add model training and dockerfile for model running
Some checks failed
s444018-training/pipeline/head There was a failure building this commit
Some checks failed
s444018-training/pipeline/head There was a failure building this commit
This commit is contained in:
parent
4860753e13
commit
ed0399be0c
@ -9,6 +9,9 @@ RUN pip3 install pandas
|
||||
RUN pip3 install sklearn
|
||||
RUN pip3 install numpy
|
||||
|
||||
RUN pip3 install matplotlib
|
||||
RUN pip3 install torch
|
||||
|
||||
ARG CUTOFF
|
||||
ARG KAGGLE_USERNAME
|
||||
ARG KAGGLE_KEY
|
||||
@ -19,8 +22,8 @@ ENV KAGGLE_KEY=${KAGGLE_KEY}
|
||||
WORKDIR /app
|
||||
|
||||
COPY lab2/download.sh .
|
||||
COPY lab2/main.py .
|
||||
COPY biblioteka_DL/dllib.py .
|
||||
|
||||
RUN chmod +x ./download.sh
|
||||
RUN ./download.sh
|
||||
RUN python3 ./main.py
|
||||
#CMD python3 ./dllib.py
|
||||
|
130
biblioteka_DL/dllib.py
Normal file
130
biblioteka_DL/dllib.py
Normal file
@ -0,0 +1,130 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
|
||||
def drop_relevant_columns(imbd_data):
|
||||
imbd_data.drop(columns=["Poster_Link"], inplace=True)
|
||||
imbd_data.drop(columns=["Overview"], inplace=True)
|
||||
imbd_data.drop(columns=["Certificate"], inplace=True)
|
||||
return imbd_data
|
||||
|
||||
|
||||
def lowercase_columns_names(imbd_data):
|
||||
imbd_data["Series_Title"] = imbd_data["Series_Title"].str.lower()
|
||||
imbd_data["Genre"] = imbd_data["Genre"].str.lower()
|
||||
imbd_data["Director"] = imbd_data["Director"].str.lower()
|
||||
imbd_data["Star1"] = imbd_data["Star1"].str.lower()
|
||||
imbd_data["Star2"] = imbd_data["Star2"].str.lower()
|
||||
imbd_data["Star3"] = imbd_data["Star3"].str.lower()
|
||||
imbd_data["Star4"] = imbd_data["Star4"].str.lower()
|
||||
return imbd_data
|
||||
|
||||
|
||||
def data_to_numeric(imbd_data):
|
||||
imbd_data = imbd_data.replace(np.nan, '', regex=True)
|
||||
imbd_data["Gross"] = imbd_data["Gross"].str.replace(',', '')
|
||||
imbd_data["Gross"] = pd.to_numeric(imbd_data["Gross"], errors='coerce')
|
||||
imbd_data["Runtime"] = imbd_data["Runtime"].str.replace(' min', '')
|
||||
imbd_data["Runtime"] = pd.to_numeric(imbd_data["Runtime"], errors='coerce')
|
||||
imbd_data["IMDB_Rating"] = pd.to_numeric(imbd_data["IMDB_Rating"], errors='coerce')
|
||||
imbd_data["Meta_score"] = pd.to_numeric(imbd_data["Meta_score"], errors='coerce')
|
||||
imbd_data["Released_Year"] = pd.to_numeric(imbd_data["Released_Year"], errors='coerce')
|
||||
imbd_data = imbd_data.dropna()
|
||||
imbd_data = imbd_data.reset_index()
|
||||
imbd_data.drop(columns=["index"], inplace=True)
|
||||
return imbd_data
|
||||
|
||||
|
||||
def create_train_dev_test(imbd_data):
|
||||
data_train, data_test = train_test_split(imbd_data, test_size=230, random_state=1, shuffle=True)
|
||||
data_test, data_dev = train_test_split(data_test, test_size=115, random_state=1, shuffle=True)
|
||||
data_test.to_csv("data_test.csv", encoding="utf-8", index=False)
|
||||
data_dev.to_csv("data_dev.csv", encoding="utf-8", index=False)
|
||||
data_train.to_csv("data_train.csv", encoding="utf-8", index=False)
|
||||
|
||||
|
||||
def normalize_gross(imbd_data):
|
||||
imbd_data[["Gross"]] = imbd_data[["Gross"]] / 10000000
|
||||
return imbd_data
|
||||
|
||||
|
||||
def prepare_dataset():
|
||||
df = pd.read_csv('../imdb_top_1000.csv')
|
||||
df = drop_relevant_columns(df)
|
||||
df_lowercase = lowercase_columns_names(df)
|
||||
df = data_to_numeric(df_lowercase)
|
||||
df = normalize_gross(df)
|
||||
return df
|
||||
|
||||
|
||||
class LinearRegressionModel(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(LinearRegressionModel, self).__init__()
|
||||
self.linear = torch.nn.Linear(1, 1) # One in and one out
|
||||
|
||||
def forward(self, x):
|
||||
y_pred = self.linear(x)
|
||||
return y_pred
|
||||
|
||||
|
||||
df = prepare_dataset()
|
||||
data_train, data_test = train_test_split(df, random_state=1, shuffle=True)
|
||||
|
||||
X_train = pd.DataFrame(data_train["Meta_score"], dtype=np.float64)
|
||||
X_train = X_train.to_numpy()
|
||||
|
||||
y_train = pd.DataFrame(data_train["Gross"], dtype=np.float64)
|
||||
y_train = y_train.to_numpy()
|
||||
|
||||
X_train = X_train.reshape(-1, 1)
|
||||
y_train = y_train.reshape(-1, 1)
|
||||
|
||||
X_train = torch.from_numpy(X_train.astype(np.float32)).view(-1, 1)
|
||||
y_train = torch.from_numpy(y_train.astype(np.float32)).view(-1, 1)
|
||||
|
||||
input_size = 1
|
||||
output_size = 1
|
||||
|
||||
model = nn.Linear(input_size, output_size)
|
||||
|
||||
learning_rate = 0.0001
|
||||
l = nn.MSELoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
|
||||
num_epochs = 1000
|
||||
for epoch in range(num_epochs):
|
||||
# forward feed
|
||||
y_pred = model(X_train.requires_grad_())
|
||||
|
||||
# calculate the loss
|
||||
loss = l(y_pred, y_train)
|
||||
|
||||
# backward propagation: calculate gradients
|
||||
loss.backward()
|
||||
|
||||
# update the weights
|
||||
optimizer.step()
|
||||
|
||||
# clear out the gradients from the last step loss.backward()
|
||||
optimizer.zero_grad()
|
||||
|
||||
if epoch % 100 == 0:
|
||||
print('epoch {}, loss {}'.format(epoch, loss.item()))
|
||||
|
||||
predicted = model(X_train).detach().numpy()
|
||||
|
||||
pred = pd.DataFrame(predicted)
|
||||
pred.to_csv('result.csv')
|
||||
|
||||
# plt.scatter(X_train.detach().numpy() , y_train.detach().numpy())
|
||||
# plt.plot(X_train.detach().numpy() , predicted , "red")
|
||||
# plt.xlabel("Meta_score")
|
||||
# plt.ylabel("Gross")
|
||||
# plt.show()
|
Loading…
Reference in New Issue
Block a user