This commit is contained in:
Szymon Parafiński 2022-05-11 00:05:28 +02:00
parent 6916e0e54b
commit f4414f094d
6 changed files with 594879 additions and 43 deletions

5272
dev-0/in.tsv Normal file

File diff suppressed because one or more lines are too long

5272
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

68
run.py
View File

@ -1,48 +1,30 @@
from naivebayes import NaiveBayesTextClassifier
from spacy.lang.en.stop_words import STOP_WORDS as en_stop
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
naive_bayes = NaiveBayesTextClassifier(
categories=[0, 1],
stop_words=en_stop
)
with open('train/in.tsv', 'r', encoding='utf-8') as f:
x_train = pd.DataFrame([line.strip().split('\t') for line in f.readlines()], columns=['text', 'text_id'])
with open('dev-0/in.tsv', 'r', encoding='utf-8') as f:
x_dev = pd.DataFrame([line.strip().split('\t') for line in f.readlines()], columns=['text', 'text_id'])
with open('train/in.tsv', 'r', encoding='utf-8') as f:
x_test = pd.DataFrame([line.strip().split('\t') for line in f.readlines()], columns=['text', 'text_id'])
with open('train/in.tsv', 'r', encoding='utf8') as f:
train = f.readlines()
y_train = pd.read_csv('train/expected.tsv', sep='\t', names=['paranormal'], encoding='utf-8')
tfidf_vectorizer = TfidfVectorizer(max_df=0.95, max_features=500)
x_train_vectorized = tfidf_vectorizer.fit_transform(x_train['text'].values)
with open('train/expected.tsv', 'r', encoding='utf8') as f:
expected = f.readlines()
mnb_model = MultinomialNB().fit(x_train_vectorized, y_train.values.ravel())
for i in range(0, len(expected)):
expected[i] = int(expected[i])
# Dev data
x_dev_prepared = tfidf_vectorizer.transform(x_dev['text'].values)
predictions = mnb_model.predict(x_dev_prepared)
with open('dev-0/out.tsv', 'w') as f:
for pred in predictions:
f.write(f'{pred}\n')
step = 20000
start, end = 0, step
for i in range(0, len(expected), step):
naive_bayes.train(train[start:end], expected[start:end])
if start + step < len(expected):
start += step
else:
start = 0
end = min(start + step, len(expected))
with open('dev-0/in.tsv', 'r', encoding='utf8') as f:
dev_0 = f.readlines()
predicted_dev_0 = naive_bayes.classify(dev_0)
with open('dev-0/out.tsv', 'wt') as f:
for p in predicted_dev_0:
f.write(str(p) + '\n')
f.close()
with open('test-A/in.tsv', 'r', encoding='utf8') as f:
test_A = f.readlines()
predicted_test_A = naive_bayes.classify(test_A)
with open('test-A/out.tsv', 'wt') as f:
for p in predicted_test_A:
f.write(str(p) + '\n')
f.close()
# Test data
x_test_vectorized = tfidf_vectorizer.transform(x_test['text'].values)
predictions = mnb_model.predict(x_test_vectorized)
with open('test-A/out.tsv', 'w') as f:
for pred in predictions:
f.write(f'{pred}\n')

5152
test-A/in.tsv Normal file

File diff suppressed because one or more lines are too long

289579
test-A/out.tsv Normal file

File diff suppressed because it is too large Load Diff

289579
train/in.tsv Normal file

File diff suppressed because one or more lines are too long