95 lines
2.9 KiB
Python
95 lines
2.9 KiB
Python
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
from skimage import data
|
||
|
from skimage.color import rgb2gray
|
||
|
from skimage import img_as_ubyte, img_as_float
|
||
|
from ipywidgets import interact, interactive, interact_manual
|
||
|
from numpy.linalg import svd
|
||
|
import ipywidgets as widgets
|
||
|
|
||
|
gray_images = {
|
||
|
"cat": rgb2gray(img_as_float(data.chelsea())),
|
||
|
"astro": rgb2gray(img_as_float(data.astronaut())),
|
||
|
"camera": data.camera(),
|
||
|
"coin": data.coins(),
|
||
|
"clock": data.clock(),
|
||
|
"blobs": data.binary_blobs(),
|
||
|
"coffee": rgb2gray(img_as_float(data.coffee()))
|
||
|
}
|
||
|
|
||
|
|
||
|
def mc_pi(ntrials):
|
||
|
"""
|
||
|
calculate the value of pi using montecarlo method and visualize the process
|
||
|
|
||
|
"""
|
||
|
x = np.random.random(ntrials)
|
||
|
y = np.random.random(ntrials)
|
||
|
# masking
|
||
|
inside_circle = x ** 2 + y ** 2 < 1
|
||
|
unit_circle_x = np.linspace(0, 1, 100)
|
||
|
unit_circle = [unit_circle_x, np.sqrt(1.0 - unit_circle_x ** 2)]
|
||
|
plt.plot(*unit_circle, color='black')
|
||
|
plt.scatter(x[inside_circle], y[inside_circle], marker='.', color='blue', s=1)
|
||
|
plt.scatter(x[~inside_circle], y[~inside_circle], marker='.', color='red', s=1)
|
||
|
plt.title("value of $\pi$=" + str(4.0 * np.sum(inside_circle) / float(ntrials)))
|
||
|
|
||
|
|
||
|
def compress_svd(image, k):
|
||
|
"""
|
||
|
Perform svd decomposition and truncated (using k singular values/vectors) reconstruction
|
||
|
returns
|
||
|
--------
|
||
|
reconstructed matrix reconst_matrix, array of singular values s
|
||
|
"""
|
||
|
U, s, V = svd(image, full_matrices=False)
|
||
|
reconst_matrix = np.dot(U[:, :k], np.dot(np.diag(s[:k]), V[:k, :]))
|
||
|
|
||
|
return reconst_matrix, s
|
||
|
|
||
|
|
||
|
def compress_show_gray_images(img_name, k):
|
||
|
"""
|
||
|
compresses gray scale images and display the reconstructed image.
|
||
|
Also displays a plot of singular values
|
||
|
"""
|
||
|
image = gray_images[img_name]
|
||
|
original_shape = image.shape
|
||
|
reconst_img, s = compress_svd(image, k)
|
||
|
fig, axes = plt.subplots(1, 2, figsize=(8, 5))
|
||
|
axes[0].plot(s)
|
||
|
compression_ratio = 100.0 * (k * (original_shape[0] + original_shape[1]) + k) / (
|
||
|
original_shape[0] * original_shape[1])
|
||
|
axes[1].set_title("compression ratio={:.2f}".format(compression_ratio) + "%")
|
||
|
axes[1].imshow(reconst_img, cmap='gray')
|
||
|
axes[1].axis('off')
|
||
|
fig.tight_layout()
|
||
|
|
||
|
|
||
|
def compute_k_max(img_name):
|
||
|
"""
|
||
|
utility function for calculating max value of the slider range
|
||
|
"""
|
||
|
img = gray_images[img_name]
|
||
|
m, n = img.shape
|
||
|
return m * n / (m + n + 1)
|
||
|
|
||
|
|
||
|
# set up the widgets
|
||
|
list_widget = widgets.Dropdown(options=list(gray_images.keys()))
|
||
|
int_slider_widget = widgets.IntSlider(min=1, max=compute_k_max('cat'))
|
||
|
|
||
|
|
||
|
def update_k_max(*args):
|
||
|
img_name = list_widget.value
|
||
|
int_slider_widget.max = compute_k_max(img_name)
|
||
|
|
||
|
|
||
|
list_widget.observe(update_k_max, 'value')
|
||
|
|
||
|
interact(compress_show_gray_images, img_name=list_widget, k=int_slider_widget)
|
||
|
|
||
|
mc_widget = interactive(mc_pi, ntrials=(1, 100000, 10))
|
||
|
mc_widget
|
||
|
|