Minor updates
This commit is contained in:
parent
929bf13185
commit
ebf9e510f2
136
jupyter.ipynb
136
jupyter.ipynb
@ -2,7 +2,7 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 18,
|
"execution_count": 11,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -13,7 +13,7 @@
|
|||||||
"name": "stderr",
|
"name": "stderr",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"/var/folders/tq/jq5nwbnj7v10tls99x99qbh40000gn/T/ipykernel_66956/17056051.py:11: DeprecationWarning: Importing display from IPython.core.display is deprecated since IPython 7.14, please import from IPython display\n",
|
"/var/folders/t3/dwnz0lh916ng4w7bzf0z56ym0000gn/T/ipykernel_43951/17056051.py:11: DeprecationWarning: Importing display from IPython.core.display is deprecated since IPython 7.14, please import from IPython display\n",
|
||||||
" from IPython.core.display import display, HTML\n"
|
" from IPython.core.display import display, HTML\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@ -47,7 +47,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 19,
|
"execution_count": 12,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -80,13 +80,17 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"Metodę SVD zastosujemy do kompresji obrazów. SVD dokonuje dekompozycji macierzy prostokątnej $M$ na trzy części.\n",
|
"Metodę SVD zastosujemy do kompresji obrazów. SVD dokonuje dekompozycji macierzy prostokątnej $M$ na trzy części.\n",
|
||||||
"$M=U\\Sigma V^T$ -\n",
|
"$M=U\\Sigma V^T$ -\n",
|
||||||
"- $U$ - macierz, w której kolumny są wektorami własnymi macierzy $MM^T$ (lewe wektory osobliwe - 'left singular vectors')\n",
|
"- $U$ - macierz, w której kolumny są wektorami własnymi macierzy $MM^T$ (lewe wektory osobliwe - 'left singular vectors'). Wektory te tworzą układ ortonormalny.\n",
|
||||||
"- $\\Sigma$ - macierz diagonalna, która na swojej diagonalii ma nieujemne wartości osobliwe (pierwiastki wartości własnych) macierzy $M^TM$ uporządkowane nierosnąco\n",
|
"- $\\Sigma$ - macierz diagonalna, która na swojej diagonalii ma nieujemne wartości osobliwe (szczególne), czyli pierwiastki wartości własnych macierzy $M^TM$ uporządkowane nierosnąco\n",
|
||||||
"- $V$ - macierz, w której kolumny są wektorami własnymi macierzy $M^TM$ (prawe wektory osobliwe - 'right singular vectors')\n",
|
"- $V$ - macierz, w której kolumny są wektorami własnymi macierzy $M^TM$ (prawe wektory osobliwe - 'right singular vectors'). Wektory te tworzą układ ortonormalny.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"SVD polega na rekonstrukcji oryginalnej macierzy jako kombinacji liniowej kilku macierzy rangi jeden. Macierz rangi jeden można wyrazić jako iloczyn zewnętrzny dwóch wektorów kolumnowych. \n",
|
"SVD polega na rekonstrukcji oryginalnej macierzy jako kombinacji liniowej kilku macierzy rangi jeden. Macierz rangi jeden można wyrazić jako iloczyn zewnętrzny dwóch wektorów kolumnowych. \n",
|
||||||
"\n",
|
"\n",
|
||||||
"$M=\\sigma_1u_1v_1^T+\\sigma_2u_2v_2^T+\\sigma_3u_3v_3^T+\\sigma_3u_3v_3^T+....$ . \n",
|
"$M=\\sigma_1u_1v_1^T+\\sigma_2u_2v_2^T+\\sigma_3u_3v_3^T+\\sigma_3u_3v_3^T+....$ .\n",
|
||||||
|
"\n",
|
||||||
|
"$rank M=r$ .\n",
|
||||||
|
"$M=\\sum_{i=1}^{r} \\sigma_iu_iv_i^T$\n",
|
||||||
|
"\n",
|
||||||
"Macierz o randze r będzie miała r takich wyrazów.\n",
|
"Macierz o randze r będzie miała r takich wyrazów.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Tutaj $\\sigma_1,\\sigma_2,\\sigma_3 ...$ są wartościami osobliwymi. $u_1,u_2,u_3 ...$ i $v_1,v_2,v_3 ...$ są kolejnymi kolumnami (wektorami własnymi) z macierzy U i V.\n",
|
"Tutaj $\\sigma_1,\\sigma_2,\\sigma_3 ...$ są wartościami osobliwymi. $u_1,u_2,u_3 ...$ i $v_1,v_2,v_3 ...$ są kolejnymi kolumnami (wektorami własnymi) z macierzy U i V.\n",
|
||||||
@ -109,7 +113,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 20,
|
"execution_count": 13,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -150,7 +154,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 21,
|
"execution_count": 14,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -185,7 +189,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 22,
|
"execution_count": 15,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -223,7 +227,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 23,
|
"execution_count": 18,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -244,15 +248,17 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"list_widget = widgets.Dropdown(options=list(gray_images.keys()))\n",
|
"list_widget = widgets.Dropdown(options=list(gray_images.keys()))\n",
|
||||||
"int_slider_widget = widgets.IntSlider(min=1,max=compute_k_max('cat'))\n",
|
"int_slider_widget = widgets.IntSlider(min=1,max=compute_k_max('cat'))\n",
|
||||||
|
"\n",
|
||||||
"def update_k_max(*args):\n",
|
"def update_k_max(*args):\n",
|
||||||
" img_name=list_widget.value\n",
|
" img_name=list_widget.value\n",
|
||||||
" int_slider_widget.max = compute_k_max(img_name)\n",
|
" int_slider_widget.max = compute_k_max(img_name)\n",
|
||||||
|
"\n",
|
||||||
"list_widget.observe(update_k_max,'value')\n"
|
"list_widget.observe(update_k_max,'value')\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 24,
|
"execution_count": 33,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -279,7 +285,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 25,
|
"execution_count": 34,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -289,7 +295,7 @@
|
|||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "3909141856c04409b28f9d02306ef5a6",
|
"model_id": "93aa562a15a44f30bb5fda5ee40fbf5f",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
@ -306,7 +312,7 @@
|
|||||||
"<function __main__.print_matrices(img_name, k)>"
|
"<function __main__.print_matrices(img_name, k)>"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 25,
|
"execution_count": 34,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
@ -317,7 +323,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 26,
|
"execution_count": 36,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -327,7 +333,7 @@
|
|||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
"application/vnd.jupyter.widget-view+json": {
|
||||||
"model_id": "7ca89c134f914dc9bcd4372a352eae5a",
|
"model_id": "bce351d98f7b471eaebc4e9a02d4396b",
|
||||||
"version_major": 2,
|
"version_major": 2,
|
||||||
"version_minor": 0
|
"version_minor": 0
|
||||||
},
|
},
|
||||||
@ -356,7 +362,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 27,
|
"execution_count": 37,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -411,7 +417,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 28,
|
"execution_count": null,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -446,7 +452,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 29,
|
"execution_count": null,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -470,66 +476,26 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 30,
|
"execution_count": null,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
|
||||||
"model_id": "de4cb84649574a71b1f36d77a7f6e893",
|
|
||||||
"version_major": 2,
|
|
||||||
"version_minor": 0
|
|
||||||
},
|
|
||||||
"text/plain": [
|
|
||||||
"interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'coffee', 'koala', 'orange'), …"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/plain": [
|
|
||||||
"<function __main__.print_matrices(img_name, k)>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"execution_count": 30,
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "execute_result"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"interact(print_matrices, img_name=list_widget, k=int_slider_widget)"
|
"interact(print_matrices, img_name=list_widget, k=int_slider_widget)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 31,
|
"execution_count": null,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
|
||||||
"model_id": "be1b04fae0ac4bd4916d48fc5b6eb7d6",
|
|
||||||
"version_major": 2,
|
|
||||||
"version_minor": 0
|
|
||||||
},
|
|
||||||
"text/plain": [
|
|
||||||
"interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'coffee', 'koala', 'orange'), …"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"interact(compress_show_color_images_reshape,img_name=list_widget,k=int_slider_widget);"
|
"interact(compress_show_color_images_reshape,img_name=list_widget,k=int_slider_widget);"
|
||||||
]
|
]
|
||||||
@ -558,7 +524,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 32,
|
"execution_count": null,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -596,7 +562,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 33,
|
"execution_count": null,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
@ -620,28 +586,13 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 34,
|
"execution_count": null,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"pycharm": {
|
"pycharm": {
|
||||||
"name": "#%%\n"
|
"name": "#%%\n"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"application/vnd.jupyter.widget-view+json": {
|
|
||||||
"model_id": "25bd4e6560f841569923087e4eae6e8c",
|
|
||||||
"version_major": 2,
|
|
||||||
"version_minor": 0
|
|
||||||
},
|
|
||||||
"text/plain": [
|
|
||||||
"interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'coffee', 'koala', 'orange'), …"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"interact(compress_show_color_images_layer,img_name=list_widget,k=int_slider_widget);"
|
"interact(compress_show_color_images_layer,img_name=list_widget,k=int_slider_widget);"
|
||||||
]
|
]
|
||||||
@ -649,7 +600,22 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"metadata": {},
|
"metadata": {
|
||||||
|
"pycharm": {
|
||||||
|
"name": "#%%\n"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"pycharm": {
|
||||||
|
"name": "#%%\n"
|
||||||
|
}
|
||||||
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": []
|
"source": []
|
||||||
}
|
}
|
||||||
@ -675,4 +641,4 @@
|
|||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
"nbformat_minor": 1
|
"nbformat_minor": 1
|
||||||
}
|
}
|
Loading…
Reference in New Issue
Block a user