From 5ba553d36bc79bd5d1b3f6fc38f4d245a755552a Mon Sep 17 00:00:00 2001 From: Adam Wojdyla Date: Mon, 9 May 2022 14:18:40 +0200 Subject: [PATCH] print matrices --- jupyter.ipynb | 158 ++++++++++++++++++++++++++++++++++++++++---------- 1 file changed, 128 insertions(+), 30 deletions(-) diff --git a/jupyter.ipynb b/jupyter.ipynb index f6e29c0..feb02cc 100644 --- a/jupyter.ipynb +++ b/jupyter.ipynb @@ -74,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 22, "metadata": { "pycharm": { "name": "#%%\n" @@ -88,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 23, "metadata": { "pycharm": { "name": "#%%\n" @@ -102,7 +102,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 24, "metadata": { "pycharm": { "name": "#%%\n" @@ -143,7 +143,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 25, "metadata": { "pycharm": { "name": "#%%\n" @@ -153,7 +153,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e28202b168c9439a87a8e3a8369510bf", + "model_id": "62e9cd302c2a459bba91ee276347ef20", "version_major": 2, "version_minor": 0 }, @@ -221,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 26, "metadata": { "pycharm": { "name": "#%%\n" @@ -235,7 +235,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 27, "metadata": { "pycharm": { "name": "#%%\n" @@ -277,7 +277,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 28, "metadata": { "pycharm": { "name": "#%%\n" @@ -290,7 +290,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 29, "metadata": { "pycharm": { "name": "#%%\n" @@ -306,11 +306,8 @@ " reconstructed matrix reconst_matrix, array of singular values s\n", " \"\"\"\n", " U,s,V = svd(image,full_matrices=False)\n", - " print(f\"U MATRIX: {U}\")\n", - " print(f\"S MATRIX: {s}\")\n", - " print(f\"V MATRIX: {V}\")\n", " reconst_matrix = np.dot(U[:,:k],np.dot(np.diag(s[:k]),V[:k,:]))\n", - " \n", + "\n", " return reconst_matrix,s" ] }, @@ -328,7 +325,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 30, "metadata": { "pycharm": { "name": "#%%\n" @@ -369,7 +366,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 31, "metadata": { "pycharm": { "name": "#%%\n" @@ -400,7 +397,34 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 32, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "# Print matrices\n", + "def print_matrices(img_name, k):\n", + " image=gray_images[img_name]\n", + " original_shape = image.shape\n", + " print(f\"Input image dimensions. Width:{original_shape[1]} Height:{original_shape[0]}\")\n", + "\n", + " U,s,V = svd(image,full_matrices=False)\n", + " print(f\"Shape of U matrix: {U[:,:k].shape}\")\n", + " print(f\"U MATRIX: {U[:,:k]}\")\n", + " print('*' * 100)\n", + " print(f\"Shape of S matrix: {s[:k].shape}\")\n", + " print(f\"S MATRIX: {np.diag(s[:k])}\")\n", + " print('*' * 100)\n", + " print(f\"Shape of V matrix: {V[:k,:].shape}\")\n", + " print(f\"V MATRIX: {V[:k,:]}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, "metadata": { "pycharm": { "name": "#%%\n" @@ -410,7 +434,45 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2062e134cdf2460191f6c2c6b5ceb1f3", + "model_id": "69f9d84be21d4b09b9b7687b9ac5277c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'camera', 'coin', 'clock', 'bl…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "interact(print_matrices, img_name=list_widget, k=int_slider_widget)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "962ee74402d742d2aa9fac156d95ee88", "version_major": 2, "version_minor": 0 }, @@ -439,7 +501,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 35, "metadata": { "pycharm": { "name": "#%%\n" @@ -491,7 +553,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 36, "metadata": { "pycharm": { "name": "#%%\n" @@ -526,7 +588,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 37, "metadata": { "pycharm": { "name": "#%%\n" @@ -550,7 +612,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 38, "metadata": { "pycharm": { "name": "#%%\n" @@ -560,7 +622,45 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5668d9129d224376a65874a9c5d386a5", + "model_id": "cbd795b4af504c9998a5d9f0b41c0d47", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'coffee'), value='cat'), IntSl…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "interact(print_matrices, img_name=list_widget, k=int_slider_widget)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "42e07c36e033494a8c242ed336d6f2d8", "version_major": 2, "version_minor": 0 }, @@ -603,7 +703,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 40, "metadata": { "pycharm": { "name": "#%%\n" @@ -618,14 +718,14 @@ " image = color_images[img_name]\n", " original_shape = image.shape\n", " image_reconst_layers = [compress_svd(image[:,:,i],k)[0] for i in range(3)]\n", + " print(image_reconst_layers)\n", " image_reconst = np.zeros(image.shape)\n", " for i in range(3):\n", " image_reconst[:,:,i] = image_reconst_layers[i]\n", " \n", " compression_ratio =100.0*3* (k*(original_shape[0] + original_shape[1])+k)/(original_shape[0]*original_shape[1]*original_shape[2])\n", " plt.title(\"compression ratio={:.2f}\".format(compression_ratio)+\"%\")\n", - " \n", - " plt.imshow(image_reconst)" + " plt.imshow(image_reconst, vmin=0, vmax=255)\n" ] }, { @@ -641,7 +741,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 41, "metadata": { "pycharm": { "name": "#%%\n" @@ -665,7 +765,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 42, "metadata": { "pycharm": { "name": "#%%\n" @@ -675,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "525e57d2b7c443099612d9afc2b55f96", + "model_id": "a76ffdc4780549c8b0e5fef4db6d4f01", "version_major": 2, "version_minor": 0 }, @@ -695,7 +795,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, "pycharm": { "name": "#%%\n" } @@ -707,7 +806,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false, "pycharm": { "name": "#%%\n" }