forked from kubapok/retroc2
50 lines
1.2 KiB
Python
50 lines
1.2 KiB
Python
import lzma
|
|
import math
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.linear_model import LinearRegression
|
|
from sklearn.pipeline import make_pipeline
|
|
from sklearn.metrics import mean_squared_error
|
|
import pandas as pd
|
|
|
|
X_train = []
|
|
Y_train = []
|
|
|
|
stop = 0
|
|
|
|
with lzma.open('train/train.tsv.xz', 'rt', encoding="utf-8") as f:
|
|
data = pd.read_csv(f, sep='\t', names=['Begin', 'End', 'Title', 'Publisher', 'Text'])
|
|
|
|
|
|
data = data[['Text', 'Begin']]
|
|
data = data[0:50000]
|
|
|
|
X = data['Text']
|
|
y = data['Begin']
|
|
|
|
model = make_pipeline(TfidfVectorizer(), LinearRegression())
|
|
model.fit(X, y)
|
|
|
|
def readFile(filename):
|
|
X_dev = []
|
|
with open(filename, 'r', encoding="utf-8") as dev_in:
|
|
for line in dev_in:
|
|
text = line.split("\t")[0].strip()
|
|
X_dev.append(text)
|
|
return X_dev
|
|
|
|
def writePred(filename, predictions):
|
|
with open(filename, "w") as out_file:
|
|
for pred in predictions:
|
|
out_file.write(str(pred) + "\n")
|
|
|
|
x = readFile('dev-0/in.tsv')
|
|
pred = model.predict(x)
|
|
writePred('dev-0/out.tsv',pred)
|
|
|
|
x = readFile('dev-1/in.tsv')
|
|
pred = model.predict(x)
|
|
writePred('dev-1/out.tsv',pred)
|
|
|
|
x = readFile('test-A/in.tsv')
|
|
pred = model.predict(x)
|
|
writePred('test-A/out.tsv',pred) |