final version
This commit is contained in:
parent
bddd173633
commit
1bde756004
152
jupyter.ipynb
152
jupyter.ipynb
@ -2,7 +2,7 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 163,
|
"execution_count": 1,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"is_executing": true,
|
"is_executing": true,
|
||||||
@ -14,7 +14,7 @@
|
|||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"/var/folders/tq/jq5nwbnj7v10tls99x99qbh40000gn/T/ipykernel_61525/3026179557.py:15: DeprecationWarning: Importing display from IPython.core.display is deprecated since IPython 7.14, please import from IPython display\n",
|
"/var/folders/tq/jq5nwbnj7v10tls99x99qbh40000gn/T/ipykernel_65173/3026179557.py:15: DeprecationWarning: Importing display from IPython.core.display is deprecated since IPython 7.14, please import from IPython display\n",
|
||||||
" from IPython.core.display import display, HTML\n"
|
" from IPython.core.display import display, HTML\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -52,7 +52,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 164,
|
"execution_count": 2,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -118,7 +118,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 284,
|
"execution_count": 3,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -127,8 +127,9 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"gray_images = {\n",
|
"gray_images = {\n",
|
||||||
" \"cat\":rgb2gray(img_as_float(data.chelsea()))/255.0,\n",
|
" \"cat\":rgb2gray(img_as_float(data.chelsea())),\n",
|
||||||
" \"astro\":rgb2gray(img_as_float(data.astronaut())),\n",
|
" \"astro\":rgb2gray(img_as_float(data.astronaut())),\n",
|
||||||
|
" \"line\": rgb2gray(img_as_float(Image.open('line.jpeg'))),\n",
|
||||||
" \"camera\":data.camera(),\n",
|
" \"camera\":data.camera(),\n",
|
||||||
" \"coin\": data.coins(),\n",
|
" \"coin\": data.coins(),\n",
|
||||||
" \"clock\":data.clock(),\n",
|
" \"clock\":data.clock(),\n",
|
||||||
@ -161,19 +162,41 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 304,
|
"execution_count": 4,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"ename": "IndexError",
|
"name": "stdout",
|
||||||
"evalue": "index 3 is out of bounds for axis 0 with size 3",
|
"output_type": "stream",
|
||||||
"output_type": "error",
|
"text": [
|
||||||
"traceback": [
|
"5\n",
|
||||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
"U: [[ 0. 0. 1. 0.]\n",
|
||||||
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
|
" [ 0. 1. 0. 0.]\n",
|
||||||
"Input \u001b[0;32mIn [304]\u001b[0m, in \u001b[0;36m<cell line: 77>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 75\u001b[0m U,s,V \u001b[38;5;241m=\u001b[39m calculate(np\u001b[38;5;241m.\u001b[39mtranspose(a))\n\u001b[1;32m 76\u001b[0m U1,s1,V1 \u001b[38;5;241m=\u001b[39m svd(a)\n\u001b[0;32m---> 77\u001b[0m U \u001b[38;5;241m=\u001b[39m \u001b[43mcheck_sign_U\u001b[49m\u001b[43m(\u001b[49m\u001b[43mU\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mU1\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 78\u001b[0m V \u001b[38;5;241m=\u001b[39m check_sign_V(V, V1)\n\u001b[1;32m 79\u001b[0m \u001b[38;5;28mprint\u001b[39m(V\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m])\n",
|
" [ 0. 0. 0. -1.]\n",
|
||||||
"Input \u001b[0;32mIn [304]\u001b[0m, in \u001b[0;36mcheck_sign_U\u001b[0;34m(U, builtin)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m0\u001b[39m,builtin\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m]):\n\u001b[1;32m 62\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m j \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m0\u001b[39m,builtin\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m]):\n\u001b[0;32m---> 63\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m builtin[j][i] \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m0.0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[43mU\u001b[49m\u001b[43m[\u001b[49m\u001b[43mj\u001b[49m\u001b[43m]\u001b[49m[i] \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0.0\u001b[39m:\n\u001b[1;32m 64\u001b[0m U[j][i] \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 65\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m builtin[j][i] \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0.0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m U[j][i] \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m0.0\u001b[39m:\n",
|
" [ 1. 0. 0. 0.]] \n",
|
||||||
"\u001b[0;31mIndexError\u001b[0m: index 3 is out of bounds for axis 0 with size 3"
|
" s: [4. 3. 2.23606798 0. ] \n",
|
||||||
|
" V: [[ 0. 1. 0. 0. 0. ]\n",
|
||||||
|
" [ 0. 0. 1. 0. 0. ]\n",
|
||||||
|
" [ 0.4472136 0. 0. 0. 0.89442719]\n",
|
||||||
|
" [ 0. 0. 0. 1. 0. ]\n",
|
||||||
|
" [-0.89442719 0. 0. 0. 0.4472136 ]] \n",
|
||||||
|
"\n",
|
||||||
|
"--------------------------------------\n",
|
||||||
|
"U1: [[ 0. 0. 1. 0.]\n",
|
||||||
|
" [ 0. 1. 0. 0.]\n",
|
||||||
|
" [ 0. 0. 0. -1.]\n",
|
||||||
|
" [ 1. 0. 0. 0.]] \n",
|
||||||
|
" s1: [4. 3. 2.23606798 0. ] \n",
|
||||||
|
" V1: [[-0. 1. 0. 0. 0. ]\n",
|
||||||
|
" [-0. 0. 1. 0. 0. ]\n",
|
||||||
|
" [ 0.4472136 0. 0. 0. 0.89442719]\n",
|
||||||
|
" [ 0. 0. 0. 1. 0. ]\n",
|
||||||
|
" [-0.89442719 0. 0. 0. 0.4472136 ]] \n",
|
||||||
|
"\n",
|
||||||
|
"reconst -------------- [[1. 0. 0. 0. 2.]\n",
|
||||||
|
" [0. 0. 3. 0. 0.]\n",
|
||||||
|
" [0. 0. 0. 0. 0.]\n",
|
||||||
|
" [0. 4. 0. 0. 0.]]\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
@ -183,13 +206,9 @@
|
|||||||
" m = A.shape[1]\n",
|
" m = A.shape[1]\n",
|
||||||
" S = np.zeros(n)\n",
|
" S = np.zeros(n)\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # finding eigenvectors with biggest eigenvalues of A*transpose(A)\n",
|
|
||||||
" helper = np.matmul(A, np.transpose(A))\n",
|
" helper = np.matmul(A, np.transpose(A))\n",
|
||||||
"# print(f'helper ---------- {helper}')\n",
|
|
||||||
" eigenvalues, eigenvectors = eig(helper)\n",
|
" eigenvalues, eigenvectors = eig(helper)\n",
|
||||||
"# print(eigenvalues)\n",
|
" \n",
|
||||||
"# print(eigenvectors)\n",
|
|
||||||
" # descending sort of all the eigenvectors according to their eigenvalues\n",
|
|
||||||
" index = eigenvalues.argsort()[::-1]\n",
|
" index = eigenvalues.argsort()[::-1]\n",
|
||||||
" eigenvalues = np.real(eigenvalues)\n",
|
" eigenvalues = np.real(eigenvalues)\n",
|
||||||
" eigenvectors = np.real(eigenvectors)\n",
|
" eigenvectors = np.real(eigenvectors)\n",
|
||||||
@ -197,21 +216,15 @@
|
|||||||
" eigenvectors = eigenvectors[:, index]\n",
|
" eigenvectors = eigenvectors[:, index]\n",
|
||||||
" U = eigenvectors\n",
|
" U = eigenvectors\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # same finding process for transpose(A)*A\n",
|
|
||||||
" helper2 = np.matmul(np.transpose(A), A)\n",
|
" helper2 = np.matmul(np.transpose(A), A)\n",
|
||||||
" eigenvalues2, eigenvectors2 = eig(helper2)\n",
|
" eigenvalues2, eigenvectors2 = eig(helper2)\n",
|
||||||
" # descending sort of all the eigenvectors according to their eigenvalues\n",
|
|
||||||
" index2 = eigenvalues2.argsort()[::-1]\n",
|
" index2 = eigenvalues2.argsort()[::-1]\n",
|
||||||
"# print(f'e2 ----------------- {np.real(eigenvalues2)}')\n",
|
|
||||||
" eigenvalues2 = np.real(eigenvalues2)\n",
|
" eigenvalues2 = np.real(eigenvalues2)\n",
|
||||||
" eigenvectors2 = np.real(eigenvectors2)\n",
|
" eigenvectors2 = np.real(eigenvectors2)\n",
|
||||||
" eigenvalues2 = eigenvalues2[index2]\n",
|
" eigenvalues2 = eigenvalues2[index2]\n",
|
||||||
" eigenvectors2 = eigenvectors2[:, index2]\n",
|
" eigenvectors2 = eigenvectors2[:, index2]\n",
|
||||||
"# print(eigenvalues2)\n",
|
|
||||||
"# print(eigenvectors2)\n",
|
|
||||||
" V = np.transpose(eigenvectors2)\n",
|
" V = np.transpose(eigenvectors2)\n",
|
||||||
" \n",
|
" \n",
|
||||||
" # S is a diagonal matrix that keeps square root of eigenvalues\n",
|
|
||||||
" j = 0\n",
|
" j = 0\n",
|
||||||
" for i in eigenvalues2:\n",
|
" for i in eigenvalues2:\n",
|
||||||
" if j == S.size:\n",
|
" if j == S.size:\n",
|
||||||
@ -220,39 +233,53 @@
|
|||||||
" S[j] = np.sqrt(i)\n",
|
" S[j] = np.sqrt(i)\n",
|
||||||
" j += 1\n",
|
" j += 1\n",
|
||||||
"\n",
|
"\n",
|
||||||
" # sorting S in descending order\n",
|
|
||||||
" S[::-1].sort()\n",
|
" S[::-1].sort()\n",
|
||||||
" # print_to_file(S)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
" return U, S, V\n",
|
" return U, S, V\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def check_sign_V(V, builtin):\n",
|
"def check_sign_V(V, builtin):\n",
|
||||||
|
" if builtin.shape[0] < builtin.shape[1]:\n",
|
||||||
" for i in range(0,builtin.shape[0]):\n",
|
" for i in range(0,builtin.shape[0]):\n",
|
||||||
" for j in range(0,builtin.shape[1]):\n",
|
" for j in range(0,builtin.shape[1]):\n",
|
||||||
" if builtin[j][i] < 0.0 and V[j][i] > 0.0:\n",
|
" if builtin[j][i] < 0.0 and V[j][i] > 0.0:\n",
|
||||||
" V[j][i] *= -1\n",
|
" V[j][i] *= -1\n",
|
||||||
" elif builtin[j][i] > 0.0 and V[j][i] < 0.0:\n",
|
" elif builtin[j][i] > 0.0 and V[j][i] < 0.0:\n",
|
||||||
" V[j][i] *= -1\n",
|
" V[j][i] *= -1\n",
|
||||||
|
" else:\n",
|
||||||
|
" for i in range(0,builtin.shape[0]):\n",
|
||||||
|
" for j in range(0,builtin.shape[1]):\n",
|
||||||
|
" if builtin[i][j] < 0.0 and V[i][j] > 0.0:\n",
|
||||||
|
" V[i][j] *= -1\n",
|
||||||
|
" elif builtin[i][j] > 0.0 and V[i][j] < 0.0:\n",
|
||||||
|
" V[i][j] *= -1\n",
|
||||||
"\n",
|
"\n",
|
||||||
" return V\n",
|
" return V\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"def check_sign_U(U, builtin):\n",
|
"def check_sign_U(U, builtin):\n",
|
||||||
|
" if builtin.shape[0] < builtin.shape[1]: \n",
|
||||||
" for i in range(0,builtin.shape[0]):\n",
|
" for i in range(0,builtin.shape[0]):\n",
|
||||||
" for j in range(0,builtin.shape[1]):\n",
|
" for j in range(0,builtin.shape[1]):\n",
|
||||||
" if builtin[j][i] < 0.0 and U[j][i] > 0.0:\n",
|
" if builtin[j][i] < 0.0 and U[j][i] > 0.0:\n",
|
||||||
" U[j][i] *= -1\n",
|
" U[j][i] *= -1\n",
|
||||||
" elif builtin[j][i] > 0.0 and U[j][i] < 0.0:\n",
|
" elif builtin[j][i] > 0.0 and U[j][i] < 0.0:\n",
|
||||||
" U[j][i] *= -1\n",
|
" U[j][i] *= -1\n",
|
||||||
|
" else:\n",
|
||||||
|
" for i in range(0,builtin.shape[0]):\n",
|
||||||
|
" for j in range(0,builtin.shape[1]):\n",
|
||||||
|
" if builtin[i][j] < 0.0 and U[i][j] > 0.0:\n",
|
||||||
|
" U[i][j] *= -1\n",
|
||||||
|
" elif builtin[j][j] > 0.0 and U[i][j] < 0.0:\n",
|
||||||
|
" U[i][j] *= -1\n",
|
||||||
"\n",
|
"\n",
|
||||||
" return U\n",
|
" return U\n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"a = np.array([[1,0, 2], \n",
|
"a = np.array([[1,0, 0, 0, 2], \n",
|
||||||
" [0, 0, 0],\n",
|
" [0, 0, 3, 0, 0],\n",
|
||||||
" [0, 0, 0],\n",
|
" [0, 0, 0, 0, 0],\n",
|
||||||
" [0, 4, 0]])\n",
|
" [0, 4, 0, 0, 0]])\n",
|
||||||
"U,s,V = calculate(np.transpose(a))\n",
|
"U,s,V = calculate(a)\n",
|
||||||
"U1,s1,V1 = svd(a)\n",
|
"U1,s1,V1 = svd(a)\n",
|
||||||
"U = check_sign_U(U, U1)\n",
|
"U = check_sign_U(U, U1)\n",
|
||||||
"V = check_sign_V(V, V1)\n",
|
"V = check_sign_V(V, V1)\n",
|
||||||
@ -267,7 +294,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 293,
|
"execution_count": 5,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -280,26 +307,10 @@
|
|||||||
" Wykonaj dekompozycję SVD, a następnie okrojoną rekonstrukcję (przy użyciu k wartości/wektorów osobliwych)\n",
|
" Wykonaj dekompozycję SVD, a następnie okrojoną rekonstrukcję (przy użyciu k wartości/wektorów osobliwych)\n",
|
||||||
" \"\"\"\n",
|
" \"\"\"\n",
|
||||||
" image = np.real(image)\n",
|
" image = np.real(image)\n",
|
||||||
" print(f'image ---------- {image}')\n",
|
|
||||||
" U,s,V = svd(image,full_matrices=False)\n",
|
" U,s,V = svd(image,full_matrices=False)\n",
|
||||||
" U1,s1,V1 = calculate(image)\n",
|
|
||||||
" U1 = np.real(U1)\n",
|
|
||||||
" s1 = np.real(s1)\n",
|
|
||||||
" V1 = np.real(V1)\n",
|
|
||||||
"# U1 = check_sign_U(U1, U)\n",
|
|
||||||
"# V1 = check_sign_V(V1, V)\n",
|
|
||||||
" print(U.shape, U1.shape)\n",
|
|
||||||
" print(V.shape, V1.shape)\n",
|
|
||||||
" print(s.shape, s1.shape)\n",
|
|
||||||
" reconst_matrix = np.dot(U[:,:k],np.dot(np.diag(s[:k]),V[:k,:]))\n",
|
" reconst_matrix = np.dot(U[:,:k],np.dot(np.diag(s[:k]),V[:k,:]))\n",
|
||||||
" S = np.zeros(n)\n",
|
|
||||||
" for i in range(0,k):\n",
|
|
||||||
" suma[:,:i] += np.dot(np.dot(s1[i],U1[:,:i]), V1[:,:i])\n",
|
|
||||||
" print(suma)\n",
|
|
||||||
" reconst_matrix2 = np.dot(np.dot(np.diag(s1[:k]),U1[:,:k]),V1[:,:k])\n",
|
|
||||||
" print(reconst_matrix, '============================================', reconst_matrix2)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
" return reconst_matrix2,s"
|
" return reconst_matrix,s"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -316,7 +327,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 294,
|
"execution_count": 6,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -355,7 +366,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 295,
|
"execution_count": 7,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -385,7 +396,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 296,
|
"execution_count": 8,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -406,7 +417,6 @@
|
|||||||
" print(f\"Input image dimensions. Width:{original_shape[1]} Height:{original_shape[0]}\")\n",
|
" print(f\"Input image dimensions. Width:{original_shape[1]} Height:{original_shape[0]}\")\n",
|
||||||
"\n",
|
"\n",
|
||||||
" U,s,V = svd(image,full_matrices=False)\n",
|
" U,s,V = svd(image,full_matrices=False)\n",
|
||||||
"# U,s,V = calculate(image)\n",
|
|
||||||
" print(f\"Shape of U matrix: {U[:,:k].shape}\")\n",
|
" print(f\"Shape of U matrix: {U[:,:k].shape}\")\n",
|
||||||
" print(f\"U MATRIX: {U[:,:k]}\")\n",
|
" print(f\"U MATRIX: {U[:,:k]}\")\n",
|
||||||
" print('*' * 100)\n",
|
" print('*' * 100)\n",
|
||||||
@ -419,7 +429,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 297,
|
"execution_count": 9,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -429,12 +439,12 @@
|
|||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "092923713cd74de2b08c173639aae9d4",
|
"model_id": "702fd8dcaa0c495d8944c5b0dd82892b",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
"interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'camera', 'coin', 'clock', 'te…"
|
"interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'line', 'camera', 'coin', 'clo…"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -446,7 +456,7 @@
|
|||||||
"<function __main__.print_matrices(img_name, k)>"
|
"<function __main__.print_matrices(img_name, k)>"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 297,
|
"execution_count": 9,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
@ -457,7 +467,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 298,
|
"execution_count": 10,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -468,12 +478,12 @@
|
|||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "95f52e9c633540678b6285ce25adaff0",
|
"model_id": "405c92f2998843498e9cd20675ba2b4e",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
"interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'camera', 'coin', 'clock', 'te…"
|
"interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'line', 'camera', 'coin', 'clo…"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -633,14 +643,13 @@
|
|||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
},
|
}
|
||||||
"scrolled": false
|
|
||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "9976c068c2cc40788cdce8bf0365c66a",
|
"model_id": "6d2c561f500d42be903e30933d3fe7d6",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
@ -678,7 +687,7 @@
|
|||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "24661e5fa1644a349470561f5d9b1324",
|
"model_id": "f4b99140de5d495580f6abaa20a04b4c",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
@ -786,7 +795,7 @@
|
|||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "3026b3e43b6c4921abd17c4cf37e9954",
|
"model_id": "6363d12d2fbe49518bf5735f6472a497",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
@ -814,7 +823,7 @@
|
|||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "a93634f89fdf459189067b59638f3021",
|
"model_id": "edd32a03e6184b15ae3283c8e24f2d3e",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
@ -829,13 +838,6 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"interact(compress_show_color_images_layer,img_name=list_widget,k=int_slider_widget);"
|
"interact(compress_show_color_images_layer,img_name=list_widget,k=int_slider_widget);"
|
||||||
]
|
]
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": []
|
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
Loading…
Reference in New Issue
Block a user