48 lines
1.2 KiB
Python
48 lines
1.2 KiB
Python
from naivebayes import NaiveBayesTextClassifier
|
|
from spacy.lang.en.stop_words import STOP_WORDS as en_stop
|
|
|
|
naive_bayes = NaiveBayesTextClassifier(
|
|
categories=[0, 1],
|
|
stop_words=en_stop
|
|
)
|
|
|
|
with open('train/in.tsv', 'r', encoding='utf8') as f:
|
|
train = f.readlines()
|
|
|
|
with open('train/expected.tsv', 'r', encoding='utf8') as f:
|
|
expected = f.readlines()
|
|
|
|
for i in range(0, len(expected)):
|
|
expected[i] = int(expected[i])
|
|
|
|
step = 20000
|
|
start, end = 0, step
|
|
|
|
for i in range(0, len(expected), step):
|
|
naive_bayes.train(train[start:end], expected[start:end])
|
|
if start + step < len(expected):
|
|
start += step
|
|
else:
|
|
start = 0
|
|
end = min(start + step, len(expected))
|
|
|
|
|
|
with open('dev-0/in.tsv', 'r', encoding='utf8') as f:
|
|
dev_0 = f.readlines()
|
|
|
|
predicted_dev_0 = naive_bayes.classify(dev_0)
|
|
|
|
with open('dev-0/out.tsv', 'wt') as f:
|
|
for p in predicted_dev_0:
|
|
f.write(str(p) + '\n')
|
|
f.close()
|
|
|
|
with open('test-A/in.tsv', 'r', encoding='utf8') as f:
|
|
test_A = f.readlines()
|
|
|
|
predicted_test_A = naive_bayes.classify(test_A)
|
|
|
|
with open('test-A/out.tsv', 'wt') as f:
|
|
for p in predicted_test_A:
|
|
f.write(str(p) + '\n')
|
|
f.close() |