paranormal-or-skeptic-ISI-p.../run.py
Szymon Parafiński e6fe79908d better solution
2022-05-11 00:20:34 +02:00

51 lines
1.5 KiB
Python

import lzma
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score
def get_data(file_name, data_type):
lines = []
if data_type == "tsv":
with open(file_name, encoding="utf-8") as file:
for line in file.readlines():
lines.append(int(line.replace("\n", "")))
else:
with lzma.open(f"{file_name}.{data_type}") as file:
for line in file.readlines():
lines.append(line.rstrip().decode("utf-8"))
return lines
def bayes(train):
x_data = get_data(f"{train}/in.tsv", "xz")
Y_data = get_data(f"{train}/expected.tsv", "tsv")
vectorizer = TfidfVectorizer(stop_words="english")
X_data = vectorizer.fit_transform(x_data)
clf = MultinomialNB()
y_pred = clf.fit(X_data, Y_data)
for predct in ["test-A", "dev-0"]:
Y_test = get_data(f"{predct}/in.tsv", "xz")
y_prediction = y_pred.predict(vectorizer.transform(Y_test))
with open(f"{predct}\out.tsv", "w", encoding="UTF-8") as file_out:
for single_pred in y_prediction:
file_out.writelines(f"{str(single_pred)}\n")
bayes("train")
# y_true = []
# with open("dev-0/expected.tsv", encoding='utf-8') as file:
# for line in file.readlines():
# y_true.append(line)
# y_pred = []
# with open("dev-0/out.tsv", encoding='utf-8') as file:
# for line in file.readlines():
# y_pred.append(line)
# print(accuracy_score(y_true, y_pred))