paranormal-or-skeptic-ISI-p.../run.py
Szymon Parafiński 6916e0e54b solution
2022-05-10 23:53:49 +02:00

48 lines
1.2 KiB
Python

from naivebayes import NaiveBayesTextClassifier
from spacy.lang.en.stop_words import STOP_WORDS as en_stop
naive_bayes = NaiveBayesTextClassifier(
categories=[0, 1],
stop_words=en_stop
)
with open('train/in.tsv', 'r', encoding='utf8') as f:
train = f.readlines()
with open('train/expected.tsv', 'r', encoding='utf8') as f:
expected = f.readlines()
for i in range(0, len(expected)):
expected[i] = int(expected[i])
step = 20000
start, end = 0, step
for i in range(0, len(expected), step):
naive_bayes.train(train[start:end], expected[start:end])
if start + step < len(expected):
start += step
else:
start = 0
end = min(start + step, len(expected))
with open('dev-0/in.tsv', 'r', encoding='utf8') as f:
dev_0 = f.readlines()
predicted_dev_0 = naive_bayes.classify(dev_0)
with open('dev-0/out.tsv', 'wt') as f:
for p in predicted_dev_0:
f.write(str(p) + '\n')
f.close()
with open('test-A/in.tsv', 'r', encoding='utf8') as f:
test_A = f.readlines()
predicted_test_A = naive_bayes.classify(test_A)
with open('test-A/out.tsv', 'wt') as f:
for p in predicted_test_A:
f.write(str(p) + '\n')
f.close()