diff --git a/Jenkinsfile_eval b/Jenkinsfile_eval new file mode 100644 index 0000000..87eacbe --- /dev/null +++ b/Jenkinsfile_eval @@ -0,0 +1,46 @@ +pipeline { + agent { + docker { + image 'docker_image' + } + } + parameters { + gitParameter branchFilter: 'origin/(.*)', defaultValue: 'master', name: 'BRANCH', type: 'PT_BRANCH' + buildSelector( + defaultSelector: lastSuccessful(), + description: 'Which build to use for copying artifacts', + name: 'BUILD_SELECTOR' + ) + } + stages { + stage('Script'){ + steps { + copyArtifacts filter: '*', projectName: 's444018-create-dataset', selector: buildParameter('BUILD_SELECTOR') + copyArtifacts filter: '*', projectName: 's444018-training/${BRANCH}', selector: buildParameter('BUILD_SELECTOR') + copyArtifacts filter: '*', projectName: 's444018-evaluation/master', selector: buildParameter('BUILD_SELECTOR'), optional: true + sh 'python3 ./biblioteka_DL/evaluate.py' + archiveArtifacts artifacts: 'mae.txt, rmse.txt, mse.txt, evr.txt, metrics.png', followSymlinks: false + script { + ACC = sh ( + script: 'tail -1 metrics.txt', + returnStdout: true + ).trim() + } + } + } + } + post { + success { + emailext body: "SUCCESS, ACC = ${ACC}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms' + } + failure { + emailext body: "FAILURE, ACC = ${ACC}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms' + } + unstable { + emailext body: "UNSTABLE, ACC = ${ACC}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms' + } + changed { + emailext body: "CHANGED, ACC = ${ACC}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms' + } + } +} diff --git a/biblioteka_DL/evaluate.py b/biblioteka_DL/evaluate.py new file mode 100644 index 0000000..34b6acd --- /dev/null +++ b/biblioteka_DL/evaluate.py @@ -0,0 +1,164 @@ +import sys +import torch +import torch.nn as nn +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +from sklearn.model_selection import train_test_split +from sklearn.metrics import accuracy_score, precision_recall_fscore_support, explained_variance_score, \ + mean_squared_error, mean_absolute_error + + +def drop_relevant_columns(imbd_data): + imbd_data.drop(columns=["Poster_Link"], inplace=True) + imbd_data.drop(columns=["Overview"], inplace=True) + imbd_data.drop(columns=["Certificate"], inplace=True) + return imbd_data + + +def lowercase_columns_names(imbd_data): + imbd_data["Series_Title"] = imbd_data["Series_Title"].str.lower() + imbd_data["Genre"] = imbd_data["Genre"].str.lower() + imbd_data["Director"] = imbd_data["Director"].str.lower() + imbd_data["Star1"] = imbd_data["Star1"].str.lower() + imbd_data["Star2"] = imbd_data["Star2"].str.lower() + imbd_data["Star3"] = imbd_data["Star3"].str.lower() + imbd_data["Star4"] = imbd_data["Star4"].str.lower() + return imbd_data + + +def data_to_numeric(imbd_data): + imbd_data = imbd_data.replace(np.nan, '', regex=True) + imbd_data["Gross"] = imbd_data["Gross"].str.replace(',', '') + imbd_data["Gross"] = pd.to_numeric(imbd_data["Gross"], errors='coerce') + imbd_data["Runtime"] = imbd_data["Runtime"].str.replace(' min', '') + imbd_data["Runtime"] = pd.to_numeric(imbd_data["Runtime"], errors='coerce') + imbd_data["IMDB_Rating"] = pd.to_numeric(imbd_data["IMDB_Rating"], errors='coerce') + imbd_data["Meta_score"] = pd.to_numeric(imbd_data["Meta_score"], errors='coerce') + imbd_data["Released_Year"] = pd.to_numeric(imbd_data["Released_Year"], errors='coerce') + imbd_data = imbd_data.dropna() + imbd_data = imbd_data.reset_index() + imbd_data.drop(columns=["index"], inplace=True) + return imbd_data + + +def create_train_dev_test(imbd_data): + data_train, data_test = train_test_split(imbd_data, test_size=230, random_state=1, shuffle=True) + data_test, data_dev = train_test_split(data_test, test_size=115, random_state=1, shuffle=True) + data_test.to_csv("data_test.csv", encoding="utf-8", index=False) + data_dev.to_csv("data_dev.csv", encoding="utf-8", index=False) + data_train.to_csv("data_train.csv", encoding="utf-8", index=False) + + +def normalize_gross(imbd_data): + imbd_data[["Gross"]] = imbd_data[["Gross"]] / 10000000 + return imbd_data + + +def prepare_dataset(): + df = pd.read_csv('biblioteka_DL/imdb_top_1000.csv') + df = drop_relevant_columns(df) + df_lowercase = lowercase_columns_names(df) + df = data_to_numeric(df_lowercase) + df = normalize_gross(df) + return df + + +class LinearRegressionModel(torch.nn.Module): + + def __init__(self): + super(LinearRegressionModel, self).__init__() + self.linear = torch.nn.Linear(1, 1) # One in and one out + + def forward(self, x): + y_pred = self.linear(x) + return y_pred + + +df = prepare_dataset() +data_train, data_test = train_test_split(df, random_state=1, shuffle=True) + +X_train = pd.DataFrame(data_train["Meta_score"], dtype=np.float64) +X_train = X_train.to_numpy() + +y_train = pd.DataFrame(data_train["Gross"], dtype=np.float64) +y_train = y_train.to_numpy() + +X_train = X_train.reshape(-1, 1) +y_train = y_train.reshape(-1, 1) + +X_train = torch.from_numpy(X_train.astype(np.float32)).view(-1, 1) +y_train = torch.from_numpy(y_train.astype(np.float32)).view(-1, 1) + +input_size = 1 +output_size = 1 + +model = torch.load("model.pkl") + +X_test = pd.DataFrame(data_test["Meta_score"], dtype=np.float64) +X_test = X_test.to_numpy() +X_test = X_test.reshape(-1, 1) +X_test = torch.from_numpy(X_test.astype(np.float32)).view(-1, 1) + +predicted = model(X_test).detach().numpy() + +gross_test_g = pd.DataFrame(data_test["Gross"], dtype=np.float64) +gross_test_g = gross_test_g.to_numpy() +gross_test_g = gross_test_g.reshape(-1, 1) + +pred = pd.DataFrame(predicted) + +predicted = [] +expected = [] + +for i in range(0, len(X_test)): + predicted.append(np.argmax(model(X_test[i]).detach().numpy(), axis=0)) + expected.append(gross_test_g[i]) + +for i in range(0, len(expected)): + expected[i] = expected[i][0] + +rmse = mean_squared_error(gross_test_g, pred, squared=False) +mse = mean_squared_error(gross_test_g, pred) +evr = explained_variance_score(gross_test_g, pred) +mae = mean_absolute_error(gross_test_g, pred) + +res = f"Explained variance regression score: {evr}, RMSE: {rmse}, MSE: {mse}, MAE: {mae}" + +with open('mae.txt', 'a+') as f: + f.write(str(mae) + '\n') + +with open('rmse.txt', 'a+') as f: + f.write(str(rmse) + '\n') + +with open('mse.txt', 'a+') as f: + f.write(str(mse) + '\n') + +with open('evr.txt', 'a+') as f: + f.write(str(evr) + '\n') + +with open('mae.txt') as f: + mae_val = [float(line) for line in f if line] + builds = list(range(1, len(mae_val) + 1)) + +with open('rmse.txt') as f: + rmse_val = [float(line) for line in f if line] + +with open('mse.txt') as f: + mse_val = [float(line) for line in f if line] + +with open('evr.txt') as f: + evr_val = [float(line) for line in f if line] + + +ax = plt.gca() +ax.set_title('Build') + +mae_line = ax.plot(mae_val, color='blue', label="MAE") +rmse_line = ax.plot(rmse_val, color='green', label="RMSE") +mse_line = ax.plot(mse_val, color='red', label="MSE") +evr_line = ax.plot(evr_val, color='orange', label="EVR") +ax.legend(bbox_to_anchor=(0., 1.01, 1.0, .1), loc=3, + ncol=2, mode="expand", borderaxespad=0.) +plt.show() +plt.savefig('metrics.png')