {
additionalBuildArgs "--build-arg KAGGLE_USERNAME=${params.KAGGLE_USERNAME} --build-arg KAGGLE_KEY=${params.KAGGLE_KEY} --build-arg CUTOFF=${params.CUTOFF} -t docker_image"
}
}
parameters {
string(
defaultValue: '1000',
description: 'Number of epochs',
name: 'EPOCHS',
trim: false
)
stages {
stage('Script'){
steps {
copyArtifacts filter: '*', projectName: 's444018-create-dataset'
sh 'python3 ./biblioteka_DL/dllib.py $EPOCHS'
archiveArtifacts artifacts: 'model.pkl', followSymlinks: false
build job: 's444018-evaluation/master/'
}
}
}
post {
success {
emailext body: 'SUCCESS', subject: 's444018-training', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
failure {
emailext body: 'FAILURE', subject: 's444018-training', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
unstable {
emailext body: 'UNSTABLE', subject: 's444018-training', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
changed {
emailext body: 'CHANGED', subject: 's444018-training', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
}
}

View File

@ -1,3 +1,5 @@
import sys
import torch import torch
import torch.nn as nn import torch.nn as nn
import pandas as pd import pandas as pd
@ -54,7 +56,7 @@ def normalize_gross(imbd_data):
def prepare_dataset(): def prepare_dataset():
df = pd.read_csv('../imdb_top_1000.csv') df = pd.read_csv('imdb_top_1000.csv')
df = drop_relevant_columns(df) df = drop_relevant_columns(df)
df_lowercase = lowercase_columns_names(df) df_lowercase = lowercase_columns_names(df)
df = data_to_numeric(df_lowercase) df = data_to_numeric(df_lowercase)
@ -98,7 +100,9 @@ l = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
num_epochs = 1000 # num_epochs = 1000
num_epochs = int(sys.argv[1])
for epoch in range(num_epochs): for epoch in range(num_epochs):
# forward feed # forward feed
y_pred = model(X_train.requires_grad_()) y_pred = model(X_train.requires_grad_())
@ -123,6 +127,9 @@ predicted = model(X_train).detach().numpy()
pred = pd.DataFrame(predicted) pred = pd.DataFrame(predicted)
pred.to_csv('result.csv') pred.to_csv('result.csv')
# save model
torch.save(model, "model.pkl")
# plt.scatter(X_train.detach().numpy() , y_train.detach().numpy()) # plt.scatter(X_train.detach().numpy() , y_train.detach().numpy())
# plt.plot(X_train.detach().numpy() , predicted , "red") # plt.plot(X_train.detach().numpy() , predicted , "red")
# plt.xlabel("Meta_score") # plt.xlabel("Meta_score")

File diff suppressed because it is too large Load Diff

29
lab5/Dockerfile Normal file
View File

@ -0,0 +1,29 @@
FROM ubuntu:latest
RUN apt-get update
RUN apt-get install -y python3-pip
RUN apt-get install -y unzip
RUN pip3 install kaggle
RUN pip3 install pandas
RUN pip3 install sklearn
RUN pip3 install numpy
RUN pip3 install matplotlib
RUN pip3 install torch
ARG CUTOFF
ARG KAGGLE_USERNAME
ARG KAGGLE_KEY
ENV CUTOFF=${CUTOFF}
ENV KAGGLE_USERNAME=${KAGGLE_USERNAME}
ENV KAGGLE_KEY=${KAGGLE_KEY}
WORKDIR /app
COPY lab2/download.sh .
COPY biblioteka_DL/dllib.py .
RUN chmod +x ./download.sh
RUN ./download.sh
#CMD python3 ./dllib.py

32
lab5/Jenkinsfile vendored Normal file
View File

@ -0,0 +1,32 @@
pipeline {
agent {
dockerfile {
additionalBuildArgs "--build-arg KAGGLE_USERNAME=${params.KAGGLE_USERNAME} --build-arg KAGGLE_KEY=${params.KAGGLE_KEY} --build-arg CUTOFF=${params.CUTOFF} -t docker_image"
}
}
parameters {
string(
defaultValue: 'szymonparafinski',
description: 'Kaggle username',
name: 'KAGGLE_USERNAME',
trim: false
)
password(
defaultValue: '',
description: 'Kaggle token taken from kaggle.json file, as described in https://github.com/Kaggle/kaggle-api#api-credentials',
name: 'KAGGLE_KEY'
)
string(
defaultValue: '100',
description: 'Cutoff lines',
name: 'CUTOFF'
)
}
stages {
stage('Script'){
steps {
archiveArtifacts artifacts: 'data_test.csv, data_train.csv, data_dev.csv', followSymlinks: false
}
}
}
}

24
lab5/Jenkinsfile_stats Normal file
View File

@ -0,0 +1,24 @@
pipeline {
agent {
docker {
image 'docker_image'
}
}
parameters{
buildSelector(
defaultSelector: lastSuccessful(),
name: 'BUILD_SELECTOR',
description: 'Which build to use for copying artifacts'
)
}
stages {
stage("Script") {
steps {
copyArtifacts fingerprintArtifacts: true, projectName: 's444018-create-dataset', selector: buildParameter('BUILD_SELECTOR')
sh 'chmod +x ./lab2/stats.sh'
sh "./lab2/stats.sh"
archiveArtifacts 'stats.txt'
}
}
}
}

130
lab5/biblioteka_DL/dllib.py Normal file
View File

@ -0,0 +1,130 @@
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
def drop_relevant_columns(imbd_data):
imbd_data.drop(columns=["Poster_Link"], inplace=True)
imbd_data.drop(columns=["Overview"], inplace=True)
imbd_data.drop(columns=["Certificate"], inplace=True)
return imbd_data
def lowercase_columns_names(imbd_data):
imbd_data["Series_Title"] = imbd_data["Series_Title"].str.lower()
imbd_data["Genre"] = imbd_data["Genre"].str.lower()
imbd_data["Director"] = imbd_data["Director"].str.lower()
imbd_data["Star1"] = imbd_data["Star1"].str.lower()
imbd_data["Star2"] = imbd_data["Star2"].str.lower()
imbd_data["Star3"] = imbd_data["Star3"].str.lower()
imbd_data["Star4"] = imbd_data["Star4"].str.lower()
return imbd_data
def data_to_numeric(imbd_data):
imbd_data = imbd_data.replace(np.nan, '', regex=True)
imbd_data["Gross"] = imbd_data["Gross"].str.replace(',', '')
imbd_data["Gross"] = pd.to_numeric(imbd_data["Gross"], errors='coerce')
imbd_data["Runtime"] = imbd_data["Runtime"].str.replace(' min', '')
imbd_data["Runtime"] = pd.to_numeric(imbd_data["Runtime"], errors='coerce')
imbd_data["IMDB_Rating"] = pd.to_numeric(imbd_data["IMDB_Rating"], errors='coerce')
imbd_data["Meta_score"] = pd.to_numeric(imbd_data["Meta_score"], errors='coerce')
imbd_data["Released_Year"] = pd.to_numeric(imbd_data["Released_Year"], errors='coerce')
imbd_data = imbd_data.dropna()
imbd_data = imbd_data.reset_index()
imbd_data.drop(columns=["index"], inplace=True)
return imbd_data
def create_train_dev_test(imbd_data):
data_train, data_test = train_test_split(imbd_data, test_size=230, random_state=1, shuffle=True)
data_test, data_dev = train_test_split(data_test, test_size=115, random_state=1, shuffle=True)
data_test.to_csv("data_test.csv", encoding="utf-8", index=False)
data_dev.to_csv("data_dev.csv", encoding="utf-8", index=False)
data_train.to_csv("data_train.csv", encoding="utf-8", index=False)
def normalize_gross(imbd_data):
imbd_data[["Gross"]] = imbd_data[["Gross"]] / 10000000
return imbd_data
def prepare_dataset():
df = pd.read_csv('../imdb_top_1000.csv')
df = drop_relevant_columns(df)
df_lowercase = lowercase_columns_names(df)
df = data_to_numeric(df_lowercase)
df = normalize_gross(df)
return df
class LinearRegressionModel(torch.nn.Module):
def __init__(self):
super(LinearRegressionModel, self).__init__()
self.linear = torch.nn.Linear(1, 1) # One in and one out
def forward(self, x):
y_pred = self.linear(x)
return y_pred
df = prepare_dataset()
data_train, data_test = train_test_split(df, random_state=1, shuffle=True)
X_train = pd.DataFrame(data_train["Meta_score"], dtype=np.float64)
X_train = X_train.to_numpy()
y_train = pd.DataFrame(data_train["Gross"], dtype=np.float64)
y_train = y_train.to_numpy()
X_train = X_train.reshape(-1, 1)
y_train = y_train.reshape(-1, 1)
X_train = torch.from_numpy(X_train.astype(np.float32)).view(-1, 1)
y_train = torch.from_numpy(y_train.astype(np.float32)).view(-1, 1)
input_size = 1
output_size = 1
model = nn.Linear(input_size, output_size)
learning_rate = 0.0001
l = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
num_epochs = 1000
for epoch in range(num_epochs):
# forward feed
y_pred = model(X_train.requires_grad_())
# calculate the loss
loss = l(y_pred, y_train)
# backward propagation: calculate gradients
loss.backward()
# update the weights
optimizer.step()
# clear out the gradients from the last step loss.backward()
optimizer.zero_grad()
if epoch % 100 == 0:
print('epoch {}, loss {}'.format(epoch, loss.item()))
predicted = model(X_train).detach().numpy()
pred = pd.DataFrame(predicted)
pred.to_csv('result.csv')
# plt.scatter(X_train.detach().numpy() , y_train.detach().numpy())
# plt.plot(X_train.detach().numpy() , predicted , "red")
# plt.xlabel("Meta_score")
# plt.ylabel("Gross")
# plt.show()