solution lab07
Some checks failed
s444018-training/pipeline/head There was a failure building this commit
s444018-evaluation/pipeline/head This commit looks good

This commit is contained in:
Szymon Parafiński 2022-05-11 23:51:16 +02:00
parent 1083fee4c1
commit d0a13447be
8 changed files with 537 additions and 48 deletions

View File

@ -13,11 +13,15 @@ pipeline {
)
}
stages {
stage('Script'){
stage('Copy artifacts'){
steps {
copyArtifacts filter: '*', projectName: 's444018-create-dataset'
}
}
stage('Train model with sacred') {
steps {
sh 'python3 ./biblioteka_DL/dllib.py $EPOCHS'
archiveArtifacts artifacts: 'model.pkl', followSymlinks: false
archiveArtifacts artifacts: 'model.pkl', s444018_sacred_FileObserver/**/*.*, result.csv, followSymlinks: false
}
}
}

View File

@ -6,7 +6,20 @@ import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import accuracy_score, mean_squared_error
from sacred.observers import MongoObserver, FileStorageObserver
from sacred import Experiment
ex = Experiment(save_git_info=False)
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017',
db_name='sacred'))
ex.observers.append(FileStorageObserver('s444018_sacred_FileObserver'))
@ex.config
def my_config():
epochs = "1000"
def drop_relevant_columns(imbd_data):
@ -75,35 +88,37 @@ class LinearRegressionModel(torch.nn.Module):
return y_pred
df = prepare_dataset()
data_train, data_test = train_test_split(df, random_state=1, shuffle=True)
@ex.automain
def my_main(epochs, _run):
# num_epochs = 1000
# num_epochs = int(sys.argv[1])
X_train = pd.DataFrame(data_train["Meta_score"], dtype=np.float64)
X_train = X_train.to_numpy()
# number of epochs is parametrized
try:
num_epochs = int(epochs)
except Exception as e:
print(e)
print("Setting default epochs value to 1000.")
num_epochs = 1000
y_train = pd.DataFrame(data_train["Gross"], dtype=np.float64)
y_train = y_train.to_numpy()
df = prepare_dataset()
data_train, data_test = train_test_split(df, random_state=1, shuffle=True)
X_train = pd.DataFrame(data_train["Meta_score"], dtype=np.float64)
X_train = X_train.to_numpy()
y_train = pd.DataFrame(data_train["Gross"], dtype=np.float64)
y_train = y_train.to_numpy()
X_train = X_train.reshape(-1, 1)
y_train = y_train.reshape(-1, 1)
X_train = torch.from_numpy(X_train.astype(np.float32)).view(-1, 1)
y_train = torch.from_numpy(y_train.astype(np.float32)).view(-1, 1)
input_size = 1
output_size = 1
model = nn.Linear(input_size, output_size)
learning_rate = 0.0001
l = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
X_train = X_train.reshape(-1, 1)
y_train = y_train.reshape(-1, 1)
X_train = torch.from_numpy(X_train.astype(np.float32)).view(-1, 1)
y_train = torch.from_numpy(y_train.astype(np.float32)).view(-1, 1)
input_size = 1
output_size = 1
model = nn.Linear(input_size, output_size)
learning_rate = 0.0001
l = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
# num_epochs = 1000
num_epochs = int(sys.argv[1])
for epoch in range(num_epochs):
for epoch in range(num_epochs):
# forward feed
y_pred = model(X_train.requires_grad_())
@ -122,16 +137,38 @@ for epoch in range(num_epochs):
if epoch % 100 == 0:
print('epoch {}, loss {}'.format(epoch, loss.item()))
predicted = model(X_train).detach().numpy()
X_test = pd.DataFrame(data_test["Meta_score"], dtype=np.float64)
X_test = X_test.to_numpy()
X_test = X_test.reshape(-1, 1)
X_test = torch.from_numpy(X_test.astype(np.float32)).view(-1, 1)
pred = pd.DataFrame(predicted)
pred.to_csv('result.csv')
predictedSet = model(X_test).detach().numpy()
# save model
torch.save(model, "model.pkl")
gross_test_g = pd.DataFrame(data_test["Gross"], dtype=np.float64)
gross_test_g = gross_test_g.to_numpy()
gross_test_g = gross_test_g.reshape(-1, 1)
pred = pd.DataFrame(predictedSet)
pred.to_csv('result.csv')
# save model
torch.save(model, "model.pkl")
predicted = []
expected = []
for i in range(0, len(X_test)):
predicted.append(np.argmax(model(X_test[i]).detach().numpy(), axis=0))
expected.append(gross_test_g[i])
for i in range(0, len(expected)):
expected[i] = expected[i][0]
rmse = mean_squared_error(gross_test_g, pred, squared=False)
mse = mean_squared_error(gross_test_g, pred)
_run.log_scalar("RMSE", rmse)
_run.log_scalar("MSE", mse)
# ex.run()
ex.add_artifact("model.pkl")
# plt.scatter(X_train.detach().numpy() , y_train.detach().numpy())
# plt.plot(X_train.detach().numpy() , predicted , "red")
# plt.xlabel("Meta_score")
# plt.ylabel("Gross")
# plt.show()

31
lab6/Dockerfile Normal file
View File

@ -0,0 +1,31 @@
FROM ubuntu:latest
RUN apt-get update
RUN apt-get install -y python3-pip
RUN apt-get install -y unzip
RUN pip3 install kaggle
RUN pip3 install pandas
RUN pip3 install sklearn
RUN pip3 install numpy
RUN pip3 install matplotlib
RUN pip3 install torch
ARG CUTOFF
ARG KAGGLE_USERNAME
ARG KAGGLE_KEY
ENV CUTOFF=${CUTOFF}
ENV KAGGLE_USERNAME=${KAGGLE_USERNAME}
ENV KAGGLE_KEY=${KAGGLE_KEY}
WORKDIR /app
COPY lab2/download.sh .
COPY biblioteka_DL/dllib.py .
COPY biblioteka_DL/evaluate.py .
COPY biblioteka_DL/imdb_top_1000.csv .
RUN chmod +x ./download.sh
RUN ./download.sh
#CMD python3 ./dllib.py

32
lab6/Jenkinsfile vendored Normal file
View File

@ -0,0 +1,32 @@
pipeline {
agent {
dockerfile {
additionalBuildArgs "--build-arg KAGGLE_USERNAME=${params.KAGGLE_USERNAME} --build-arg KAGGLE_KEY=${params.KAGGLE_KEY} --build-arg CUTOFF=${params.CUTOFF} -t docker_image"
}
}
parameters {
string(
defaultValue: 'szymonparafinski',
description: 'Kaggle username',
name: 'KAGGLE_USERNAME',
trim: false
)
password(
defaultValue: '',
description: 'Kaggle token taken from kaggle.json file, as described in https://github.com/Kaggle/kaggle-api#api-credentials',
name: 'KAGGLE_KEY'
)
string(
defaultValue: '100',
description: 'Cutoff lines',
name: 'CUTOFF'
)
}
stages {
stage('Script'){
steps {
archiveArtifacts artifacts: 'data_test.csv, data_train.csv, data_dev.csv', followSymlinks: false
}
}
}
}

46
lab6/Jenkinsfile_eval Normal file
View File

@ -0,0 +1,46 @@
pipeline {
agent {
docker {
image 'docker_image'
}
}
parameters {
gitParameter branchFilter: 'origin/(.*)', defaultValue: 'master', name: 'BRANCH', type: 'PT_BRANCH'
buildSelector(
defaultSelector: lastSuccessful(),
description: 'Which build to use for copying artifacts',
name: 'BUILD_SELECTOR'
)
}
stages {
stage('Script'){
steps {
copyArtifacts filter: '*', projectName: 's444018-create-dataset', selector: buildParameter('BUILD_SELECTOR')
copyArtifacts filter: '*', projectName: 's444018-training/${BRANCH}', selector: buildParameter('BUILD_SELECTOR')
copyArtifacts filter: '*', projectName: 's444018-evaluation/master', selector: buildParameter('BUILD_SELECTOR'), optional: true
sh 'python3 ./biblioteka_DL/evaluate.py'
archiveArtifacts artifacts: 'mae.txt, rmse.txt, mse.txt, evr.txt, metrics.png', followSymlinks: false
script {
MAE = sh (
script: 'tail -1 mae.txt',
returnStdout: true
).trim()
}
}
}
}
post {
success {
emailext body: "SUCCESS, MAE = ${MAE}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
failure {
emailext body: "FAILURE, MAE = ${MAE}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
unstable {
emailext body: "UNSTABLE, MAE = ${MAE}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
changed {
emailext body: "CHANGED, MAE = ${MAE}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
}
}

38
lab6/Jenkinsfile_train Normal file
View File

@ -0,0 +1,38 @@
pipeline {
agent {
dockerfile {
additionalBuildArgs "--build-arg KAGGLE_USERNAME=${params.KAGGLE_USERNAME} --build-arg KAGGLE_KEY=${params.KAGGLE_KEY} --build-arg CUTOFF=${params.CUTOFF} -t docker_image"
}
}
parameters {
string(
defaultValue: '1000',
description: 'Number of epochs',
name: 'EPOCHS',
trim: false
)
}
stages {
stage('Script'){
steps {
copyArtifacts filter: '*', projectName: 's444018-create-dataset'
sh 'python3 ./biblioteka_DL/dllib.py $EPOCHS'
archiveArtifacts artifacts: 'model.pkl', followSymlinks: false
}
}
}
post {
success {
emailext body: 'SUCCESS', subject: 's444018-training', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
failure {
emailext body: 'FAILURE', subject: 's444018-training', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
unstable {
emailext body: 'UNSTABLE', subject: 's444018-training', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
changed {
emailext body: 'CHANGED', subject: 's444018-training', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
}
}

137
lab6/biblioteka_DL/dllib.py Normal file
View File

@ -0,0 +1,137 @@
import sys
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
def drop_relevant_columns(imbd_data):
imbd_data.drop(columns=["Poster_Link"], inplace=True)
imbd_data.drop(columns=["Overview"], inplace=True)
imbd_data.drop(columns=["Certificate"], inplace=True)
return imbd_data
def lowercase_columns_names(imbd_data):
imbd_data["Series_Title"] = imbd_data["Series_Title"].str.lower()
imbd_data["Genre"] = imbd_data["Genre"].str.lower()
imbd_data["Director"] = imbd_data["Director"].str.lower()
imbd_data["Star1"] = imbd_data["Star1"].str.lower()
imbd_data["Star2"] = imbd_data["Star2"].str.lower()
imbd_data["Star3"] = imbd_data["Star3"].str.lower()
imbd_data["Star4"] = imbd_data["Star4"].str.lower()
return imbd_data
def data_to_numeric(imbd_data):
imbd_data = imbd_data.replace(np.nan, '', regex=True)
imbd_data["Gross"] = imbd_data["Gross"].str.replace(',', '')
imbd_data["Gross"] = pd.to_numeric(imbd_data["Gross"], errors='coerce')
imbd_data["Runtime"] = imbd_data["Runtime"].str.replace(' min', '')
imbd_data["Runtime"] = pd.to_numeric(imbd_data["Runtime"], errors='coerce')
imbd_data["IMDB_Rating"] = pd.to_numeric(imbd_data["IMDB_Rating"], errors='coerce')
imbd_data["Meta_score"] = pd.to_numeric(imbd_data["Meta_score"], errors='coerce')
imbd_data["Released_Year"] = pd.to_numeric(imbd_data["Released_Year"], errors='coerce')
imbd_data = imbd_data.dropna()
imbd_data = imbd_data.reset_index()
imbd_data.drop(columns=["index"], inplace=True)
return imbd_data
def create_train_dev_test(imbd_data):
data_train, data_test = train_test_split(imbd_data, test_size=230, random_state=1, shuffle=True)
data_test, data_dev = train_test_split(data_test, test_size=115, random_state=1, shuffle=True)
data_test.to_csv("data_test.csv", encoding="utf-8", index=False)
data_dev.to_csv("data_dev.csv", encoding="utf-8", index=False)
data_train.to_csv("data_train.csv", encoding="utf-8", index=False)
def normalize_gross(imbd_data):
imbd_data[["Gross"]] = imbd_data[["Gross"]] / 10000000
return imbd_data
def prepare_dataset():
df = pd.read_csv('biblioteka_DL/imdb_top_1000.csv')
df = drop_relevant_columns(df)
df_lowercase = lowercase_columns_names(df)
df = data_to_numeric(df_lowercase)
df = normalize_gross(df)
return df
class LinearRegressionModel(torch.nn.Module):
def __init__(self):
super(LinearRegressionModel, self).__init__()
self.linear = torch.nn.Linear(1, 1) # One in and one out
def forward(self, x):
y_pred = self.linear(x)
return y_pred
df = prepare_dataset()
data_train, data_test = train_test_split(df, random_state=1, shuffle=True)
X_train = pd.DataFrame(data_train["Meta_score"], dtype=np.float64)
X_train = X_train.to_numpy()
y_train = pd.DataFrame(data_train["Gross"], dtype=np.float64)
y_train = y_train.to_numpy()
X_train = X_train.reshape(-1, 1)
y_train = y_train.reshape(-1, 1)
X_train = torch.from_numpy(X_train.astype(np.float32)).view(-1, 1)
y_train = torch.from_numpy(y_train.astype(np.float32)).view(-1, 1)
input_size = 1
output_size = 1
model = nn.Linear(input_size, output_size)
learning_rate = 0.0001
l = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
# num_epochs = 1000
num_epochs = int(sys.argv[1])
for epoch in range(num_epochs):
# forward feed
y_pred = model(X_train.requires_grad_())
# calculate the loss
loss = l(y_pred, y_train)
# backward propagation: calculate gradients
loss.backward()
# update the weights
optimizer.step()
# clear out the gradients from the last step loss.backward()
optimizer.zero_grad()
if epoch % 100 == 0:
print('epoch {}, loss {}'.format(epoch, loss.item()))
predicted = model(X_train).detach().numpy()
pred = pd.DataFrame(predicted)
pred.to_csv('result.csv')
# save model
torch.save(model, "model.pkl")
# plt.scatter(X_train.detach().numpy() , y_train.detach().numpy())
# plt.plot(X_train.detach().numpy() , predicted , "red")
# plt.xlabel("Meta_score")
# plt.ylabel("Gross")
# plt.show()

View File

@ -0,0 +1,164 @@
import sys
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, explained_variance_score, \
mean_squared_error, mean_absolute_error
def drop_relevant_columns(imbd_data):
imbd_data.drop(columns=["Poster_Link"], inplace=True)
imbd_data.drop(columns=["Overview"], inplace=True)
imbd_data.drop(columns=["Certificate"], inplace=True)
return imbd_data
def lowercase_columns_names(imbd_data):
imbd_data["Series_Title"] = imbd_data["Series_Title"].str.lower()
imbd_data["Genre"] = imbd_data["Genre"].str.lower()
imbd_data["Director"] = imbd_data["Director"].str.lower()
imbd_data["Star1"] = imbd_data["Star1"].str.lower()
imbd_data["Star2"] = imbd_data["Star2"].str.lower()
imbd_data["Star3"] = imbd_data["Star3"].str.lower()
imbd_data["Star4"] = imbd_data["Star4"].str.lower()
return imbd_data
def data_to_numeric(imbd_data):
imbd_data = imbd_data.replace(np.nan, '', regex=True)
imbd_data["Gross"] = imbd_data["Gross"].str.replace(',', '')
imbd_data["Gross"] = pd.to_numeric(imbd_data["Gross"], errors='coerce')
imbd_data["Runtime"] = imbd_data["Runtime"].str.replace(' min', '')
imbd_data["Runtime"] = pd.to_numeric(imbd_data["Runtime"], errors='coerce')
imbd_data["IMDB_Rating"] = pd.to_numeric(imbd_data["IMDB_Rating"], errors='coerce')
imbd_data["Meta_score"] = pd.to_numeric(imbd_data["Meta_score"], errors='coerce')
imbd_data["Released_Year"] = pd.to_numeric(imbd_data["Released_Year"], errors='coerce')
imbd_data = imbd_data.dropna()
imbd_data = imbd_data.reset_index()
imbd_data.drop(columns=["index"], inplace=True)
return imbd_data
def create_train_dev_test(imbd_data):
data_train, data_test = train_test_split(imbd_data, test_size=230, random_state=1, shuffle=True)
data_test, data_dev = train_test_split(data_test, test_size=115, random_state=1, shuffle=True)
data_test.to_csv("data_test.csv", encoding="utf-8", index=False)
data_dev.to_csv("data_dev.csv", encoding="utf-8", index=False)
data_train.to_csv("data_train.csv", encoding="utf-8", index=False)
def normalize_gross(imbd_data):
imbd_data[["Gross"]] = imbd_data[["Gross"]] / 10000000
return imbd_data
def prepare_dataset():
df = pd.read_csv('biblioteka_DL/imdb_top_1000.csv')
df = drop_relevant_columns(df)
df_lowercase = lowercase_columns_names(df)
df = data_to_numeric(df_lowercase)
df = normalize_gross(df)
return df
class LinearRegressionModel(torch.nn.Module):
def __init__(self):
super(LinearRegressionModel, self).__init__()
self.linear = torch.nn.Linear(1, 1) # One in and one out
def forward(self, x):
y_pred = self.linear(x)
return y_pred
df = prepare_dataset()
data_train, data_test = train_test_split(df, random_state=1, shuffle=True)
X_train = pd.DataFrame(data_train["Meta_score"], dtype=np.float64)
X_train = X_train.to_numpy()
y_train = pd.DataFrame(data_train["Gross"], dtype=np.float64)
y_train = y_train.to_numpy()
X_train = X_train.reshape(-1, 1)
y_train = y_train.reshape(-1, 1)
X_train = torch.from_numpy(X_train.astype(np.float32)).view(-1, 1)
y_train = torch.from_numpy(y_train.astype(np.float32)).view(-1, 1)
input_size = 1
output_size = 1
model = torch.load("model.pkl")
X_test = pd.DataFrame(data_test["Meta_score"], dtype=np.float64)
X_test = X_test.to_numpy()
X_test = X_test.reshape(-1, 1)
X_test = torch.from_numpy(X_test.astype(np.float32)).view(-1, 1)
predicted = model(X_test).detach().numpy()
gross_test_g = pd.DataFrame(data_test["Gross"], dtype=np.float64)
gross_test_g = gross_test_g.to_numpy()
gross_test_g = gross_test_g.reshape(-1, 1)
pred = pd.DataFrame(predicted)
predicted = []
expected = []
for i in range(0, len(X_test)):
predicted.append(np.argmax(model(X_test[i]).detach().numpy(), axis=0))
expected.append(gross_test_g[i])
for i in range(0, len(expected)):
expected[i] = expected[i][0]
rmse = mean_squared_error(gross_test_g, pred, squared=False)
mse = mean_squared_error(gross_test_g, pred)
evr = explained_variance_score(gross_test_g, pred)
mae = mean_absolute_error(gross_test_g, pred)
res = f"Explained variance regression score: {evr}, RMSE: {rmse}, MSE: {mse}, MAE: {mae}"
with open('mae.txt', 'a+') as f:
f.write(str(mae) + '\n')
with open('rmse.txt', 'a+') as f:
f.write(str(rmse) + '\n')
with open('mse.txt', 'a+') as f:
f.write(str(mse) + '\n')
with open('evr.txt', 'a+') as f:
f.write(str(evr) + '\n')
with open('mae.txt') as f:
mae_val = [float(line) for line in f if line]
builds = list(range(1, len(mae_val) + 1))
with open('rmse.txt') as f:
rmse_val = [float(line) for line in f if line]
with open('mse.txt') as f:
mse_val = [float(line) for line in f if line]
with open('evr.txt') as f:
evr_val = [float(line) for line in f if line]
ax = plt.gca()
ax.set_title('Build')
mae_line = ax.plot(mae_val, color='blue', label="MAE")
rmse_line = ax.plot(rmse_val, color='green', label="RMSE")
mse_line = ax.plot(mse_val, color='red', label="MSE")
evr_line = ax.plot(evr_val, color='orange', label="EVR")
ax.legend(bbox_to_anchor=(0., 1.01, 1.0, .1), loc=3,
ncol=2, mode="expand", borderaxespad=0.)
plt.show()
plt.savefig('metrics.png')