Compare commits

...

11 Commits

Author SHA1 Message Date
1da3b022fb update jupyter notebook 2022-06-21 15:37:48 +02:00
44317fb0e9 update table in k-medoids (iris) 2022-06-20 18:39:28 +02:00
818732f1b3 merge 2022-06-20 11:07:41 +02:00
5f8bed4336 add k-means, k-medoids + PCA, wine dataset, glass dataset 2022-06-17 19:53:34 +02:00
Adam Wojdyla
8aca985483 KMedoids visualization 2022-06-15 22:16:06 +02:00
b0decebad3 add dataframe 2022-06-15 21:21:25 +02:00
96c3f8bb0a add jupyter notebook kmedoids and iris.csv 2022-06-07 17:23:39 +02:00
Szymon Parafiński
ff9b949305 remove line photo 2022-05-18 14:12:24 +02:00
Szymon Parafiński
2d6dd73960 minor improvments 2022-05-18 14:09:41 +02:00
1bde756004 final version 2022-05-18 12:44:39 +02:00
bddd173633 test 2022-05-18 11:54:15 +02:00
7 changed files with 5143 additions and 169 deletions

BIN
algorithm.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

215
glass.csv Normal file
View File

@ -0,0 +1,215 @@
RI,Na,Mg,Al,Si,K,Ca,Ba,Fe,Type
1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0,0,1
1.51761,13.89,3.6,1.36,72.73,0.48,7.83,0,0,1
1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0,0,1
1.51766,13.21,3.69,1.29,72.61,0.57,8.22,0,0,1
1.51742,13.27,3.62,1.24,73.08,0.55,8.07,0,0,1
1.51596,12.79,3.61,1.62,72.97,0.64,8.07,0,0.26,1
1.51743,13.3,3.6,1.14,73.09,0.58,8.17,0,0,1
1.51756,13.15,3.61,1.05,73.24,0.57,8.24,0,0,1
1.51918,14.04,3.58,1.37,72.08,0.56,8.3,0,0,1
1.51755,13,3.6,1.36,72.99,0.57,8.4,0,0.11,1
1.51571,12.72,3.46,1.56,73.2,0.67,8.09,0,0.24,1
1.51763,12.8,3.66,1.27,73.01,0.6,8.56,0,0,1
1.51589,12.88,3.43,1.4,73.28,0.69,8.05,0,0.24,1
1.51748,12.86,3.56,1.27,73.21,0.54,8.38,0,0.17,1
1.51763,12.61,3.59,1.31,73.29,0.58,8.5,0,0,1
1.51761,12.81,3.54,1.23,73.24,0.58,8.39,0,0,1
1.51784,12.68,3.67,1.16,73.11,0.61,8.7,0,0,1
1.52196,14.36,3.85,0.89,71.36,0.15,9.15,0,0,1
1.51911,13.9,3.73,1.18,72.12,0.06,8.89,0,0,1
1.51735,13.02,3.54,1.69,72.73,0.54,8.44,0,0.07,1
1.5175,12.82,3.55,1.49,72.75,0.54,8.52,0,0.19,1
1.51966,14.77,3.75,0.29,72.02,0.03,9,0,0,1
1.51736,12.78,3.62,1.29,72.79,0.59,8.7,0,0,1
1.51751,12.81,3.57,1.35,73.02,0.62,8.59,0,0,1
1.5172,13.38,3.5,1.15,72.85,0.5,8.43,0,0,1
1.51764,12.98,3.54,1.21,73,0.65,8.53,0,0,1
1.51793,13.21,3.48,1.41,72.64,0.59,8.43,0,0,1
1.51721,12.87,3.48,1.33,73.04,0.56,8.43,0,0,1
1.51768,12.56,3.52,1.43,73.15,0.57,8.54,0,0,1
1.51784,13.08,3.49,1.28,72.86,0.6,8.49,0,0,1
1.51768,12.65,3.56,1.3,73.08,0.61,8.69,0,0.14,1
1.51747,12.84,3.5,1.14,73.27,0.56,8.55,0,0,1
1.51775,12.85,3.48,1.23,72.97,0.61,8.56,0.09,0.22,1
1.51753,12.57,3.47,1.38,73.39,0.6,8.55,0,0.06,1
1.51783,12.69,3.54,1.34,72.95,0.57,8.75,0,0,1
1.51567,13.29,3.45,1.21,72.74,0.56,8.57,0,0,1
1.51909,13.89,3.53,1.32,71.81,0.51,8.78,0.11,0,1
1.51797,12.74,3.48,1.35,72.96,0.64,8.68,0,0,1
1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,1
1.52213,14.21,3.82,0.47,71.77,0.11,9.57,0,0,1
1.51793,12.79,3.5,1.12,73.03,0.64,8.77,0,0,1
1.51755,12.71,3.42,1.2,73.2,0.59,8.64,0,0,1
1.51779,13.21,3.39,1.33,72.76,0.59,8.59,0,0,1
1.5221,13.73,3.84,0.72,71.76,0.17,9.74,0,0,1
1.51786,12.73,3.43,1.19,72.95,0.62,8.76,0,0.3,1
1.519,13.49,3.48,1.35,71.95,0.55,9,0,0,1
1.51869,13.19,3.37,1.18,72.72,0.57,8.83,0,0.16,1
1.52667,13.99,3.7,0.71,71.57,0.02,9.82,0,0.1,1
1.52223,13.21,3.77,0.79,71.99,0.13,10.02,0,0,1
1.51898,13.58,3.35,1.23,72.08,0.59,8.91,0,0,1
1.5232,13.72,3.72,0.51,71.75,0.09,10.06,0,0.16,1
1.51926,13.2,3.33,1.28,72.36,0.6,9.14,0,0.11,1
1.51808,13.43,2.87,1.19,72.84,0.55,9.03,0,0,1
1.51837,13.14,2.84,1.28,72.85,0.55,9.07,0,0,1
1.51778,13.21,2.81,1.29,72.98,0.51,9.02,0,0.09,1
1.51769,12.45,2.71,1.29,73.7,0.56,9.06,0,0.24,1
1.51215,12.99,3.47,1.12,72.98,0.62,8.35,0,0.31,1
1.51824,12.87,3.48,1.29,72.95,0.6,8.43,0,0,1
1.51754,13.48,3.74,1.17,72.99,0.59,8.03,0,0,1
1.51754,13.39,3.66,1.19,72.79,0.57,8.27,0,0.11,1
1.51905,13.6,3.62,1.11,72.64,0.14,8.76,0,0,1
1.51977,13.81,3.58,1.32,71.72,0.12,8.67,0.69,0,1
1.52172,13.51,3.86,0.88,71.79,0.23,9.54,0,0.11,1
1.52227,14.17,3.81,0.78,71.35,0,9.69,0,0,1
1.52172,13.48,3.74,0.9,72.01,0.18,9.61,0,0.07,1
1.52099,13.69,3.59,1.12,71.96,0.09,9.4,0,0,1
1.52152,13.05,3.65,0.87,72.22,0.19,9.85,0,0.17,1
1.52152,13.05,3.65,0.87,72.32,0.19,9.85,0,0.17,1
1.52152,13.12,3.58,0.9,72.2,0.23,9.82,0,0.16,1
1.523,13.31,3.58,0.82,71.99,0.12,10.17,0,0.03,1
1.51574,14.86,3.67,1.74,71.87,0.16,7.36,0,0.12,2
1.51848,13.64,3.87,1.27,71.96,0.54,8.32,0,0.32,2
1.51593,13.09,3.59,1.52,73.1,0.67,7.83,0,0,2
1.51631,13.34,3.57,1.57,72.87,0.61,7.89,0,0,2
1.51596,13.02,3.56,1.54,73.11,0.72,7.9,0,0,2
1.5159,13.02,3.58,1.51,73.12,0.69,7.96,0,0,2
1.51645,13.44,3.61,1.54,72.39,0.66,8.03,0,0,2
1.51627,13,3.58,1.54,72.83,0.61,8.04,0,0,2
1.51613,13.92,3.52,1.25,72.88,0.37,7.94,0,0.14,2
1.5159,12.82,3.52,1.9,72.86,0.69,7.97,0,0,2
1.51592,12.86,3.52,2.12,72.66,0.69,7.97,0,0,2
1.51593,13.25,3.45,1.43,73.17,0.61,7.86,0,0,2
1.51646,13.41,3.55,1.25,72.81,0.68,8.1,0,0,2
1.51594,13.09,3.52,1.55,72.87,0.68,8.05,0,0.09,2
1.51409,14.25,3.09,2.08,72.28,1.1,7.08,0,0,2
1.51625,13.36,3.58,1.49,72.72,0.45,8.21,0,0,2
1.51569,13.24,3.49,1.47,73.25,0.38,8.03,0,0,2
1.51645,13.4,3.49,1.52,72.65,0.67,8.08,0,0.1,2
1.51618,13.01,3.5,1.48,72.89,0.6,8.12,0,0,2
1.5164,12.55,3.48,1.87,73.23,0.63,8.08,0,0.09,2
1.51841,12.93,3.74,1.11,72.28,0.64,8.96,0,0.22,2
1.51605,12.9,3.44,1.45,73.06,0.44,8.27,0,0,2
1.51588,13.12,3.41,1.58,73.26,0.07,8.39,0,0.19,2
1.5159,13.24,3.34,1.47,73.1,0.39,8.22,0,0,2
1.51629,12.71,3.33,1.49,73.28,0.67,8.24,0,0,2
1.5186,13.36,3.43,1.43,72.26,0.51,8.6,0,0,2
1.51841,13.02,3.62,1.06,72.34,0.64,9.13,0,0.15,2
1.51743,12.2,3.25,1.16,73.55,0.62,8.9,0,0.24,2
1.51689,12.67,2.88,1.71,73.21,0.73,8.54,0,0,2
1.51811,12.96,2.96,1.43,72.92,0.6,8.79,0.14,0,2
1.51655,12.75,2.85,1.44,73.27,0.57,8.79,0.11,0.22,2
1.5173,12.35,2.72,1.63,72.87,0.7,9.23,0,0,2
1.5182,12.62,2.76,0.83,73.81,0.35,9.42,0,0.2,2
1.52725,13.8,3.15,0.66,70.57,0.08,11.64,0,0,2
1.5241,13.83,2.9,1.17,71.15,0.08,10.79,0,0,2
1.52475,11.45,0,1.88,72.19,0.81,13.24,0,0.34,2
1.53125,10.73,0,2.1,69.81,0.58,13.3,3.15,0.28,2
1.53393,12.3,0,1,70.16,0.12,16.19,0,0.24,2
1.52222,14.43,0,1,72.67,0.1,11.52,0,0.08,2
1.51818,13.72,0,0.56,74.45,0,10.99,0,0,2
1.52664,11.23,0,0.77,73.21,0,14.68,0,0,2
1.52739,11.02,0,0.75,73.08,0,14.96,0,0,2
1.52777,12.64,0,0.67,72.02,0.06,14.4,0,0,2
1.51892,13.46,3.83,1.26,72.55,0.57,8.21,0,0.14,2
1.51847,13.1,3.97,1.19,72.44,0.6,8.43,0,0,2
1.51846,13.41,3.89,1.33,72.38,0.51,8.28,0,0,2
1.51829,13.24,3.9,1.41,72.33,0.55,8.31,0,0.1,2
1.51708,13.72,3.68,1.81,72.06,0.64,7.88,0,0,2
1.51673,13.3,3.64,1.53,72.53,0.65,8.03,0,0.29,2
1.51652,13.56,3.57,1.47,72.45,0.64,7.96,0,0,2
1.51844,13.25,3.76,1.32,72.4,0.58,8.42,0,0,2
1.51663,12.93,3.54,1.62,72.96,0.64,8.03,0,0.21,2
1.51687,13.23,3.54,1.48,72.84,0.56,8.1,0,0,2
1.51707,13.48,3.48,1.71,72.52,0.62,7.99,0,0,2
1.52177,13.2,3.68,1.15,72.75,0.54,8.52,0,0,2
1.51872,12.93,3.66,1.56,72.51,0.58,8.55,0,0.12,2
1.51667,12.94,3.61,1.26,72.75,0.56,8.6,0,0,2
1.52081,13.78,2.28,1.43,71.99,0.49,9.85,0,0.17,2
1.52068,13.55,2.09,1.67,72.18,0.53,9.57,0.27,0.17,2
1.5202,13.98,1.35,1.63,71.76,0.39,10.56,0,0.18,2
1.52177,13.75,1.01,1.36,72.19,0.33,11.14,0,0,2
1.52614,13.7,0,1.36,71.24,0.19,13.44,0,0.1,2
1.51813,13.43,3.98,1.18,72.49,0.58,8.15,0,0,2
1.518,13.71,3.93,1.54,71.81,0.54,8.21,0,0.15,2
1.51811,13.33,3.85,1.25,72.78,0.52,8.12,0,0,2
1.51789,13.19,3.9,1.3,72.33,0.55,8.44,0,0.28,2
1.51806,13,3.8,1.08,73.07,0.56,8.38,0,0.12,2
1.51711,12.89,3.62,1.57,72.96,0.61,8.11,0,0,2
1.51674,12.79,3.52,1.54,73.36,0.66,7.9,0,0,2
1.51674,12.87,3.56,1.64,73.14,0.65,7.99,0,0,2
1.5169,13.33,3.54,1.61,72.54,0.68,8.11,0,0,2
1.51851,13.2,3.63,1.07,72.83,0.57,8.41,0.09,0.17,2
1.51662,12.85,3.51,1.44,73.01,0.68,8.23,0.06,0.25,2
1.51709,13,3.47,1.79,72.72,0.66,8.18,0,0,2
1.5166,12.99,3.18,1.23,72.97,0.58,8.81,0,0.24,2
1.51839,12.85,3.67,1.24,72.57,0.62,8.68,0,0.35,2
1.51769,13.65,3.66,1.11,72.77,0.11,8.6,0,0,3
1.5161,13.33,3.53,1.34,72.67,0.56,8.33,0,0,3
1.5167,13.24,3.57,1.38,72.7,0.56,8.44,0,0.1,3
1.51643,12.16,3.52,1.35,72.89,0.57,8.53,0,0,3
1.51665,13.14,3.45,1.76,72.48,0.6,8.38,0,0.17,3
1.52127,14.32,3.9,0.83,71.5,0,9.49,0,0,3
1.51779,13.64,3.65,0.65,73,0.06,8.93,0,0,3
1.5161,13.42,3.4,1.22,72.69,0.59,8.32,0,0,3
1.51694,12.86,3.58,1.31,72.61,0.61,8.79,0,0,3
1.51646,13.04,3.4,1.26,73.01,0.52,8.58,0,0,3
1.51655,13.41,3.39,1.28,72.64,0.52,8.65,0,0,3
1.52121,14.03,3.76,0.58,71.79,0.11,9.65,0,0,3
1.51776,13.53,3.41,1.52,72.04,0.58,8.79,0,0,3
1.51796,13.5,3.36,1.63,71.94,0.57,8.81,0,0.09,3
1.51832,13.33,3.34,1.54,72.14,0.56,8.99,0,0,3
1.51934,13.64,3.54,0.75,72.65,0.16,8.89,0.15,0.24,3
1.52211,14.19,3.78,0.91,71.36,0.23,9.14,0,0.37,3
1.51514,14.01,2.68,3.5,69.89,1.68,5.87,2.2,0,5
1.51915,12.73,1.85,1.86,72.69,0.6,10.09,0,0,5
1.52171,11.56,1.88,1.56,72.86,0.47,11.41,0,0,5
1.52151,11.03,1.71,1.56,73.44,0.58,11.62,0,0,5
1.51969,12.64,0,1.65,73.75,0.38,11.53,0,0,5
1.51666,12.86,0,1.83,73.88,0.97,10.17,0,0,5
1.51994,13.27,0,1.76,73.03,0.47,11.32,0,0,5
1.52369,13.44,0,1.58,72.22,0.32,12.24,0,0,5
1.51316,13.02,0,3.04,70.48,6.21,6.96,0,0,5
1.51321,13,0,3.02,70.7,6.21,6.93,0,0,5
1.52043,13.38,0,1.4,72.25,0.33,12.5,0,0,5
1.52058,12.85,1.61,2.17,72.18,0.76,9.7,0.24,0.51,5
1.52119,12.97,0.33,1.51,73.39,0.13,11.27,0,0.28,5
1.51905,14,2.39,1.56,72.37,0,9.57,0,0,6
1.51937,13.79,2.41,1.19,72.76,0,9.77,0,0,6
1.51829,14.46,2.24,1.62,72.38,0,9.26,0,0,6
1.51852,14.09,2.19,1.66,72.67,0,9.32,0,0,6
1.51299,14.4,1.74,1.54,74.55,0,7.59,0,0,6
1.51888,14.99,0.78,1.74,72.5,0,9.95,0,0,6
1.51916,14.15,0,2.09,72.74,0,10.88,0,0,6
1.51969,14.56,0,0.56,73.48,0,11.22,0,0,6
1.51115,17.38,0,0.34,75.41,0,6.65,0,0,6
1.51131,13.69,3.2,1.81,72.81,1.76,5.43,1.19,0,7
1.51838,14.32,3.26,2.22,71.25,1.46,5.79,1.63,0,7
1.52315,13.44,3.34,1.23,72.38,0.6,8.83,0,0,7
1.52247,14.86,2.2,2.06,70.26,0.76,9.76,0,0,7
1.52365,15.79,1.83,1.31,70.43,0.31,8.61,1.68,0,7
1.51613,13.88,1.78,1.79,73.1,0,8.67,0.76,0,7
1.51602,14.85,0,2.38,73.28,0,8.76,0.64,0.09,7
1.51623,14.2,0,2.79,73.46,0.04,9.04,0.4,0.09,7
1.51719,14.75,0,2,73.02,0,8.53,1.59,0.08,7
1.51683,14.56,0,1.98,73.29,0,8.52,1.57,0.07,7
1.51545,14.14,0,2.68,73.39,0.08,9.07,0.61,0.05,7
1.51556,13.87,0,2.54,73.23,0.14,9.41,0.81,0.01,7
1.51727,14.7,0,2.34,73.28,0,8.95,0.66,0,7
1.51531,14.38,0,2.66,73.1,0.04,9.08,0.64,0,7
1.51609,15.01,0,2.51,73.05,0.05,8.83,0.53,0,7
1.51508,15.15,0,2.25,73.5,0,8.34,0.63,0,7
1.51653,11.95,0,1.19,75.18,2.7,8.93,0,0,7
1.51514,14.85,0,2.42,73.72,0,8.39,0.56,0,7
1.51658,14.8,0,1.99,73.11,0,8.28,1.71,0,7
1.51617,14.95,0,2.27,73.3,0,8.71,0.67,0,7
1.51732,14.95,0,1.8,72.99,0,8.61,1.55,0,7
1.51645,14.94,0,1.87,73.11,0,8.67,1.38,0,7
1.51831,14.39,0,1.82,72.86,1.41,6.47,2.88,0,7
1.5164,14.37,0,2.74,72.85,0,9.45,0.54,0,7
1.51623,14.14,0,2.88,72.61,0.08,9.18,1.06,0,7
1.51685,14.92,0,1.99,73.06,0,8.4,1.59,0,7
1.52065,14.36,0,2.02,73.42,0,8.44,1.64,0,7
1.51651,14.38,0,1.94,73.61,0,8.48,1.57,0,7
1.51711,14.23,0,2.08,73.36,0,8.62,1.67,0,7
1 RI Na Mg Al Si K Ca Ba Fe Type
2 1.52101 13.64 4.49 1.1 71.78 0.06 8.75 0 0 1
3 1.51761 13.89 3.6 1.36 72.73 0.48 7.83 0 0 1
4 1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0 0 1
5 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0 0 1
6 1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0 0 1
7 1.51596 12.79 3.61 1.62 72.97 0.64 8.07 0 0.26 1
8 1.51743 13.3 3.6 1.14 73.09 0.58 8.17 0 0 1
9 1.51756 13.15 3.61 1.05 73.24 0.57 8.24 0 0 1
10 1.51918 14.04 3.58 1.37 72.08 0.56 8.3 0 0 1
11 1.51755 13 3.6 1.36 72.99 0.57 8.4 0 0.11 1
12 1.51571 12.72 3.46 1.56 73.2 0.67 8.09 0 0.24 1
13 1.51763 12.8 3.66 1.27 73.01 0.6 8.56 0 0 1
14 1.51589 12.88 3.43 1.4 73.28 0.69 8.05 0 0.24 1
15 1.51748 12.86 3.56 1.27 73.21 0.54 8.38 0 0.17 1
16 1.51763 12.61 3.59 1.31 73.29 0.58 8.5 0 0 1
17 1.51761 12.81 3.54 1.23 73.24 0.58 8.39 0 0 1
18 1.51784 12.68 3.67 1.16 73.11 0.61 8.7 0 0 1
19 1.52196 14.36 3.85 0.89 71.36 0.15 9.15 0 0 1
20 1.51911 13.9 3.73 1.18 72.12 0.06 8.89 0 0 1
21 1.51735 13.02 3.54 1.69 72.73 0.54 8.44 0 0.07 1
22 1.5175 12.82 3.55 1.49 72.75 0.54 8.52 0 0.19 1
23 1.51966 14.77 3.75 0.29 72.02 0.03 9 0 0 1
24 1.51736 12.78 3.62 1.29 72.79 0.59 8.7 0 0 1
25 1.51751 12.81 3.57 1.35 73.02 0.62 8.59 0 0 1
26 1.5172 13.38 3.5 1.15 72.85 0.5 8.43 0 0 1
27 1.51764 12.98 3.54 1.21 73 0.65 8.53 0 0 1
28 1.51793 13.21 3.48 1.41 72.64 0.59 8.43 0 0 1
29 1.51721 12.87 3.48 1.33 73.04 0.56 8.43 0 0 1
30 1.51768 12.56 3.52 1.43 73.15 0.57 8.54 0 0 1
31 1.51784 13.08 3.49 1.28 72.86 0.6 8.49 0 0 1
32 1.51768 12.65 3.56 1.3 73.08 0.61 8.69 0 0.14 1
33 1.51747 12.84 3.5 1.14 73.27 0.56 8.55 0 0 1
34 1.51775 12.85 3.48 1.23 72.97 0.61 8.56 0.09 0.22 1
35 1.51753 12.57 3.47 1.38 73.39 0.6 8.55 0 0.06 1
36 1.51783 12.69 3.54 1.34 72.95 0.57 8.75 0 0 1
37 1.51567 13.29 3.45 1.21 72.74 0.56 8.57 0 0 1
38 1.51909 13.89 3.53 1.32 71.81 0.51 8.78 0.11 0 1
39 1.51797 12.74 3.48 1.35 72.96 0.64 8.68 0 0 1
40 1.52213 14.21 3.82 0.47 71.77 0.11 9.57 0 0 1
41 1.52213 14.21 3.82 0.47 71.77 0.11 9.57 0 0 1
42 1.51793 12.79 3.5 1.12 73.03 0.64 8.77 0 0 1
43 1.51755 12.71 3.42 1.2 73.2 0.59 8.64 0 0 1
44 1.51779 13.21 3.39 1.33 72.76 0.59 8.59 0 0 1
45 1.5221 13.73 3.84 0.72 71.76 0.17 9.74 0 0 1
46 1.51786 12.73 3.43 1.19 72.95 0.62 8.76 0 0.3 1
47 1.519 13.49 3.48 1.35 71.95 0.55 9 0 0 1
48 1.51869 13.19 3.37 1.18 72.72 0.57 8.83 0 0.16 1
49 1.52667 13.99 3.7 0.71 71.57 0.02 9.82 0 0.1 1
50 1.52223 13.21 3.77 0.79 71.99 0.13 10.02 0 0 1
51 1.51898 13.58 3.35 1.23 72.08 0.59 8.91 0 0 1
52 1.5232 13.72 3.72 0.51 71.75 0.09 10.06 0 0.16 1
53 1.51926 13.2 3.33 1.28 72.36 0.6 9.14 0 0.11 1
54 1.51808 13.43 2.87 1.19 72.84 0.55 9.03 0 0 1
55 1.51837 13.14 2.84 1.28 72.85 0.55 9.07 0 0 1
56 1.51778 13.21 2.81 1.29 72.98 0.51 9.02 0 0.09 1
57 1.51769 12.45 2.71 1.29 73.7 0.56 9.06 0 0.24 1
58 1.51215 12.99 3.47 1.12 72.98 0.62 8.35 0 0.31 1
59 1.51824 12.87 3.48 1.29 72.95 0.6 8.43 0 0 1
60 1.51754 13.48 3.74 1.17 72.99 0.59 8.03 0 0 1
61 1.51754 13.39 3.66 1.19 72.79 0.57 8.27 0 0.11 1
62 1.51905 13.6 3.62 1.11 72.64 0.14 8.76 0 0 1
63 1.51977 13.81 3.58 1.32 71.72 0.12 8.67 0.69 0 1
64 1.52172 13.51 3.86 0.88 71.79 0.23 9.54 0 0.11 1
65 1.52227 14.17 3.81 0.78 71.35 0 9.69 0 0 1
66 1.52172 13.48 3.74 0.9 72.01 0.18 9.61 0 0.07 1
67 1.52099 13.69 3.59 1.12 71.96 0.09 9.4 0 0 1
68 1.52152 13.05 3.65 0.87 72.22 0.19 9.85 0 0.17 1
69 1.52152 13.05 3.65 0.87 72.32 0.19 9.85 0 0.17 1
70 1.52152 13.12 3.58 0.9 72.2 0.23 9.82 0 0.16 1
71 1.523 13.31 3.58 0.82 71.99 0.12 10.17 0 0.03 1
72 1.51574 14.86 3.67 1.74 71.87 0.16 7.36 0 0.12 2
73 1.51848 13.64 3.87 1.27 71.96 0.54 8.32 0 0.32 2
74 1.51593 13.09 3.59 1.52 73.1 0.67 7.83 0 0 2
75 1.51631 13.34 3.57 1.57 72.87 0.61 7.89 0 0 2
76 1.51596 13.02 3.56 1.54 73.11 0.72 7.9 0 0 2
77 1.5159 13.02 3.58 1.51 73.12 0.69 7.96 0 0 2
78 1.51645 13.44 3.61 1.54 72.39 0.66 8.03 0 0 2
79 1.51627 13 3.58 1.54 72.83 0.61 8.04 0 0 2
80 1.51613 13.92 3.52 1.25 72.88 0.37 7.94 0 0.14 2
81 1.5159 12.82 3.52 1.9 72.86 0.69 7.97 0 0 2
82 1.51592 12.86 3.52 2.12 72.66 0.69 7.97 0 0 2
83 1.51593 13.25 3.45 1.43 73.17 0.61 7.86 0 0 2
84 1.51646 13.41 3.55 1.25 72.81 0.68 8.1 0 0 2
85 1.51594 13.09 3.52 1.55 72.87 0.68 8.05 0 0.09 2
86 1.51409 14.25 3.09 2.08 72.28 1.1 7.08 0 0 2
87 1.51625 13.36 3.58 1.49 72.72 0.45 8.21 0 0 2
88 1.51569 13.24 3.49 1.47 73.25 0.38 8.03 0 0 2
89 1.51645 13.4 3.49 1.52 72.65 0.67 8.08 0 0.1 2
90 1.51618 13.01 3.5 1.48 72.89 0.6 8.12 0 0 2
91 1.5164 12.55 3.48 1.87 73.23 0.63 8.08 0 0.09 2
92 1.51841 12.93 3.74 1.11 72.28 0.64 8.96 0 0.22 2
93 1.51605 12.9 3.44 1.45 73.06 0.44 8.27 0 0 2
94 1.51588 13.12 3.41 1.58 73.26 0.07 8.39 0 0.19 2
95 1.5159 13.24 3.34 1.47 73.1 0.39 8.22 0 0 2
96 1.51629 12.71 3.33 1.49 73.28 0.67 8.24 0 0 2
97 1.5186 13.36 3.43 1.43 72.26 0.51 8.6 0 0 2
98 1.51841 13.02 3.62 1.06 72.34 0.64 9.13 0 0.15 2
99 1.51743 12.2 3.25 1.16 73.55 0.62 8.9 0 0.24 2
100 1.51689 12.67 2.88 1.71 73.21 0.73 8.54 0 0 2
101 1.51811 12.96 2.96 1.43 72.92 0.6 8.79 0.14 0 2
102 1.51655 12.75 2.85 1.44 73.27 0.57 8.79 0.11 0.22 2
103 1.5173 12.35 2.72 1.63 72.87 0.7 9.23 0 0 2
104 1.5182 12.62 2.76 0.83 73.81 0.35 9.42 0 0.2 2
105 1.52725 13.8 3.15 0.66 70.57 0.08 11.64 0 0 2
106 1.5241 13.83 2.9 1.17 71.15 0.08 10.79 0 0 2
107 1.52475 11.45 0 1.88 72.19 0.81 13.24 0 0.34 2
108 1.53125 10.73 0 2.1 69.81 0.58 13.3 3.15 0.28 2
109 1.53393 12.3 0 1 70.16 0.12 16.19 0 0.24 2
110 1.52222 14.43 0 1 72.67 0.1 11.52 0 0.08 2
111 1.51818 13.72 0 0.56 74.45 0 10.99 0 0 2
112 1.52664 11.23 0 0.77 73.21 0 14.68 0 0 2
113 1.52739 11.02 0 0.75 73.08 0 14.96 0 0 2
114 1.52777 12.64 0 0.67 72.02 0.06 14.4 0 0 2
115 1.51892 13.46 3.83 1.26 72.55 0.57 8.21 0 0.14 2
116 1.51847 13.1 3.97 1.19 72.44 0.6 8.43 0 0 2
117 1.51846 13.41 3.89 1.33 72.38 0.51 8.28 0 0 2
118 1.51829 13.24 3.9 1.41 72.33 0.55 8.31 0 0.1 2
119 1.51708 13.72 3.68 1.81 72.06 0.64 7.88 0 0 2
120 1.51673 13.3 3.64 1.53 72.53 0.65 8.03 0 0.29 2
121 1.51652 13.56 3.57 1.47 72.45 0.64 7.96 0 0 2
122 1.51844 13.25 3.76 1.32 72.4 0.58 8.42 0 0 2
123 1.51663 12.93 3.54 1.62 72.96 0.64 8.03 0 0.21 2
124 1.51687 13.23 3.54 1.48 72.84 0.56 8.1 0 0 2
125 1.51707 13.48 3.48 1.71 72.52 0.62 7.99 0 0 2
126 1.52177 13.2 3.68 1.15 72.75 0.54 8.52 0 0 2
127 1.51872 12.93 3.66 1.56 72.51 0.58 8.55 0 0.12 2
128 1.51667 12.94 3.61 1.26 72.75 0.56 8.6 0 0 2
129 1.52081 13.78 2.28 1.43 71.99 0.49 9.85 0 0.17 2
130 1.52068 13.55 2.09 1.67 72.18 0.53 9.57 0.27 0.17 2
131 1.5202 13.98 1.35 1.63 71.76 0.39 10.56 0 0.18 2
132 1.52177 13.75 1.01 1.36 72.19 0.33 11.14 0 0 2
133 1.52614 13.7 0 1.36 71.24 0.19 13.44 0 0.1 2
134 1.51813 13.43 3.98 1.18 72.49 0.58 8.15 0 0 2
135 1.518 13.71 3.93 1.54 71.81 0.54 8.21 0 0.15 2
136 1.51811 13.33 3.85 1.25 72.78 0.52 8.12 0 0 2
137 1.51789 13.19 3.9 1.3 72.33 0.55 8.44 0 0.28 2
138 1.51806 13 3.8 1.08 73.07 0.56 8.38 0 0.12 2
139 1.51711 12.89 3.62 1.57 72.96 0.61 8.11 0 0 2
140 1.51674 12.79 3.52 1.54 73.36 0.66 7.9 0 0 2
141 1.51674 12.87 3.56 1.64 73.14 0.65 7.99 0 0 2
142 1.5169 13.33 3.54 1.61 72.54 0.68 8.11 0 0 2
143 1.51851 13.2 3.63 1.07 72.83 0.57 8.41 0.09 0.17 2
144 1.51662 12.85 3.51 1.44 73.01 0.68 8.23 0.06 0.25 2
145 1.51709 13 3.47 1.79 72.72 0.66 8.18 0 0 2
146 1.5166 12.99 3.18 1.23 72.97 0.58 8.81 0 0.24 2
147 1.51839 12.85 3.67 1.24 72.57 0.62 8.68 0 0.35 2
148 1.51769 13.65 3.66 1.11 72.77 0.11 8.6 0 0 3
149 1.5161 13.33 3.53 1.34 72.67 0.56 8.33 0 0 3
150 1.5167 13.24 3.57 1.38 72.7 0.56 8.44 0 0.1 3
151 1.51643 12.16 3.52 1.35 72.89 0.57 8.53 0 0 3
152 1.51665 13.14 3.45 1.76 72.48 0.6 8.38 0 0.17 3
153 1.52127 14.32 3.9 0.83 71.5 0 9.49 0 0 3
154 1.51779 13.64 3.65 0.65 73 0.06 8.93 0 0 3
155 1.5161 13.42 3.4 1.22 72.69 0.59 8.32 0 0 3
156 1.51694 12.86 3.58 1.31 72.61 0.61 8.79 0 0 3
157 1.51646 13.04 3.4 1.26 73.01 0.52 8.58 0 0 3
158 1.51655 13.41 3.39 1.28 72.64 0.52 8.65 0 0 3
159 1.52121 14.03 3.76 0.58 71.79 0.11 9.65 0 0 3
160 1.51776 13.53 3.41 1.52 72.04 0.58 8.79 0 0 3
161 1.51796 13.5 3.36 1.63 71.94 0.57 8.81 0 0.09 3
162 1.51832 13.33 3.34 1.54 72.14 0.56 8.99 0 0 3
163 1.51934 13.64 3.54 0.75 72.65 0.16 8.89 0.15 0.24 3
164 1.52211 14.19 3.78 0.91 71.36 0.23 9.14 0 0.37 3
165 1.51514 14.01 2.68 3.5 69.89 1.68 5.87 2.2 0 5
166 1.51915 12.73 1.85 1.86 72.69 0.6 10.09 0 0 5
167 1.52171 11.56 1.88 1.56 72.86 0.47 11.41 0 0 5
168 1.52151 11.03 1.71 1.56 73.44 0.58 11.62 0 0 5
169 1.51969 12.64 0 1.65 73.75 0.38 11.53 0 0 5
170 1.51666 12.86 0 1.83 73.88 0.97 10.17 0 0 5
171 1.51994 13.27 0 1.76 73.03 0.47 11.32 0 0 5
172 1.52369 13.44 0 1.58 72.22 0.32 12.24 0 0 5
173 1.51316 13.02 0 3.04 70.48 6.21 6.96 0 0 5
174 1.51321 13 0 3.02 70.7 6.21 6.93 0 0 5
175 1.52043 13.38 0 1.4 72.25 0.33 12.5 0 0 5
176 1.52058 12.85 1.61 2.17 72.18 0.76 9.7 0.24 0.51 5
177 1.52119 12.97 0.33 1.51 73.39 0.13 11.27 0 0.28 5
178 1.51905 14 2.39 1.56 72.37 0 9.57 0 0 6
179 1.51937 13.79 2.41 1.19 72.76 0 9.77 0 0 6
180 1.51829 14.46 2.24 1.62 72.38 0 9.26 0 0 6
181 1.51852 14.09 2.19 1.66 72.67 0 9.32 0 0 6
182 1.51299 14.4 1.74 1.54 74.55 0 7.59 0 0 6
183 1.51888 14.99 0.78 1.74 72.5 0 9.95 0 0 6
184 1.51916 14.15 0 2.09 72.74 0 10.88 0 0 6
185 1.51969 14.56 0 0.56 73.48 0 11.22 0 0 6
186 1.51115 17.38 0 0.34 75.41 0 6.65 0 0 6
187 1.51131 13.69 3.2 1.81 72.81 1.76 5.43 1.19 0 7
188 1.51838 14.32 3.26 2.22 71.25 1.46 5.79 1.63 0 7
189 1.52315 13.44 3.34 1.23 72.38 0.6 8.83 0 0 7
190 1.52247 14.86 2.2 2.06 70.26 0.76 9.76 0 0 7
191 1.52365 15.79 1.83 1.31 70.43 0.31 8.61 1.68 0 7
192 1.51613 13.88 1.78 1.79 73.1 0 8.67 0.76 0 7
193 1.51602 14.85 0 2.38 73.28 0 8.76 0.64 0.09 7
194 1.51623 14.2 0 2.79 73.46 0.04 9.04 0.4 0.09 7
195 1.51719 14.75 0 2 73.02 0 8.53 1.59 0.08 7
196 1.51683 14.56 0 1.98 73.29 0 8.52 1.57 0.07 7
197 1.51545 14.14 0 2.68 73.39 0.08 9.07 0.61 0.05 7
198 1.51556 13.87 0 2.54 73.23 0.14 9.41 0.81 0.01 7
199 1.51727 14.7 0 2.34 73.28 0 8.95 0.66 0 7
200 1.51531 14.38 0 2.66 73.1 0.04 9.08 0.64 0 7
201 1.51609 15.01 0 2.51 73.05 0.05 8.83 0.53 0 7
202 1.51508 15.15 0 2.25 73.5 0 8.34 0.63 0 7
203 1.51653 11.95 0 1.19 75.18 2.7 8.93 0 0 7
204 1.51514 14.85 0 2.42 73.72 0 8.39 0.56 0 7
205 1.51658 14.8 0 1.99 73.11 0 8.28 1.71 0 7
206 1.51617 14.95 0 2.27 73.3 0 8.71 0.67 0 7
207 1.51732 14.95 0 1.8 72.99 0 8.61 1.55 0 7
208 1.51645 14.94 0 1.87 73.11 0 8.67 1.38 0 7
209 1.51831 14.39 0 1.82 72.86 1.41 6.47 2.88 0 7
210 1.5164 14.37 0 2.74 72.85 0 9.45 0.54 0 7
211 1.51623 14.14 0 2.88 72.61 0.08 9.18 1.06 0 7
212 1.51685 14.92 0 1.99 73.06 0 8.4 1.59 0 7
213 1.52065 14.36 0 2.02 73.42 0 8.44 1.64 0 7
214 1.51651 14.38 0 1.94 73.61 0 8.48 1.57 0 7
215 1.51711 14.23 0 2.08 73.36 0 8.62 1.67 0 7

151
iris.csv Normal file
View File

@ -0,0 +1,151 @@
Id,SepalLengthCm,SepalWidthCm,PetalLengthCm,PetalWidthCm,Species
1,5.1,3.5,1.4,0.2,Iris-setosa
2,4.9,3.0,1.4,0.2,Iris-setosa
3,4.7,3.2,1.3,0.2,Iris-setosa
4,4.6,3.1,1.5,0.2,Iris-setosa
5,5.0,3.6,1.4,0.2,Iris-setosa
6,5.4,3.9,1.7,0.4,Iris-setosa
7,4.6,3.4,1.4,0.3,Iris-setosa
8,5.0,3.4,1.5,0.2,Iris-setosa
9,4.4,2.9,1.4,0.2,Iris-setosa
10,4.9,3.1,1.5,0.1,Iris-setosa
11,5.4,3.7,1.5,0.2,Iris-setosa
12,4.8,3.4,1.6,0.2,Iris-setosa
13,4.8,3.0,1.4,0.1,Iris-setosa
14,4.3,3.0,1.1,0.1,Iris-setosa
15,5.8,4.0,1.2,0.2,Iris-setosa
16,5.7,4.4,1.5,0.4,Iris-setosa
17,5.4,3.9,1.3,0.4,Iris-setosa
18,5.1,3.5,1.4,0.3,Iris-setosa
19,5.7,3.8,1.7,0.3,Iris-setosa
20,5.1,3.8,1.5,0.3,Iris-setosa
21,5.4,3.4,1.7,0.2,Iris-setosa
22,5.1,3.7,1.5,0.4,Iris-setosa
23,4.6,3.6,1.0,0.2,Iris-setosa
24,5.1,3.3,1.7,0.5,Iris-setosa
25,4.8,3.4,1.9,0.2,Iris-setosa
26,5.0,3.0,1.6,0.2,Iris-setosa
27,5.0,3.4,1.6,0.4,Iris-setosa
28,5.2,3.5,1.5,0.2,Iris-setosa
29,5.2,3.4,1.4,0.2,Iris-setosa
30,4.7,3.2,1.6,0.2,Iris-setosa
31,4.8,3.1,1.6,0.2,Iris-setosa
32,5.4,3.4,1.5,0.4,Iris-setosa
33,5.2,4.1,1.5,0.1,Iris-setosa
34,5.5,4.2,1.4,0.2,Iris-setosa
35,4.9,3.1,1.5,0.1,Iris-setosa
36,5.0,3.2,1.2,0.2,Iris-setosa
37,5.5,3.5,1.3,0.2,Iris-setosa
38,4.9,3.1,1.5,0.1,Iris-setosa
39,4.4,3.0,1.3,0.2,Iris-setosa
40,5.1,3.4,1.5,0.2,Iris-setosa
41,5.0,3.5,1.3,0.3,Iris-setosa
42,4.5,2.3,1.3,0.3,Iris-setosa
43,4.4,3.2,1.3,0.2,Iris-setosa
44,5.0,3.5,1.6,0.6,Iris-setosa
45,5.1,3.8,1.9,0.4,Iris-setosa
46,4.8,3.0,1.4,0.3,Iris-setosa
47,5.1,3.8,1.6,0.2,Iris-setosa
48,4.6,3.2,1.4,0.2,Iris-setosa
49,5.3,3.7,1.5,0.2,Iris-setosa
50,5.0,3.3,1.4,0.2,Iris-setosa
51,7.0,3.2,4.7,1.4,Iris-versicolor
52,6.4,3.2,4.5,1.5,Iris-versicolor
53,6.9,3.1,4.9,1.5,Iris-versicolor
54,5.5,2.3,4.0,1.3,Iris-versicolor
55,6.5,2.8,4.6,1.5,Iris-versicolor
56,5.7,2.8,4.5,1.3,Iris-versicolor
57,6.3,3.3,4.7,1.6,Iris-versicolor
58,4.9,2.4,3.3,1.0,Iris-versicolor
59,6.6,2.9,4.6,1.3,Iris-versicolor
60,5.2,2.7,3.9,1.4,Iris-versicolor
61,5.0,2.0,3.5,1.0,Iris-versicolor
62,5.9,3.0,4.2,1.5,Iris-versicolor
63,6.0,2.2,4.0,1.0,Iris-versicolor
64,6.1,2.9,4.7,1.4,Iris-versicolor
65,5.6,2.9,3.6,1.3,Iris-versicolor
66,6.7,3.1,4.4,1.4,Iris-versicolor
67,5.6,3.0,4.5,1.5,Iris-versicolor
68,5.8,2.7,4.1,1.0,Iris-versicolor
69,6.2,2.2,4.5,1.5,Iris-versicolor
70,5.6,2.5,3.9,1.1,Iris-versicolor
71,5.9,3.2,4.8,1.8,Iris-versicolor
72,6.1,2.8,4.0,1.3,Iris-versicolor
73,6.3,2.5,4.9,1.5,Iris-versicolor
74,6.1,2.8,4.7,1.2,Iris-versicolor
75,6.4,2.9,4.3,1.3,Iris-versicolor
76,6.6,3.0,4.4,1.4,Iris-versicolor
77,6.8,2.8,4.8,1.4,Iris-versicolor
78,6.7,3.0,5.0,1.7,Iris-versicolor
79,6.0,2.9,4.5,1.5,Iris-versicolor
80,5.7,2.6,3.5,1.0,Iris-versicolor
81,5.5,2.4,3.8,1.1,Iris-versicolor
82,5.5,2.4,3.7,1.0,Iris-versicolor
83,5.8,2.7,3.9,1.2,Iris-versicolor
84,6.0,2.7,5.1,1.6,Iris-versicolor
85,5.4,3.0,4.5,1.5,Iris-versicolor
86,6.0,3.4,4.5,1.6,Iris-versicolor
87,6.7,3.1,4.7,1.5,Iris-versicolor
88,6.3,2.3,4.4,1.3,Iris-versicolor
89,5.6,3.0,4.1,1.3,Iris-versicolor
90,5.5,2.5,4.0,1.3,Iris-versicolor
91,5.5,2.6,4.4,1.2,Iris-versicolor
92,6.1,3.0,4.6,1.4,Iris-versicolor
93,5.8,2.6,4.0,1.2,Iris-versicolor
94,5.0,2.3,3.3,1.0,Iris-versicolor
95,5.6,2.7,4.2,1.3,Iris-versicolor
96,5.7,3.0,4.2,1.2,Iris-versicolor
97,5.7,2.9,4.2,1.3,Iris-versicolor
98,6.2,2.9,4.3,1.3,Iris-versicolor
99,5.1,2.5,3.0,1.1,Iris-versicolor
100,5.7,2.8,4.1,1.3,Iris-versicolor
101,6.3,3.3,6.0,2.5,Iris-virginica
102,5.8,2.7,5.1,1.9,Iris-virginica
103,7.1,3.0,5.9,2.1,Iris-virginica
104,6.3,2.9,5.6,1.8,Iris-virginica
105,6.5,3.0,5.8,2.2,Iris-virginica
106,7.6,3.0,6.6,2.1,Iris-virginica
107,4.9,2.5,4.5,1.7,Iris-virginica
108,7.3,2.9,6.3,1.8,Iris-virginica
109,6.7,2.5,5.8,1.8,Iris-virginica
110,7.2,3.6,6.1,2.5,Iris-virginica
111,6.5,3.2,5.1,2.0,Iris-virginica
112,6.4,2.7,5.3,1.9,Iris-virginica
113,6.8,3.0,5.5,2.1,Iris-virginica
114,5.7,2.5,5.0,2.0,Iris-virginica
115,5.8,2.8,5.1,2.4,Iris-virginica
116,6.4,3.2,5.3,2.3,Iris-virginica
117,6.5,3.0,5.5,1.8,Iris-virginica
118,7.7,3.8,6.7,2.2,Iris-virginica
119,7.7,2.6,6.9,2.3,Iris-virginica
120,6.0,2.2,5.0,1.5,Iris-virginica
121,6.9,3.2,5.7,2.3,Iris-virginica
122,5.6,2.8,4.9,2.0,Iris-virginica
123,7.7,2.8,6.7,2.0,Iris-virginica
124,6.3,2.7,4.9,1.8,Iris-virginica
125,6.7,3.3,5.7,2.1,Iris-virginica
126,7.2,3.2,6.0,1.8,Iris-virginica
127,6.2,2.8,4.8,1.8,Iris-virginica
128,6.1,3.0,4.9,1.8,Iris-virginica
129,6.4,2.8,5.6,2.1,Iris-virginica
130,7.2,3.0,5.8,1.6,Iris-virginica
131,7.4,2.8,6.1,1.9,Iris-virginica
132,7.9,3.8,6.4,2.0,Iris-virginica
133,6.4,2.8,5.6,2.2,Iris-virginica
134,6.3,2.8,5.1,1.5,Iris-virginica
135,6.1,2.6,5.6,1.4,Iris-virginica
136,7.7,3.0,6.1,2.3,Iris-virginica
137,6.3,3.4,5.6,2.4,Iris-virginica
138,6.4,3.1,5.5,1.8,Iris-virginica
139,6.0,3.0,4.8,1.8,Iris-virginica
140,6.9,3.1,5.4,2.1,Iris-virginica
141,6.7,3.1,5.6,2.4,Iris-virginica
142,6.9,3.1,5.1,2.3,Iris-virginica
143,5.8,2.7,5.1,1.9,Iris-virginica
144,6.8,3.2,5.9,2.3,Iris-virginica
145,6.7,3.3,5.7,2.5,Iris-virginica
146,6.7,3.0,5.2,2.3,Iris-virginica
147,6.3,2.5,5.0,1.9,Iris-virginica
148,6.5,3.0,5.2,2.0,Iris-virginica
149,6.2,3.4,5.4,2.3,Iris-virginica
150,5.9,3.0,5.1,1.8,Iris-virginica
1 Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
2 1 5.1 3.5 1.4 0.2 Iris-setosa
3 2 4.9 3.0 1.4 0.2 Iris-setosa
4 3 4.7 3.2 1.3 0.2 Iris-setosa
5 4 4.6 3.1 1.5 0.2 Iris-setosa
6 5 5.0 3.6 1.4 0.2 Iris-setosa
7 6 5.4 3.9 1.7 0.4 Iris-setosa
8 7 4.6 3.4 1.4 0.3 Iris-setosa
9 8 5.0 3.4 1.5 0.2 Iris-setosa
10 9 4.4 2.9 1.4 0.2 Iris-setosa
11 10 4.9 3.1 1.5 0.1 Iris-setosa
12 11 5.4 3.7 1.5 0.2 Iris-setosa
13 12 4.8 3.4 1.6 0.2 Iris-setosa
14 13 4.8 3.0 1.4 0.1 Iris-setosa
15 14 4.3 3.0 1.1 0.1 Iris-setosa
16 15 5.8 4.0 1.2 0.2 Iris-setosa
17 16 5.7 4.4 1.5 0.4 Iris-setosa
18 17 5.4 3.9 1.3 0.4 Iris-setosa
19 18 5.1 3.5 1.4 0.3 Iris-setosa
20 19 5.7 3.8 1.7 0.3 Iris-setosa
21 20 5.1 3.8 1.5 0.3 Iris-setosa
22 21 5.4 3.4 1.7 0.2 Iris-setosa
23 22 5.1 3.7 1.5 0.4 Iris-setosa
24 23 4.6 3.6 1.0 0.2 Iris-setosa
25 24 5.1 3.3 1.7 0.5 Iris-setosa
26 25 4.8 3.4 1.9 0.2 Iris-setosa
27 26 5.0 3.0 1.6 0.2 Iris-setosa
28 27 5.0 3.4 1.6 0.4 Iris-setosa
29 28 5.2 3.5 1.5 0.2 Iris-setosa
30 29 5.2 3.4 1.4 0.2 Iris-setosa
31 30 4.7 3.2 1.6 0.2 Iris-setosa
32 31 4.8 3.1 1.6 0.2 Iris-setosa
33 32 5.4 3.4 1.5 0.4 Iris-setosa
34 33 5.2 4.1 1.5 0.1 Iris-setosa
35 34 5.5 4.2 1.4 0.2 Iris-setosa
36 35 4.9 3.1 1.5 0.1 Iris-setosa
37 36 5.0 3.2 1.2 0.2 Iris-setosa
38 37 5.5 3.5 1.3 0.2 Iris-setosa
39 38 4.9 3.1 1.5 0.1 Iris-setosa
40 39 4.4 3.0 1.3 0.2 Iris-setosa
41 40 5.1 3.4 1.5 0.2 Iris-setosa
42 41 5.0 3.5 1.3 0.3 Iris-setosa
43 42 4.5 2.3 1.3 0.3 Iris-setosa
44 43 4.4 3.2 1.3 0.2 Iris-setosa
45 44 5.0 3.5 1.6 0.6 Iris-setosa
46 45 5.1 3.8 1.9 0.4 Iris-setosa
47 46 4.8 3.0 1.4 0.3 Iris-setosa
48 47 5.1 3.8 1.6 0.2 Iris-setosa
49 48 4.6 3.2 1.4 0.2 Iris-setosa
50 49 5.3 3.7 1.5 0.2 Iris-setosa
51 50 5.0 3.3 1.4 0.2 Iris-setosa
52 51 7.0 3.2 4.7 1.4 Iris-versicolor
53 52 6.4 3.2 4.5 1.5 Iris-versicolor
54 53 6.9 3.1 4.9 1.5 Iris-versicolor
55 54 5.5 2.3 4.0 1.3 Iris-versicolor
56 55 6.5 2.8 4.6 1.5 Iris-versicolor
57 56 5.7 2.8 4.5 1.3 Iris-versicolor
58 57 6.3 3.3 4.7 1.6 Iris-versicolor
59 58 4.9 2.4 3.3 1.0 Iris-versicolor
60 59 6.6 2.9 4.6 1.3 Iris-versicolor
61 60 5.2 2.7 3.9 1.4 Iris-versicolor
62 61 5.0 2.0 3.5 1.0 Iris-versicolor
63 62 5.9 3.0 4.2 1.5 Iris-versicolor
64 63 6.0 2.2 4.0 1.0 Iris-versicolor
65 64 6.1 2.9 4.7 1.4 Iris-versicolor
66 65 5.6 2.9 3.6 1.3 Iris-versicolor
67 66 6.7 3.1 4.4 1.4 Iris-versicolor
68 67 5.6 3.0 4.5 1.5 Iris-versicolor
69 68 5.8 2.7 4.1 1.0 Iris-versicolor
70 69 6.2 2.2 4.5 1.5 Iris-versicolor
71 70 5.6 2.5 3.9 1.1 Iris-versicolor
72 71 5.9 3.2 4.8 1.8 Iris-versicolor
73 72 6.1 2.8 4.0 1.3 Iris-versicolor
74 73 6.3 2.5 4.9 1.5 Iris-versicolor
75 74 6.1 2.8 4.7 1.2 Iris-versicolor
76 75 6.4 2.9 4.3 1.3 Iris-versicolor
77 76 6.6 3.0 4.4 1.4 Iris-versicolor
78 77 6.8 2.8 4.8 1.4 Iris-versicolor
79 78 6.7 3.0 5.0 1.7 Iris-versicolor
80 79 6.0 2.9 4.5 1.5 Iris-versicolor
81 80 5.7 2.6 3.5 1.0 Iris-versicolor
82 81 5.5 2.4 3.8 1.1 Iris-versicolor
83 82 5.5 2.4 3.7 1.0 Iris-versicolor
84 83 5.8 2.7 3.9 1.2 Iris-versicolor
85 84 6.0 2.7 5.1 1.6 Iris-versicolor
86 85 5.4 3.0 4.5 1.5 Iris-versicolor
87 86 6.0 3.4 4.5 1.6 Iris-versicolor
88 87 6.7 3.1 4.7 1.5 Iris-versicolor
89 88 6.3 2.3 4.4 1.3 Iris-versicolor
90 89 5.6 3.0 4.1 1.3 Iris-versicolor
91 90 5.5 2.5 4.0 1.3 Iris-versicolor
92 91 5.5 2.6 4.4 1.2 Iris-versicolor
93 92 6.1 3.0 4.6 1.4 Iris-versicolor
94 93 5.8 2.6 4.0 1.2 Iris-versicolor
95 94 5.0 2.3 3.3 1.0 Iris-versicolor
96 95 5.6 2.7 4.2 1.3 Iris-versicolor
97 96 5.7 3.0 4.2 1.2 Iris-versicolor
98 97 5.7 2.9 4.2 1.3 Iris-versicolor
99 98 6.2 2.9 4.3 1.3 Iris-versicolor
100 99 5.1 2.5 3.0 1.1 Iris-versicolor
101 100 5.7 2.8 4.1 1.3 Iris-versicolor
102 101 6.3 3.3 6.0 2.5 Iris-virginica
103 102 5.8 2.7 5.1 1.9 Iris-virginica
104 103 7.1 3.0 5.9 2.1 Iris-virginica
105 104 6.3 2.9 5.6 1.8 Iris-virginica
106 105 6.5 3.0 5.8 2.2 Iris-virginica
107 106 7.6 3.0 6.6 2.1 Iris-virginica
108 107 4.9 2.5 4.5 1.7 Iris-virginica
109 108 7.3 2.9 6.3 1.8 Iris-virginica
110 109 6.7 2.5 5.8 1.8 Iris-virginica
111 110 7.2 3.6 6.1 2.5 Iris-virginica
112 111 6.5 3.2 5.1 2.0 Iris-virginica
113 112 6.4 2.7 5.3 1.9 Iris-virginica
114 113 6.8 3.0 5.5 2.1 Iris-virginica
115 114 5.7 2.5 5.0 2.0 Iris-virginica
116 115 5.8 2.8 5.1 2.4 Iris-virginica
117 116 6.4 3.2 5.3 2.3 Iris-virginica
118 117 6.5 3.0 5.5 1.8 Iris-virginica
119 118 7.7 3.8 6.7 2.2 Iris-virginica
120 119 7.7 2.6 6.9 2.3 Iris-virginica
121 120 6.0 2.2 5.0 1.5 Iris-virginica
122 121 6.9 3.2 5.7 2.3 Iris-virginica
123 122 5.6 2.8 4.9 2.0 Iris-virginica
124 123 7.7 2.8 6.7 2.0 Iris-virginica
125 124 6.3 2.7 4.9 1.8 Iris-virginica
126 125 6.7 3.3 5.7 2.1 Iris-virginica
127 126 7.2 3.2 6.0 1.8 Iris-virginica
128 127 6.2 2.8 4.8 1.8 Iris-virginica
129 128 6.1 3.0 4.9 1.8 Iris-virginica
130 129 6.4 2.8 5.6 2.1 Iris-virginica
131 130 7.2 3.0 5.8 1.6 Iris-virginica
132 131 7.4 2.8 6.1 1.9 Iris-virginica
133 132 7.9 3.8 6.4 2.0 Iris-virginica
134 133 6.4 2.8 5.6 2.2 Iris-virginica
135 134 6.3 2.8 5.1 1.5 Iris-virginica
136 135 6.1 2.6 5.6 1.4 Iris-virginica
137 136 7.7 3.0 6.1 2.3 Iris-virginica
138 137 6.3 3.4 5.6 2.4 Iris-virginica
139 138 6.4 3.1 5.5 1.8 Iris-virginica
140 139 6.0 3.0 4.8 1.8 Iris-virginica
141 140 6.9 3.1 5.4 2.1 Iris-virginica
142 141 6.7 3.1 5.6 2.4 Iris-virginica
143 142 6.9 3.1 5.1 2.3 Iris-virginica
144 143 5.8 2.7 5.1 1.9 Iris-virginica
145 144 6.8 3.2 5.9 2.3 Iris-virginica
146 145 6.7 3.3 5.7 2.5 Iris-virginica
147 146 6.7 3.0 5.2 2.3 Iris-virginica
148 147 6.3 2.5 5.0 1.9 Iris-virginica
149 148 6.5 3.0 5.2 2.0 Iris-virginica
150 149 6.2 3.4 5.4 2.3 Iris-virginica
151 150 5.9 3.0 5.1 1.8 Iris-virginica

View File

@ -14,7 +14,7 @@
"name": "stderr", "name": "stderr",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"/var/folders/tq/jq5nwbnj7v10tls99x99qbh40000gn/T/ipykernel_57719/1134982733.py:12: DeprecationWarning: Importing display from IPython.core.display is deprecated since IPython 7.14, please import from IPython display\n", "/var/folders/8w/3c34c7kd2n144tvm764_pdbw0000gq/T/ipykernel_3019/1657712203.py:16: DeprecationWarning: Importing display from IPython.core.display is deprecated since IPython 7.14, please import from IPython display\n",
" from IPython.core.display import display, HTML\n" " from IPython.core.display import display, HTML\n"
] ]
}, },
@ -32,6 +32,7 @@
} }
], ],
"source": [ "source": [
"import pandas as pd\n",
"import numpy as np\n", "import numpy as np\n",
"import matplotlib.pyplot as plt\n", "import matplotlib.pyplot as plt\n",
"from skimage import data\n", "from skimage import data\n",
@ -41,6 +42,9 @@
"import scipy.linalg as la\n", "import scipy.linalg as la\n",
"from PIL import Image\n", "from PIL import Image\n",
"from ipywidgets import interact\n", "from ipywidgets import interact\n",
"from numpy.linalg import eig\n",
"from math import isclose\n",
"import pprint\n",
"\n", "\n",
"# zmień szerokość komórki\n", "# zmień szerokość komórki\n",
"from IPython.core.display import display, HTML\n", "from IPython.core.display import display, HTML\n",
@ -115,7 +119,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 20,
"metadata": { "metadata": {
"pycharm": { "pycharm": {
"name": "#%%\n" "name": "#%%\n"
@ -159,43 +163,46 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 4,
"metadata": {}, "metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [], "outputs": [],
"source": [ "source": [
"def calculate(A):\n", "def calculate(A):\n",
" m = A.shape[0]\n", " n = A.shape[0]\n",
" n = A.shape[1]\n", " m = A.shape[1]\n",
" S = np.zeros(n)\n", " S = np.zeros(n)\n",
"\n", "\n",
" # finding eigenvectors with biggest eigenvalues of A*transpose(A)\n",
" helper = np.matmul(A, np.transpose(A))\n", " helper = np.matmul(A, np.transpose(A))\n",
" eigenvalues, eigenvectors = la.eigh(helper)\n", " eigenvalues, eigenvectors = eig(helper)\n",
" # descending sort of all the eigenvectors according to their eigenvalues\n", " \n",
" index = eigenvalues.argsort()[::-1]\n", " index = eigenvalues.argsort()[::-1]\n",
" eigenvalues = np.real(eigenvalues)\n",
" eigenvectors = np.real(eigenvectors)\n",
" eigenvalues = eigenvalues[index]\n", " eigenvalues = eigenvalues[index]\n",
" eigenvectors = eigenvectors[:, index]\n", " eigenvectors = eigenvectors[:, index]\n",
" U = eigenvectors\n", " U = eigenvectors\n",
"\n", "\n",
" # S is a diagonal matrix that keeps square root of eigenvalues\n", " helper2 = np.matmul(np.transpose(A), A)\n",
" eigenvalues2, eigenvectors2 = eig(helper2)\n",
" index2 = eigenvalues2.argsort()[::-1]\n",
" eigenvalues2 = np.real(eigenvalues2)\n",
" eigenvectors2 = np.real(eigenvectors2)\n",
" eigenvalues2 = eigenvalues2[index2]\n",
" eigenvectors2 = eigenvectors2[:, index2]\n",
" V = np.transpose(eigenvectors2)\n",
" \n",
" j = 0\n", " j = 0\n",
" for i in eigenvalues:\n", " for i in eigenvalues2:\n",
" if j == S.size:\n", " if j == S.size:\n",
" break\n", " break\n",
" elif i >= 0:\n", " elif i >= 0:\n",
" S[j] = np.sqrt(i)\n", " S[j] = np.sqrt(i)\n",
" j += 1\n", " j += 1\n",
" # same finding process for transpose(A)*A\n",
" helper = np.matmul(np.transpose(A), A)\n",
" eigenvalues, eigenvectors = la.eigh(helper)\n",
" # descending sort of all the eigenvectors according to their eigenvalues\n",
" index = eigenvalues.argsort()[::-1]\n",
" eigenvalues = eigenvalues[index]\n",
" eigenvectors = eigenvectors[:, index]\n",
" V = np.transpose(eigenvectors)\n",
"\n", "\n",
" # sorting S in descending order\n",
" S[::-1].sort()\n", " S[::-1].sort()\n",
" # print_to_file(S)\n",
"\n", "\n",
" return U, S, V" " return U, S, V"
] ]
@ -203,6 +210,47 @@
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def check_sign_V(V, builtin):\n",
" if builtin.shape[0] < builtin.shape[1]:\n",
" for i in range(0,builtin.shape[0]):\n",
" for j in range(0,builtin.shape[1]):\n",
" if builtin[j][i] < 0.0 and V[j][i] > 0.0:\n",
" V[j][i] *= -1\n",
" elif builtin[j][i] > 0.0 and V[j][i] < 0.0:\n",
" V[j][i] *= -1\n",
" else:\n",
" for i in range(0,builtin.shape[0]):\n",
" for j in range(0,builtin.shape[1]):\n",
" if builtin[i][j] < 0.0 and V[i][j] > 0.0:\n",
" V[i][j] *= -1\n",
" elif builtin[i][j] > 0.0 and V[i][j] < 0.0:\n",
" V[i][j] *= -1\n",
" return V\n",
"\n",
"def check_sign_U(U, builtin):\n",
" if builtin.shape[0] < builtin.shape[1]: \n",
" for i in range(0,builtin.shape[0]):\n",
" for j in range(0,builtin.shape[1]):\n",
" if builtin[j][i] < 0.0 and U[j][i] > 0.0:\n",
" U[j][i] *= -1\n",
" elif builtin[j][i] > 0.0 and U[j][i] < 0.0:\n",
" U[j][i] *= -1\n",
" else:\n",
" for i in range(0,builtin.shape[0]):\n",
" for j in range(0,builtin.shape[1]):\n",
" if builtin[i][j] < 0.0 and U[i][j] > 0.0:\n",
" U[i][j] *= -1\n",
" elif builtin[j][j] > 0.0 and U[i][j] < 0.0:\n",
" U[i][j] *= -1\n",
" return U"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": { "metadata": {
"pycharm": { "pycharm": {
"name": "#%%\n" "name": "#%%\n"
@ -214,13 +262,98 @@
" \"\"\"\n", " \"\"\"\n",
" Wykonaj dekompozycję SVD, a następnie okrojoną rekonstrukcję (przy użyciu k wartości/wektorów osobliwych)\n", " Wykonaj dekompozycję SVD, a następnie okrojoną rekonstrukcję (przy użyciu k wartości/wektorów osobliwych)\n",
" \"\"\"\n", " \"\"\"\n",
"# U,s,V = svd(image,full_matrices=False)\n", " image = np.real(image)\n",
" U,s,V = calculate(image)\n", " U,s,V = svd(image,full_matrices=False)\n",
" reconst_matrix = np.dot(U[:,:k],np.dot(np.diag(s[:k]),V[:k,:]))\n", " reconst_matrix = np.dot(U[:,:k],np.dot(np.diag(s[:k]),V[:k,:]))\n",
"\n", "\n",
" return reconst_matrix,s" " return reconst_matrix,s"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Przykładowa macierz"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Matrix U:\n",
" 0 1 2 3\n",
"0 0.0 0.0 1.0 0.0\n",
"1 0.0 1.0 0.0 0.0\n",
"2 0.0 0.0 0.0 -1.0\n",
"3 1.0 0.0 0.0 0.0\n",
"\n",
"Matrix V:\n",
" 0 1 2 3 4\n",
"0 0.000000 1.0 0.0 0.0 0.000000\n",
"1 0.000000 0.0 1.0 0.0 0.000000\n",
"2 0.447214 0.0 0.0 0.0 0.894427\n",
"3 0.000000 0.0 0.0 1.0 0.000000\n",
"4 -0.894427 0.0 0.0 0.0 0.447214\n",
"\n",
"Matrix s:\n",
" 0\n",
"0 4.000000\n",
"1 3.000000\n",
"2 2.236068\n",
"3 0.000000\n",
"\n",
"--------------------------------------\n",
"\n",
"Reconstructed matrix: \n",
"\n",
" 0 1 2 3 4\n",
"0 1.0 0.0 0.0 0.0 2.0\n",
"1 0.0 0.0 3.0 0.0 0.0\n",
"2 0.0 0.0 0.0 0.0 0.0\n",
"3 0.0 4.0 0.0 0.0 0.0\n"
]
}
],
"source": [
"a = np.array([[1, 0, 0, 0, 2], \n",
" [0, 0, 3, 0, 0],\n",
" [0, 0, 0, 0, 0],\n",
" [0, 4, 0, 0, 0]])\n",
"\n",
"U,s,V = calculate(a)\n",
"U1,s1,V1 = svd(a)\n",
"U = check_sign_U(U, U1)\n",
"V = check_sign_V(V, V1)\n",
"\n",
"U_dataframe = pd.DataFrame(U)\n",
"s_dataframe = pd.DataFrame(s)\n",
"V_dataframe = pd.DataFrame(V)\n",
"\n",
"print(\"Matrix U:\")\n",
"print(U_dataframe)\n",
"\n",
"print(\"\\nMatrix V:\")\n",
"print(V_dataframe)\n",
"\n",
"print(\"\\nMatrix s:\")\n",
"print(s_dataframe)\n",
"\n",
"print('\\n--------------------------------------\\n')\n",
"k = 4\n",
"reconst_matrix4 = np.dot(U[:,:k],np.dot(np.diag(s[:k]),V[:k,:]))\n",
"\n",
"recon_dataframe_matrix = pd.DataFrame(reconst_matrix4)\n",
"print('Reconstructed matrix: \\n')\n",
"print(recon_dataframe_matrix)"
]
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": { "metadata": {
@ -235,7 +368,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 8,
"metadata": { "metadata": {
"pycharm": { "pycharm": {
"name": "#%%\n" "name": "#%%\n"
@ -261,25 +394,10 @@
" # compression rate = 100% * (k * (height + width + k)) / (height + width)" " # compression rate = 100% * (k * (height + width + k)) / (height + width)"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"W celu zbadania, jak jakość zrekonstruowanego obrazu zmienia się wraz z $k$ należy użyć poniższego interaktywnego widżetu."
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": 9,
"metadata": { "metadata": {},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [], "outputs": [],
"source": [ "source": [
"def compute_k_max(img_name):\n", "def compute_k_max(img_name):\n",
@ -302,9 +420,20 @@
"list_widget.observe(update_k_max,'value')" "list_widget.observe(update_k_max,'value')"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"W celu zbadania, jak jakość zrekonstruowanego obrazu zmienia się wraz z $k$ należy użyć poniższego interaktywnego widżetu."
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 21, "execution_count": 10,
"metadata": { "metadata": {
"pycharm": { "pycharm": {
"name": "#%%\n" "name": "#%%\n"
@ -322,23 +451,24 @@
" \n", " \n",
" image=gray_images[img_name]\n", " image=gray_images[img_name]\n",
" original_shape = image.shape\n", " original_shape = image.shape\n",
" print(f\"Input image dimensions. Width:{original_shape[1]} Height:{original_shape[0]}\")\n", " print(f\"Input image dimensions. Width:{original_shape[1]} Height:{original_shape[0]}\\n\")\n",
"\n", "\n",
"# U,s,V = svd(image,full_matrices=False)\n", " U,s,V = svd(image,full_matrices=False)\n",
" U,s,V = calculate(image)\n", "\n",
" print(f\"Shape of U matrix: {U[:,:k].shape}\")\n", " U_dataframe = pd.DataFrame(U[:,:k])\n",
" print(f\"U MATRIX: {U[:,:k]}\")\n", " print(f\"U MATRIX:\\n {U_dataframe}\\n\")\n",
" print('*' * 100)\n", " print('\\n', '*' * 100, '\\n')\n",
" print(f\"Shape of S matrix: {s[:k].shape}\")\n", " print(f\"\\nShape of S matrix: {s[:k].shape[0]}\\n\")\n",
" print(f\"S MATRIX: {np.diag(s[:k])}\")\n", " s_dataframe = pd.DataFrame(np.diag(s[:k]))\n",
" print('*' * 100)\n", " print(f\"S MATRIX:\\n {s_dataframe}\")\n",
" print(f\"Shape of V matrix: {V[:k,:].shape}\")\n", " print('\\n', '*' * 100, '\\n')\n",
" print(f\"V MATRIX: {V[:k,:]}\")\n" " V_dataframe = pd.DataFrame(V[:k,:].T)\n",
" print(f\"V MATRIX:\\n {V_dataframe}\")\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 22, "execution_count": 11,
"metadata": { "metadata": {
"pycharm": { "pycharm": {
"name": "#%%\n" "name": "#%%\n"
@ -348,12 +478,12 @@
{ {
"data": { "data": {
"application/vnd.jupyter.widget-view+json": { "application/vnd.jupyter.widget-view+json": {
"model_id": "7c4a40e6f857407586d21ab113128a97", "model_id": "40f7f6318beb4d248fc1b3aa82096324",
"version_major": 2, "version_major": 2,
"version_minor": 0 "version_minor": 0
}, },
"text/plain": [ "text/plain": [
"interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'coffee', 'rocket', 'koala', '…" "interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'line', 'camera', 'coin', 'clo…"
] ]
}, },
"metadata": {}, "metadata": {},
@ -365,7 +495,7 @@
"<function __main__.print_matrices(img_name, k)>" "<function __main__.print_matrices(img_name, k)>"
] ]
}, },
"execution_count": 22, "execution_count": 11,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -376,7 +506,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 12,
"metadata": { "metadata": {
"pycharm": { "pycharm": {
"name": "#%%\n" "name": "#%%\n"
@ -386,12 +516,12 @@
{ {
"data": { "data": {
"application/vnd.jupyter.widget-view+json": { "application/vnd.jupyter.widget-view+json": {
"model_id": "3533923ce918489eab6fc7de25234078", "model_id": "3ec2852728b145a0b405eb6c24ef4e9b",
"version_major": 2, "version_major": 2,
"version_minor": 0 "version_minor": 0
}, },
"text/plain": [ "text/plain": [
"interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'camera', 'coin', 'clock', 'te…" "interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'line', 'camera', 'coin', 'clo…"
] ]
}, },
"metadata": {}, "metadata": {},
@ -415,7 +545,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 13,
"metadata": { "metadata": {
"pycharm": { "pycharm": {
"name": "#%%\n" "name": "#%%\n"
@ -431,7 +561,7 @@
" \"koala\": img_as_float(Image.open('koala.jpeg')),\n", " \"koala\": img_as_float(Image.open('koala.jpeg')),\n",
" \"orange\": img_as_float(Image.open('orange.jpeg')),\n", " \"orange\": img_as_float(Image.open('orange.jpeg')),\n",
" \"teacher\": img_as_float(Image.open('teacher.jpeg'))\n", " \"teacher\": img_as_float(Image.open('teacher.jpeg'))\n",
"}\n" "}"
] ]
}, },
{ {
@ -472,7 +602,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 14,
"metadata": { "metadata": {
"pycharm": { "pycharm": {
"name": "#%%\n" "name": "#%%\n"
@ -494,25 +624,10 @@
" plt.imshow(image_reconst)" " plt.imshow(image_reconst)"
] ]
}, },
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"Oto interaktywny widżet do badania kompresji obrazów kolorowych metodą reshape. Przeciągając suwak w celu zmiany wartości $k$, można zaobserwować, jak zmienia się jakość obrazu. Można także badać różne obrazy, wybierając je za pomocą rozwijanego widżetu."
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 15,
"metadata": { "metadata": {},
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [], "outputs": [],
"source": [ "source": [
"def compute_k_max_color_images(img_name):\n", "def compute_k_max_color_images(img_name):\n",
@ -521,66 +636,23 @@
" return (original_shape[0]*original_shape[1]*original_shape[2])//(original_shape[0] + 3*original_shape[1] + 1)\n", " return (original_shape[0]*original_shape[1]*original_shape[2])//(original_shape[0] + 3*original_shape[1] + 1)\n",
"\n", "\n",
"\n", "\n",
"list_widget = widgets.Dropdown(options=list(color_images.keys()))\n", "list_widget_color = widgets.Dropdown(options=list(color_images.keys()))\n",
"int_slider_widget = widgets.IntSlider(min=1,max=compute_k_max_color_images('cat'))\n", "int_slider_widget = widgets.IntSlider(min=1,max=compute_k_max_color_images('cat'))\n",
"def update_k_max_color(*args):\n", "def update_k_max_color(*args):\n",
" img_name=list_widget.value\n", " img_name=list_widget_color.value\n",
" int_slider_widget.max = compute_k_max_color_images(img_name)\n", " int_slider_widget.max = compute_k_max_color_images(img_name)\n",
"list_widget.observe(update_k_max_color,'value')" "list_widget_color.observe(update_k_max_color,'value')"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "markdown",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"def print_color_matrices(img_name,k):\n",
" \"\"\"\n",
" Wyświetlanie macierzy U V S wraz z wymiarami.\n",
" \"\"\"\n",
" image = color_images[img_name]\n",
" original_shape = image.shape\n",
" image_reconst_layers = [compress_svd(image[:,:,i],k)[0] for i in range(3)]\n",
" print(image_reconst_layers)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": { "metadata": {
"pycharm": { "pycharm": {
"name": "#%%\n" "name": "#%% md\n"
} }
}, },
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0af20b426d1240cca1e08e40ede10e98",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'coffee', 'rocket', 'koala', '…"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<function __main__.print_color_matrices(img_name, k)>"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"interact(print_color_matrices, img_name=list_widget, k=int_slider_widget)" "Oto interaktywny widżet do badania kompresji obrazów kolorowych metodą reshape. Przeciągając suwak w celu zmiany wartości $k$, można zaobserwować, jak zmienia się jakość obrazu. Można także badać różne obrazy, wybierając je za pomocą rozwijanego widżetu."
] ]
}, },
{ {
@ -595,7 +667,7 @@
{ {
"data": { "data": {
"application/vnd.jupyter.widget-view+json": { "application/vnd.jupyter.widget-view+json": {
"model_id": "86f500d175554478ac9805075a809d28", "model_id": "eaba6da4395e43d4ab429b4cca24ad3f",
"version_major": 2, "version_major": 2,
"version_minor": 0 "version_minor": 0
}, },
@ -608,7 +680,7 @@
} }
], ],
"source": [ "source": [
"interact(compress_show_color_images_reshape,img_name=list_widget,k=int_slider_widget);" "interact(compress_show_color_images_reshape,img_name=list_widget_color,k=int_slider_widget);"
] ]
}, },
{ {
@ -650,7 +722,6 @@
" image = color_images[img_name]\n", " image = color_images[img_name]\n",
" original_shape = image.shape\n", " original_shape = image.shape\n",
" image_reconst_layers = [compress_svd(image[:,:,i],k)[0] for i in range(3)]\n", " image_reconst_layers = [compress_svd(image[:,:,i],k)[0] for i in range(3)]\n",
"# print(image_reconst_layers)\n",
" image_reconst = np.zeros(image.shape)\n", " image_reconst = np.zeros(image.shape)\n",
" for i in range(3):\n", " for i in range(3):\n",
" image_reconst[:,:,i] = image_reconst_layers[i]\n", " image_reconst[:,:,i] = image_reconst_layers[i]\n",
@ -687,41 +758,17 @@
" return (original_shape[0]*original_shape[1]*original_shape[2])// (3*(original_shape[0] + original_shape[1] + 1))\n", " return (original_shape[0]*original_shape[1]*original_shape[2])// (3*(original_shape[0] + original_shape[1] + 1))\n",
"\n", "\n",
"\n", "\n",
"list_widget = widgets.Dropdown(options=list(color_images.keys()))\n", "list_widget_color = widgets.Dropdown(options=list(color_images.keys()))\n",
"int_slider_widget = widgets.IntSlider(min=1,max=compute_k_max_color_images_layers('cat'))\n", "int_slider_widget = widgets.IntSlider(min=1,max=compute_k_max_color_images_layers('cat'))\n",
"def update_k_max_color_layers(*args):\n", "def update_k_max_color_layers(*args):\n",
" img_name=list_widget.value\n", " img_name=list_widget_color.value\n",
" int_slider_widget.max = compute_k_max_color_images_layers(img_name)\n", " int_slider_widget.max = compute_k_max_color_images_layers(img_name)\n",
"list_widget.observe(update_k_max_color_layers,'value')" "list_widget_color.observe(update_k_max_color_layers,'value')"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 19, "execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e97ca096507f42b49f98dbb87ac5a2ec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"interactive(children=(Dropdown(description='img_name', options=('cat', 'astro', 'coffee', 'rocket', 'koala', '…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"interact(print_color_matrices,img_name=list_widget,k=int_slider_widget);"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": { "metadata": {
"pycharm": { "pycharm": {
"name": "#%%\n" "name": "#%%\n"
@ -731,7 +778,7 @@
{ {
"data": { "data": {
"application/vnd.jupyter.widget-view+json": { "application/vnd.jupyter.widget-view+json": {
"model_id": "71fea739144848d69afb1662172190ad", "model_id": "5089ca8c1cb845478b279185787ad156",
"version_major": 2, "version_major": 2,
"version_minor": 0 "version_minor": 0
}, },
@ -744,20 +791,13 @@
} }
], ],
"source": [ "source": [
"interact(compress_show_color_images_layer,img_name=list_widget,k=int_slider_widget);" "interact(compress_show_color_images_layer,img_name=list_widget_color,k=int_slider_widget);"
] ]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3 (ipykernel)", "display_name": "Python 3.8.13 ('pytorch_m1')",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@ -772,8 +812,13 @@
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.8.13" "version": "3.8.13"
},
"vscode": {
"interpreter": {
"hash": "8a8c11200ab875bf4be543ce12265edee0c7e0345ae0b6d9e205fdf23b03e663"
}
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 1 "nbformat_minor": 1
} }

163
kMedoids.py Normal file
View File

@ -0,0 +1,163 @@
import random
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.metrics import silhouette_score
from sklearn.preprocessing import MinMaxScaler
class TrainModel:
def __init__(self, data, k_value):
self.data = data
scaler = MinMaxScaler()
# self.data = scaler.fit_transform(self.data)
self.k_value = k_value
self.kmedoids(self.data)
def get_random_medoids(self, data):
points = random.sample(range(0, len(data)), self.k_value)
medoids = []
for i in range(self.k_value):
medoids.append(data[i])
return medoids
def get_closest_medoids(self, sample_point, medoids):
min_distance = float('inf')
closest_medoid = None
for i in range(len(medoids)):
distance = self.calculateDistance(sample_point, medoids[i])
if distance < min_distance:
min_distance = distance
closest_medoid = i
return closest_medoid
def get_clusters(self, data_points, medoids):
clusters = [[] for _ in range(self.k_value)]
for i in range(len(data_points)):
x = self.get_closest_medoids(data_points[i], medoids)
clusters[x].append(data_points[i])
return clusters
def calculate_cost(self, data_points, clusters, medoids):
cost = 0
for i in range(len(clusters)):
for j in range(len(clusters[i])):
cost += self.calculateDistance(medoids[i], clusters[i][j])
return cost
def get_non_medoids(self, data_points, medoids):
non_medoids = []
for sample in data_points:
flag = False
for m in medoids:
if (sample == m).all():
flag = True
if flag == False:
non_medoids.append(sample)
return non_medoids
def get_clusters_label(self, data_points, clusters):
labels = []
for i in range(len(data_points)):
labels.append(0)
for i in range(len(clusters)):
cluster = clusters[i]
for j in range(len(cluster)):
for k in range(len(data_points)):
if (cluster[j] == data_points[k]).all():
labels[k] = i
break
return labels
def kmedoids(self, data):
medoids = self.get_random_medoids(data)
clusters = self.get_clusters(data, medoids)
initial_cost = self.calculate_cost(data, clusters, medoids)
while True:
best_medoids = medoids
lowest_cost = initial_cost
for i in range(len(medoids)):
non_medoids = self.get_non_medoids(data, medoids)
for j in range(len(non_medoids)):
new_medoids = medoids.copy()
for k in range(len(new_medoids)):
if (new_medoids[k] == medoids[i]).all():
new_medoids[k] = non_medoids[j]
new_clusters = self.get_clusters(data, new_medoids)
new_cost = self.calculate_cost(data, new_clusters, new_medoids)
if new_cost < lowest_cost:
lowest_cost = new_cost
best_medoids = new_medoids
if lowest_cost < initial_cost:
initial_cost = lowest_cost
medoids = best_medoids
else:
break
final_clusters = self.get_clusters(data, medoids)
cluster_labels = self.get_clusters_label(data, final_clusters)
silhouette_avg = silhouette_score(data, cluster_labels)
# First cluster
x0 = np.squeeze(final_clusters[0])[:, 0]
y0 = np.squeeze(final_clusters[0])[:, 1]
# Second cluster
x1 = np.squeeze(final_clusters[1])[:, 0]
y1 = np.squeeze(final_clusters[1])[:, 1]
plt.scatter(x0, y0, c='red')
plt.scatter(x1, y1, c='green')
# Draw medoids
mx = []
my = []
for m in medoids:
mx.append(m[0])
my.append(m[1])
plt.scatter(mx, my, c='yellow', marker='*')
plt.xlabel("X")
plt.ylabel("Y")
plt.title("K-medoids clusters")
plt.show()
print('Sylwetka (ang. Silhouette) dla algorytmu k-medoid dla k =', self.k_value, 10 * '-', silhouette_avg)
def calculateDistance(self, x, y):
return np.linalg.norm(x - y)
# Prepare dataset
dataset = np.array([
[5, 6],
[4, 7],
[4, 8],
[4, 6],
[5, 7],
[5, 8],
[7, 6],
[8, 8],
[7, 7],
[7, 8]]
)
column_values = ['x', 'y']
df = pd.DataFrame(data=dataset, columns=column_values, index=None)
# Draw data distribution
sns.set_theme(style='darkgrid')
sns.scatterplot(data=df, x='x', y='y')
plt.show()
# Run K-Medoids algorithm
model = TrainModel(dataset, 2)
# dataset = pd.read_csv('iris.csv')
# dataset = dataset.iloc[:,:-1]
# dataset = dataset.iloc[: , 1:]
# dataset = dataset.values

4221
kmedoids.ipynb Normal file

File diff suppressed because one or more lines are too long

179
wine.csv Normal file
View File

@ -0,0 +1,179 @@
Alcohol,Malic_Acid,Ash,Ash_Alcanity,Magnesium,Total_Phenols,Flavanoids,Nonflavanoid_Phenols,Proanthocyanins,Color_Intensity,Hue,OD280,Proline
14.23,1.71,2.43,15.6,127,2.8,3.06,0.28,2.29,5.64,1.04,3.92,1065
13.2,1.78,2.14,11.2,100,2.65,2.76,0.26,1.28,4.38,1.05,3.4,1050
13.16,2.36,2.67,18.6,101,2.8,3.24,0.3,2.81,5.68,1.03,3.17,1185
14.37,1.95,2.5,16.8,113,3.85,3.49,0.24,2.18,7.8,0.86,3.45,1480
13.24,2.59,2.87,21,118,2.8,2.69,0.39,1.82,4.32,1.04,2.93,735
14.2,1.76,2.45,15.2,112,3.27,3.39,0.34,1.97,6.75,1.05,2.85,1450
14.39,1.87,2.45,14.6,96,2.5,2.52,0.3,1.98,5.25,1.02,3.58,1290
14.06,2.15,2.61,17.6,121,2.6,2.51,0.31,1.25,5.05,1.06,3.58,1295
14.83,1.64,2.17,14,97,2.8,2.98,0.29,1.98,5.2,1.08,2.85,1045
13.86,1.35,2.27,16,98,2.98,3.15,0.22,1.85,7.22,1.01,3.55,1045
14.1,2.16,2.3,18,105,2.95,3.32,0.22,2.38,5.75,1.25,3.17,1510
14.12,1.48,2.32,16.8,95,2.2,2.43,0.26,1.57,5,1.17,2.82,1280
13.75,1.73,2.41,16,89,2.6,2.76,0.29,1.81,5.6,1.15,2.9,1320
14.75,1.73,2.39,11.4,91,3.1,3.69,0.43,2.81,5.4,1.25,2.73,1150
14.38,1.87,2.38,12,102,3.3,3.64,0.29,2.96,7.5,1.2,3,1547
13.63,1.81,2.7,17.2,112,2.85,2.91,0.3,1.46,7.3,1.28,2.88,1310
14.3,1.92,2.72,20,120,2.8,3.14,0.33,1.97,6.2,1.07,2.65,1280
13.83,1.57,2.62,20,115,2.95,3.4,0.4,1.72,6.6,1.13,2.57,1130
14.19,1.59,2.48,16.5,108,3.3,3.93,0.32,1.86,8.7,1.23,2.82,1680
13.64,3.1,2.56,15.2,116,2.7,3.03,0.17,1.66,5.1,0.96,3.36,845
14.06,1.63,2.28,16,126,3,3.17,0.24,2.1,5.65,1.09,3.71,780
12.93,3.8,2.65,18.6,102,2.41,2.41,0.25,1.98,4.5,1.03,3.52,770
13.71,1.86,2.36,16.6,101,2.61,2.88,0.27,1.69,3.8,1.11,4,1035
12.85,1.6,2.52,17.8,95,2.48,2.37,0.26,1.46,3.93,1.09,3.63,1015
13.5,1.81,2.61,20,96,2.53,2.61,0.28,1.66,3.52,1.12,3.82,845
13.05,2.05,3.22,25,124,2.63,2.68,0.47,1.92,3.58,1.13,3.2,830
13.39,1.77,2.62,16.1,93,2.85,2.94,0.34,1.45,4.8,0.92,3.22,1195
13.3,1.72,2.14,17,94,2.4,2.19,0.27,1.35,3.95,1.02,2.77,1285
13.87,1.9,2.8,19.4,107,2.95,2.97,0.37,1.76,4.5,1.25,3.4,915
14.02,1.68,2.21,16,96,2.65,2.33,0.26,1.98,4.7,1.04,3.59,1035
13.73,1.5,2.7,22.5,101,3,3.25,0.29,2.38,5.7,1.19,2.71,1285
13.58,1.66,2.36,19.1,106,2.86,3.19,0.22,1.95,6.9,1.09,2.88,1515
13.68,1.83,2.36,17.2,104,2.42,2.69,0.42,1.97,3.84,1.23,2.87,990
13.76,1.53,2.7,19.5,132,2.95,2.74,0.5,1.35,5.4,1.25,3,1235
13.51,1.8,2.65,19,110,2.35,2.53,0.29,1.54,4.2,1.1,2.87,1095
13.48,1.81,2.41,20.5,100,2.7,2.98,0.26,1.86,5.1,1.04,3.47,920
13.28,1.64,2.84,15.5,110,2.6,2.68,0.34,1.36,4.6,1.09,2.78,880
13.05,1.65,2.55,18,98,2.45,2.43,0.29,1.44,4.25,1.12,2.51,1105
13.07,1.5,2.1,15.5,98,2.4,2.64,0.28,1.37,3.7,1.18,2.69,1020
14.22,3.99,2.51,13.2,128,3,3.04,0.2,2.08,5.1,0.89,3.53,760
13.56,1.71,2.31,16.2,117,3.15,3.29,0.34,2.34,6.13,0.95,3.38,795
13.41,3.84,2.12,18.8,90,2.45,2.68,0.27,1.48,4.28,0.91,3,1035
13.88,1.89,2.59,15,101,3.25,3.56,0.17,1.7,5.43,0.88,3.56,1095
13.24,3.98,2.29,17.5,103,2.64,2.63,0.32,1.66,4.36,0.82,3,680
13.05,1.77,2.1,17,107,3,3,0.28,2.03,5.04,0.88,3.35,885
14.21,4.04,2.44,18.9,111,2.85,2.65,0.3,1.25,5.24,0.87,3.33,1080
14.38,3.59,2.28,16,102,3.25,3.17,0.27,2.19,4.9,1.04,3.44,1065
13.9,1.68,2.12,16,101,3.1,3.39,0.21,2.14,6.1,0.91,3.33,985
14.1,2.02,2.4,18.8,103,2.75,2.92,0.32,2.38,6.2,1.07,2.75,1060
13.94,1.73,2.27,17.4,108,2.88,3.54,0.32,2.08,8.9,1.12,3.1,1260
13.05,1.73,2.04,12.4,92,2.72,3.27,0.17,2.91,7.2,1.12,2.91,1150
13.83,1.65,2.6,17.2,94,2.45,2.99,0.22,2.29,5.6,1.24,3.37,1265
13.82,1.75,2.42,14,111,3.88,3.74,0.32,1.87,7.05,1.01,3.26,1190
13.77,1.9,2.68,17.1,115,3,2.79,0.39,1.68,6.3,1.13,2.93,1375
13.74,1.67,2.25,16.4,118,2.6,2.9,0.21,1.62,5.85,0.92,3.2,1060
13.56,1.73,2.46,20.5,116,2.96,2.78,0.2,2.45,6.25,0.98,3.03,1120
14.22,1.7,2.3,16.3,118,3.2,3,0.26,2.03,6.38,0.94,3.31,970
13.29,1.97,2.68,16.8,102,3,3.23,0.31,1.66,6,1.07,2.84,1270
13.72,1.43,2.5,16.7,108,3.4,3.67,0.19,2.04,6.8,0.89,2.87,1285
12.37,0.94,1.36,10.6,88,1.98,0.57,0.28,0.42,1.95,1.05,1.82,520
12.33,1.1,2.28,16,101,2.05,1.09,0.63,0.41,3.27,1.25,1.67,680
12.64,1.36,2.02,16.8,100,2.02,1.41,0.53,0.62,5.75,0.98,1.59,450
13.67,1.25,1.92,18,94,2.1,1.79,0.32,0.73,3.8,1.23,2.46,630
12.37,1.13,2.16,19,87,3.5,3.1,0.19,1.87,4.45,1.22,2.87,420
12.17,1.45,2.53,19,104,1.89,1.75,0.45,1.03,2.95,1.45,2.23,355
12.37,1.21,2.56,18.1,98,2.42,2.65,0.37,2.08,4.6,1.19,2.3,678
13.11,1.01,1.7,15,78,2.98,3.18,0.26,2.28,5.3,1.12,3.18,502
12.37,1.17,1.92,19.6,78,2.11,2,0.27,1.04,4.68,1.12,3.48,510
13.34,0.94,2.36,17,110,2.53,1.3,0.55,0.42,3.17,1.02,1.93,750
12.21,1.19,1.75,16.8,151,1.85,1.28,0.14,2.5,2.85,1.28,3.07,718
12.29,1.61,2.21,20.4,103,1.1,1.02,0.37,1.46,3.05,0.906,1.82,870
13.86,1.51,2.67,25,86,2.95,2.86,0.21,1.87,3.38,1.36,3.16,410
13.49,1.66,2.24,24,87,1.88,1.84,0.27,1.03,3.74,0.98,2.78,472
12.99,1.67,2.6,30,139,3.3,2.89,0.21,1.96,3.35,1.31,3.5,985
11.96,1.09,2.3,21,101,3.38,2.14,0.13,1.65,3.21,0.99,3.13,886
11.66,1.88,1.92,16,97,1.61,1.57,0.34,1.15,3.8,1.23,2.14,428
13.03,0.9,1.71,16,86,1.95,2.03,0.24,1.46,4.6,1.19,2.48,392
11.84,2.89,2.23,18,112,1.72,1.32,0.43,0.95,2.65,0.96,2.52,500
12.33,0.99,1.95,14.8,136,1.9,1.85,0.35,2.76,3.4,1.06,2.31,750
12.7,3.87,2.4,23,101,2.83,2.55,0.43,1.95,2.57,1.19,3.13,463
12,0.92,2,19,86,2.42,2.26,0.3,1.43,2.5,1.38,3.12,278
12.72,1.81,2.2,18.8,86,2.2,2.53,0.26,1.77,3.9,1.16,3.14,714
12.08,1.13,2.51,24,78,2,1.58,0.4,1.4,2.2,1.31,2.72,630
13.05,3.86,2.32,22.5,85,1.65,1.59,0.61,1.62,4.8,0.84,2.01,515
11.84,0.89,2.58,18,94,2.2,2.21,0.22,2.35,3.05,0.79,3.08,520
12.67,0.98,2.24,18,99,2.2,1.94,0.3,1.46,2.62,1.23,3.16,450
12.16,1.61,2.31,22.8,90,1.78,1.69,0.43,1.56,2.45,1.33,2.26,495
11.65,1.67,2.62,26,88,1.92,1.61,0.4,1.34,2.6,1.36,3.21,562
11.64,2.06,2.46,21.6,84,1.95,1.69,0.48,1.35,2.8,1,2.75,680
12.08,1.33,2.3,23.6,70,2.2,1.59,0.42,1.38,1.74,1.07,3.21,625
12.08,1.83,2.32,18.5,81,1.6,1.5,0.52,1.64,2.4,1.08,2.27,480
12,1.51,2.42,22,86,1.45,1.25,0.5,1.63,3.6,1.05,2.65,450
12.69,1.53,2.26,20.7,80,1.38,1.46,0.58,1.62,3.05,0.96,2.06,495
12.29,2.83,2.22,18,88,2.45,2.25,0.25,1.99,2.15,1.15,3.3,290
11.62,1.99,2.28,18,98,3.02,2.26,0.17,1.35,3.25,1.16,2.96,345
12.47,1.52,2.2,19,162,2.5,2.27,0.32,3.28,2.6,1.16,2.63,937
11.81,2.12,2.74,21.5,134,1.6,0.99,0.14,1.56,2.5,0.95,2.26,625
12.29,1.41,1.98,16,85,2.55,2.5,0.29,1.77,2.9,1.23,2.74,428
12.37,1.07,2.1,18.5,88,3.52,3.75,0.24,1.95,4.5,1.04,2.77,660
12.29,3.17,2.21,18,88,2.85,2.99,0.45,2.81,2.3,1.42,2.83,406
12.08,2.08,1.7,17.5,97,2.23,2.17,0.26,1.4,3.3,1.27,2.96,710
12.6,1.34,1.9,18.5,88,1.45,1.36,0.29,1.35,2.45,1.04,2.77,562
12.34,2.45,2.46,21,98,2.56,2.11,0.34,1.31,2.8,0.8,3.38,438
11.82,1.72,1.88,19.5,86,2.5,1.64,0.37,1.42,2.06,0.94,2.44,415
12.51,1.73,1.98,20.5,85,2.2,1.92,0.32,1.48,2.94,1.04,3.57,672
12.42,2.55,2.27,22,90,1.68,1.84,0.66,1.42,2.7,0.86,3.3,315
12.25,1.73,2.12,19,80,1.65,2.03,0.37,1.63,3.4,1,3.17,510
12.72,1.75,2.28,22.5,84,1.38,1.76,0.48,1.63,3.3,0.88,2.42,488
12.22,1.29,1.94,19,92,2.36,2.04,0.39,2.08,2.7,0.86,3.02,312
11.61,1.35,2.7,20,94,2.74,2.92,0.29,2.49,2.65,0.96,3.26,680
11.46,3.74,1.82,19.5,107,3.18,2.58,0.24,3.58,2.9,0.75,2.81,562
12.52,2.43,2.17,21,88,2.55,2.27,0.26,1.22,2,0.9,2.78,325
11.76,2.68,2.92,20,103,1.75,2.03,0.6,1.05,3.8,1.23,2.5,607
11.41,0.74,2.5,21,88,2.48,2.01,0.42,1.44,3.08,1.1,2.31,434
12.08,1.39,2.5,22.5,84,2.56,2.29,0.43,1.04,2.9,0.93,3.19,385
11.03,1.51,2.2,21.5,85,2.46,2.17,0.52,2.01,1.9,1.71,2.87,407
11.82,1.47,1.99,20.8,86,1.98,1.6,0.3,1.53,1.95,0.95,3.33,495
12.42,1.61,2.19,22.5,108,2,2.09,0.34,1.61,2.06,1.06,2.96,345
12.77,3.43,1.98,16,80,1.63,1.25,0.43,0.83,3.4,0.7,2.12,372
12,3.43,2,19,87,2,1.64,0.37,1.87,1.28,0.93,3.05,564
11.45,2.4,2.42,20,96,2.9,2.79,0.32,1.83,3.25,0.8,3.39,625
11.56,2.05,3.23,28.5,119,3.18,5.08,0.47,1.87,6,0.93,3.69,465
12.42,4.43,2.73,26.5,102,2.2,2.13,0.43,1.71,2.08,0.92,3.12,365
13.05,5.8,2.13,21.5,86,2.62,2.65,0.3,2.01,2.6,0.73,3.1,380
11.87,4.31,2.39,21,82,2.86,3.03,0.21,2.91,2.8,0.75,3.64,380
12.07,2.16,2.17,21,85,2.6,2.65,0.37,1.35,2.76,0.86,3.28,378
12.43,1.53,2.29,21.5,86,2.74,3.15,0.39,1.77,3.94,0.69,2.84,352
11.79,2.13,2.78,28.5,92,2.13,2.24,0.58,1.76,3,0.97,2.44,466
12.37,1.63,2.3,24.5,88,2.22,2.45,0.4,1.9,2.12,0.89,2.78,342
12.04,4.3,2.38,22,80,2.1,1.75,0.42,1.35,2.6,0.79,2.57,580
12.86,1.35,2.32,18,122,1.51,1.25,0.21,0.94,4.1,0.76,1.29,630
12.88,2.99,2.4,20,104,1.3,1.22,0.24,0.83,5.4,0.74,1.42,530
12.81,2.31,2.4,24,98,1.15,1.09,0.27,0.83,5.7,0.66,1.36,560
12.7,3.55,2.36,21.5,106,1.7,1.2,0.17,0.84,5,0.78,1.29,600
12.51,1.24,2.25,17.5,85,2,0.58,0.6,1.25,5.45,0.75,1.51,650
12.6,2.46,2.2,18.5,94,1.62,0.66,0.63,0.94,7.1,0.73,1.58,695
12.25,4.72,2.54,21,89,1.38,0.47,0.53,0.8,3.85,0.75,1.27,720
12.53,5.51,2.64,25,96,1.79,0.6,0.63,1.1,5,0.82,1.69,515
13.49,3.59,2.19,19.5,88,1.62,0.48,0.58,0.88,5.7,0.81,1.82,580
12.84,2.96,2.61,24,101,2.32,0.6,0.53,0.81,4.92,0.89,2.15,590
12.93,2.81,2.7,21,96,1.54,0.5,0.53,0.75,4.6,0.77,2.31,600
13.36,2.56,2.35,20,89,1.4,0.5,0.37,0.64,5.6,0.7,2.47,780
13.52,3.17,2.72,23.5,97,1.55,0.52,0.5,0.55,4.35,0.89,2.06,520
13.62,4.95,2.35,20,92,2,0.8,0.47,1.02,4.4,0.91,2.05,550
12.25,3.88,2.2,18.5,112,1.38,0.78,0.29,1.14,8.21,0.65,2,855
13.16,3.57,2.15,21,102,1.5,0.55,0.43,1.3,4,0.6,1.68,830
13.88,5.04,2.23,20,80,0.98,0.34,0.4,0.68,4.9,0.58,1.33,415
12.87,4.61,2.48,21.5,86,1.7,0.65,0.47,0.86,7.65,0.54,1.86,625
13.32,3.24,2.38,21.5,92,1.93,0.76,0.45,1.25,8.42,0.55,1.62,650
13.08,3.9,2.36,21.5,113,1.41,1.39,0.34,1.14,9.4,0.57,1.33,550
13.5,3.12,2.62,24,123,1.4,1.57,0.22,1.25,8.6,0.59,1.3,500
12.79,2.67,2.48,22,112,1.48,1.36,0.24,1.26,10.8,0.48,1.47,480
13.11,1.9,2.75,25.5,116,2.2,1.28,0.26,1.56,7.1,0.61,1.33,425
13.23,3.3,2.28,18.5,98,1.8,0.83,0.61,1.87,10.52,0.56,1.51,675
12.58,1.29,2.1,20,103,1.48,0.58,0.53,1.4,7.6,0.58,1.55,640
13.17,5.19,2.32,22,93,1.74,0.63,0.61,1.55,7.9,0.6,1.48,725
13.84,4.12,2.38,19.5,89,1.8,0.83,0.48,1.56,9.01,0.57,1.64,480
12.45,3.03,2.64,27,97,1.9,0.58,0.63,1.14,7.5,0.67,1.73,880
14.34,1.68,2.7,25,98,2.8,1.31,0.53,2.7,13,0.57,1.96,660
13.48,1.67,2.64,22.5,89,2.6,1.1,0.52,2.29,11.75,0.57,1.78,620
12.36,3.83,2.38,21,88,2.3,0.92,0.5,1.04,7.65,0.56,1.58,520
13.69,3.26,2.54,20,107,1.83,0.56,0.5,0.8,5.88,0.96,1.82,680
12.85,3.27,2.58,22,106,1.65,0.6,0.6,0.96,5.58,0.87,2.11,570
12.96,3.45,2.35,18.5,106,1.39,0.7,0.4,0.94,5.28,0.68,1.75,675
13.78,2.76,2.3,22,90,1.35,0.68,0.41,1.03,9.58,0.7,1.68,615
13.73,4.36,2.26,22.5,88,1.28,0.47,0.52,1.15,6.62,0.78,1.75,520
13.45,3.7,2.6,23,111,1.7,0.92,0.43,1.46,10.68,0.85,1.56,695
12.82,3.37,2.3,19.5,88,1.48,0.66,0.4,0.97,10.26,0.72,1.75,685
13.58,2.58,2.69,24.5,105,1.55,0.84,0.39,1.54,8.66,0.74,1.8,750
13.4,4.6,2.86,25,112,1.98,0.96,0.27,1.11,8.5,0.67,1.92,630
12.2,3.03,2.32,19,96,1.25,0.49,0.4,0.73,5.5,0.66,1.83,510
12.77,2.39,2.28,19.5,86,1.39,0.51,0.48,0.64,9.899999,0.57,1.63,470
14.16,2.51,2.48,20,91,1.68,0.7,0.44,1.24,9.7,0.62,1.71,660
13.71,5.65,2.45,20.5,95,1.68,0.61,0.52,1.06,7.7,0.64,1.74,740
13.4,3.91,2.48,23,102,1.8,0.75,0.43,1.41,7.3,0.7,1.56,750
13.27,4.28,2.26,20,120,1.59,0.69,0.43,1.35,10.2,0.59,1.56,835
13.17,2.59,2.37,20,120,1.65,0.68,0.53,1.46,9.3,0.6,1.62,840
14.13,4.1,2.74,24.5,96,2.05,0.76,0.56,1.35,9.2,0.61,1.6,560
1 Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols Flavanoids Nonflavanoid_Phenols Proanthocyanins Color_Intensity Hue OD280 Proline
2 14.23 1.71 2.43 15.6 127 2.8 3.06 0.28 2.29 5.64 1.04 3.92 1065
3 13.2 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.4 1050
4 13.16 2.36 2.67 18.6 101 2.8 3.24 0.3 2.81 5.68 1.03 3.17 1185
5 14.37 1.95 2.5 16.8 113 3.85 3.49 0.24 2.18 7.8 0.86 3.45 1480
6 13.24 2.59 2.87 21 118 2.8 2.69 0.39 1.82 4.32 1.04 2.93 735
7 14.2 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97 6.75 1.05 2.85 1450
8 14.39 1.87 2.45 14.6 96 2.5 2.52 0.3 1.98 5.25 1.02 3.58 1290
9 14.06 2.15 2.61 17.6 121 2.6 2.51 0.31 1.25 5.05 1.06 3.58 1295
10 14.83 1.64 2.17 14 97 2.8 2.98 0.29 1.98 5.2 1.08 2.85 1045
11 13.86 1.35 2.27 16 98 2.98 3.15 0.22 1.85 7.22 1.01 3.55 1045
12 14.1 2.16 2.3 18 105 2.95 3.32 0.22 2.38 5.75 1.25 3.17 1510
13 14.12 1.48 2.32 16.8 95 2.2 2.43 0.26 1.57 5 1.17 2.82 1280
14 13.75 1.73 2.41 16 89 2.6 2.76 0.29 1.81 5.6 1.15 2.9 1320
15 14.75 1.73 2.39 11.4 91 3.1 3.69 0.43 2.81 5.4 1.25 2.73 1150
16 14.38 1.87 2.38 12 102 3.3 3.64 0.29 2.96 7.5 1.2 3 1547
17 13.63 1.81 2.7 17.2 112 2.85 2.91 0.3 1.46 7.3 1.28 2.88 1310
18 14.3 1.92 2.72 20 120 2.8 3.14 0.33 1.97 6.2 1.07 2.65 1280
19 13.83 1.57 2.62 20 115 2.95 3.4 0.4 1.72 6.6 1.13 2.57 1130
20 14.19 1.59 2.48 16.5 108 3.3 3.93 0.32 1.86 8.7 1.23 2.82 1680
21 13.64 3.1 2.56 15.2 116 2.7 3.03 0.17 1.66 5.1 0.96 3.36 845
22 14.06 1.63 2.28 16 126 3 3.17 0.24 2.1 5.65 1.09 3.71 780
23 12.93 3.8 2.65 18.6 102 2.41 2.41 0.25 1.98 4.5 1.03 3.52 770
24 13.71 1.86 2.36 16.6 101 2.61 2.88 0.27 1.69 3.8 1.11 4 1035
25 12.85 1.6 2.52 17.8 95 2.48 2.37 0.26 1.46 3.93 1.09 3.63 1015
26 13.5 1.81 2.61 20 96 2.53 2.61 0.28 1.66 3.52 1.12 3.82 845
27 13.05 2.05 3.22 25 124 2.63 2.68 0.47 1.92 3.58 1.13 3.2 830
28 13.39 1.77 2.62 16.1 93 2.85 2.94 0.34 1.45 4.8 0.92 3.22 1195
29 13.3 1.72 2.14 17 94 2.4 2.19 0.27 1.35 3.95 1.02 2.77 1285
30 13.87 1.9 2.8 19.4 107 2.95 2.97 0.37 1.76 4.5 1.25 3.4 915
31 14.02 1.68 2.21 16 96 2.65 2.33 0.26 1.98 4.7 1.04 3.59 1035
32 13.73 1.5 2.7 22.5 101 3 3.25 0.29 2.38 5.7 1.19 2.71 1285
33 13.58 1.66 2.36 19.1 106 2.86 3.19 0.22 1.95 6.9 1.09 2.88 1515
34 13.68 1.83 2.36 17.2 104 2.42 2.69 0.42 1.97 3.84 1.23 2.87 990
35 13.76 1.53 2.7 19.5 132 2.95 2.74 0.5 1.35 5.4 1.25 3 1235
36 13.51 1.8 2.65 19 110 2.35 2.53 0.29 1.54 4.2 1.1 2.87 1095
37 13.48 1.81 2.41 20.5 100 2.7 2.98 0.26 1.86 5.1 1.04 3.47 920
38 13.28 1.64 2.84 15.5 110 2.6 2.68 0.34 1.36 4.6 1.09 2.78 880
39 13.05 1.65 2.55 18 98 2.45 2.43 0.29 1.44 4.25 1.12 2.51 1105
40 13.07 1.5 2.1 15.5 98 2.4 2.64 0.28 1.37 3.7 1.18 2.69 1020
41 14.22 3.99 2.51 13.2 128 3 3.04 0.2 2.08 5.1 0.89 3.53 760
42 13.56 1.71 2.31 16.2 117 3.15 3.29 0.34 2.34 6.13 0.95 3.38 795
43 13.41 3.84 2.12 18.8 90 2.45 2.68 0.27 1.48 4.28 0.91 3 1035
44 13.88 1.89 2.59 15 101 3.25 3.56 0.17 1.7 5.43 0.88 3.56 1095
45 13.24 3.98 2.29 17.5 103 2.64 2.63 0.32 1.66 4.36 0.82 3 680
46 13.05 1.77 2.1 17 107 3 3 0.28 2.03 5.04 0.88 3.35 885
47 14.21 4.04 2.44 18.9 111 2.85 2.65 0.3 1.25 5.24 0.87 3.33 1080
48 14.38 3.59 2.28 16 102 3.25 3.17 0.27 2.19 4.9 1.04 3.44 1065
49 13.9 1.68 2.12 16 101 3.1 3.39 0.21 2.14 6.1 0.91 3.33 985
50 14.1 2.02 2.4 18.8 103 2.75 2.92 0.32 2.38 6.2 1.07 2.75 1060
51 13.94 1.73 2.27 17.4 108 2.88 3.54 0.32 2.08 8.9 1.12 3.1 1260
52 13.05 1.73 2.04 12.4 92 2.72 3.27 0.17 2.91 7.2 1.12 2.91 1150
53 13.83 1.65 2.6 17.2 94 2.45 2.99 0.22 2.29 5.6 1.24 3.37 1265
54 13.82 1.75 2.42 14 111 3.88 3.74 0.32 1.87 7.05 1.01 3.26 1190
55 13.77 1.9 2.68 17.1 115 3 2.79 0.39 1.68 6.3 1.13 2.93 1375
56 13.74 1.67 2.25 16.4 118 2.6 2.9 0.21 1.62 5.85 0.92 3.2 1060
57 13.56 1.73 2.46 20.5 116 2.96 2.78 0.2 2.45 6.25 0.98 3.03 1120
58 14.22 1.7 2.3 16.3 118 3.2 3 0.26 2.03 6.38 0.94 3.31 970
59 13.29 1.97 2.68 16.8 102 3 3.23 0.31 1.66 6 1.07 2.84 1270
60 13.72 1.43 2.5 16.7 108 3.4 3.67 0.19 2.04 6.8 0.89 2.87 1285
61 12.37 0.94 1.36 10.6 88 1.98 0.57 0.28 0.42 1.95 1.05 1.82 520
62 12.33 1.1 2.28 16 101 2.05 1.09 0.63 0.41 3.27 1.25 1.67 680
63 12.64 1.36 2.02 16.8 100 2.02 1.41 0.53 0.62 5.75 0.98 1.59 450
64 13.67 1.25 1.92 18 94 2.1 1.79 0.32 0.73 3.8 1.23 2.46 630
65 12.37 1.13 2.16 19 87 3.5 3.1 0.19 1.87 4.45 1.22 2.87 420
66 12.17 1.45 2.53 19 104 1.89 1.75 0.45 1.03 2.95 1.45 2.23 355
67 12.37 1.21 2.56 18.1 98 2.42 2.65 0.37 2.08 4.6 1.19 2.3 678
68 13.11 1.01 1.7 15 78 2.98 3.18 0.26 2.28 5.3 1.12 3.18 502
69 12.37 1.17 1.92 19.6 78 2.11 2 0.27 1.04 4.68 1.12 3.48 510
70 13.34 0.94 2.36 17 110 2.53 1.3 0.55 0.42 3.17 1.02 1.93 750
71 12.21 1.19 1.75 16.8 151 1.85 1.28 0.14 2.5 2.85 1.28 3.07 718
72 12.29 1.61 2.21 20.4 103 1.1 1.02 0.37 1.46 3.05 0.906 1.82 870
73 13.86 1.51 2.67 25 86 2.95 2.86 0.21 1.87 3.38 1.36 3.16 410
74 13.49 1.66 2.24 24 87 1.88 1.84 0.27 1.03 3.74 0.98 2.78 472
75 12.99 1.67 2.6 30 139 3.3 2.89 0.21 1.96 3.35 1.31 3.5 985
76 11.96 1.09 2.3 21 101 3.38 2.14 0.13 1.65 3.21 0.99 3.13 886
77 11.66 1.88 1.92 16 97 1.61 1.57 0.34 1.15 3.8 1.23 2.14 428
78 13.03 0.9 1.71 16 86 1.95 2.03 0.24 1.46 4.6 1.19 2.48 392
79 11.84 2.89 2.23 18 112 1.72 1.32 0.43 0.95 2.65 0.96 2.52 500
80 12.33 0.99 1.95 14.8 136 1.9 1.85 0.35 2.76 3.4 1.06 2.31 750
81 12.7 3.87 2.4 23 101 2.83 2.55 0.43 1.95 2.57 1.19 3.13 463
82 12 0.92 2 19 86 2.42 2.26 0.3 1.43 2.5 1.38 3.12 278
83 12.72 1.81 2.2 18.8 86 2.2 2.53 0.26 1.77 3.9 1.16 3.14 714
84 12.08 1.13 2.51 24 78 2 1.58 0.4 1.4 2.2 1.31 2.72 630
85 13.05 3.86 2.32 22.5 85 1.65 1.59 0.61 1.62 4.8 0.84 2.01 515
86 11.84 0.89 2.58 18 94 2.2 2.21 0.22 2.35 3.05 0.79 3.08 520
87 12.67 0.98 2.24 18 99 2.2 1.94 0.3 1.46 2.62 1.23 3.16 450
88 12.16 1.61 2.31 22.8 90 1.78 1.69 0.43 1.56 2.45 1.33 2.26 495
89 11.65 1.67 2.62 26 88 1.92 1.61 0.4 1.34 2.6 1.36 3.21 562
90 11.64 2.06 2.46 21.6 84 1.95 1.69 0.48 1.35 2.8 1 2.75 680
91 12.08 1.33 2.3 23.6 70 2.2 1.59 0.42 1.38 1.74 1.07 3.21 625
92 12.08 1.83 2.32 18.5 81 1.6 1.5 0.52 1.64 2.4 1.08 2.27 480
93 12 1.51 2.42 22 86 1.45 1.25 0.5 1.63 3.6 1.05 2.65 450
94 12.69 1.53 2.26 20.7 80 1.38 1.46 0.58 1.62 3.05 0.96 2.06 495
95 12.29 2.83 2.22 18 88 2.45 2.25 0.25 1.99 2.15 1.15 3.3 290
96 11.62 1.99 2.28 18 98 3.02 2.26 0.17 1.35 3.25 1.16 2.96 345
97 12.47 1.52 2.2 19 162 2.5 2.27 0.32 3.28 2.6 1.16 2.63 937
98 11.81 2.12 2.74 21.5 134 1.6 0.99 0.14 1.56 2.5 0.95 2.26 625
99 12.29 1.41 1.98 16 85 2.55 2.5 0.29 1.77 2.9 1.23 2.74 428
100 12.37 1.07 2.1 18.5 88 3.52 3.75 0.24 1.95 4.5 1.04 2.77 660
101 12.29 3.17 2.21 18 88 2.85 2.99 0.45 2.81 2.3 1.42 2.83 406
102 12.08 2.08 1.7 17.5 97 2.23 2.17 0.26 1.4 3.3 1.27 2.96 710
103 12.6 1.34 1.9 18.5 88 1.45 1.36 0.29 1.35 2.45 1.04 2.77 562
104 12.34 2.45 2.46 21 98 2.56 2.11 0.34 1.31 2.8 0.8 3.38 438
105 11.82 1.72 1.88 19.5 86 2.5 1.64 0.37 1.42 2.06 0.94 2.44 415
106 12.51 1.73 1.98 20.5 85 2.2 1.92 0.32 1.48 2.94 1.04 3.57 672
107 12.42 2.55 2.27 22 90 1.68 1.84 0.66 1.42 2.7 0.86 3.3 315
108 12.25 1.73 2.12 19 80 1.65 2.03 0.37 1.63 3.4 1 3.17 510
109 12.72 1.75 2.28 22.5 84 1.38 1.76 0.48 1.63 3.3 0.88 2.42 488
110 12.22 1.29 1.94 19 92 2.36 2.04 0.39 2.08 2.7 0.86 3.02 312
111 11.61 1.35 2.7 20 94 2.74 2.92 0.29 2.49 2.65 0.96 3.26 680
112 11.46 3.74 1.82 19.5 107 3.18 2.58 0.24 3.58 2.9 0.75 2.81 562
113 12.52 2.43 2.17 21 88 2.55 2.27 0.26 1.22 2 0.9 2.78 325
114 11.76 2.68 2.92 20 103 1.75 2.03 0.6 1.05 3.8 1.23 2.5 607
115 11.41 0.74 2.5 21 88 2.48 2.01 0.42 1.44 3.08 1.1 2.31 434
116 12.08 1.39 2.5 22.5 84 2.56 2.29 0.43 1.04 2.9 0.93 3.19 385
117 11.03 1.51 2.2 21.5 85 2.46 2.17 0.52 2.01 1.9 1.71 2.87 407
118 11.82 1.47 1.99 20.8 86 1.98 1.6 0.3 1.53 1.95 0.95 3.33 495
119 12.42 1.61 2.19 22.5 108 2 2.09 0.34 1.61 2.06 1.06 2.96 345
120 12.77 3.43 1.98 16 80 1.63 1.25 0.43 0.83 3.4 0.7 2.12 372
121 12 3.43 2 19 87 2 1.64 0.37 1.87 1.28 0.93 3.05 564
122 11.45 2.4 2.42 20 96 2.9 2.79 0.32 1.83 3.25 0.8 3.39 625
123 11.56 2.05 3.23 28.5 119 3.18 5.08 0.47 1.87 6 0.93 3.69 465
124 12.42 4.43 2.73 26.5 102 2.2 2.13 0.43 1.71 2.08 0.92 3.12 365
125 13.05 5.8 2.13 21.5 86 2.62 2.65 0.3 2.01 2.6 0.73 3.1 380
126 11.87 4.31 2.39 21 82 2.86 3.03 0.21 2.91 2.8 0.75 3.64 380
127 12.07 2.16 2.17 21 85 2.6 2.65 0.37 1.35 2.76 0.86 3.28 378
128 12.43 1.53 2.29 21.5 86 2.74 3.15 0.39 1.77 3.94 0.69 2.84 352
129 11.79 2.13 2.78 28.5 92 2.13 2.24 0.58 1.76 3 0.97 2.44 466
130 12.37 1.63 2.3 24.5 88 2.22 2.45 0.4 1.9 2.12 0.89 2.78 342
131 12.04 4.3 2.38 22 80 2.1 1.75 0.42 1.35 2.6 0.79 2.57 580
132 12.86 1.35 2.32 18 122 1.51 1.25 0.21 0.94 4.1 0.76 1.29 630
133 12.88 2.99 2.4 20 104 1.3 1.22 0.24 0.83 5.4 0.74 1.42 530
134 12.81 2.31 2.4 24 98 1.15 1.09 0.27 0.83 5.7 0.66 1.36 560
135 12.7 3.55 2.36 21.5 106 1.7 1.2 0.17 0.84 5 0.78 1.29 600
136 12.51 1.24 2.25 17.5 85 2 0.58 0.6 1.25 5.45 0.75 1.51 650
137 12.6 2.46 2.2 18.5 94 1.62 0.66 0.63 0.94 7.1 0.73 1.58 695
138 12.25 4.72 2.54 21 89 1.38 0.47 0.53 0.8 3.85 0.75 1.27 720
139 12.53 5.51 2.64 25 96 1.79 0.6 0.63 1.1 5 0.82 1.69 515
140 13.49 3.59 2.19 19.5 88 1.62 0.48 0.58 0.88 5.7 0.81 1.82 580
141 12.84 2.96 2.61 24 101 2.32 0.6 0.53 0.81 4.92 0.89 2.15 590
142 12.93 2.81 2.7 21 96 1.54 0.5 0.53 0.75 4.6 0.77 2.31 600
143 13.36 2.56 2.35 20 89 1.4 0.5 0.37 0.64 5.6 0.7 2.47 780
144 13.52 3.17 2.72 23.5 97 1.55 0.52 0.5 0.55 4.35 0.89 2.06 520
145 13.62 4.95 2.35 20 92 2 0.8 0.47 1.02 4.4 0.91 2.05 550
146 12.25 3.88 2.2 18.5 112 1.38 0.78 0.29 1.14 8.21 0.65 2 855
147 13.16 3.57 2.15 21 102 1.5 0.55 0.43 1.3 4 0.6 1.68 830
148 13.88 5.04 2.23 20 80 0.98 0.34 0.4 0.68 4.9 0.58 1.33 415
149 12.87 4.61 2.48 21.5 86 1.7 0.65 0.47 0.86 7.65 0.54 1.86 625
150 13.32 3.24 2.38 21.5 92 1.93 0.76 0.45 1.25 8.42 0.55 1.62 650
151 13.08 3.9 2.36 21.5 113 1.41 1.39 0.34 1.14 9.4 0.57 1.33 550
152 13.5 3.12 2.62 24 123 1.4 1.57 0.22 1.25 8.6 0.59 1.3 500
153 12.79 2.67 2.48 22 112 1.48 1.36 0.24 1.26 10.8 0.48 1.47 480
154 13.11 1.9 2.75 25.5 116 2.2 1.28 0.26 1.56 7.1 0.61 1.33 425
155 13.23 3.3 2.28 18.5 98 1.8 0.83 0.61 1.87 10.52 0.56 1.51 675
156 12.58 1.29 2.1 20 103 1.48 0.58 0.53 1.4 7.6 0.58 1.55 640
157 13.17 5.19 2.32 22 93 1.74 0.63 0.61 1.55 7.9 0.6 1.48 725
158 13.84 4.12 2.38 19.5 89 1.8 0.83 0.48 1.56 9.01 0.57 1.64 480
159 12.45 3.03 2.64 27 97 1.9 0.58 0.63 1.14 7.5 0.67 1.73 880
160 14.34 1.68 2.7 25 98 2.8 1.31 0.53 2.7 13 0.57 1.96 660
161 13.48 1.67 2.64 22.5 89 2.6 1.1 0.52 2.29 11.75 0.57 1.78 620
162 12.36 3.83 2.38 21 88 2.3 0.92 0.5 1.04 7.65 0.56 1.58 520
163 13.69 3.26 2.54 20 107 1.83 0.56 0.5 0.8 5.88 0.96 1.82 680
164 12.85 3.27 2.58 22 106 1.65 0.6 0.6 0.96 5.58 0.87 2.11 570
165 12.96 3.45 2.35 18.5 106 1.39 0.7 0.4 0.94 5.28 0.68 1.75 675
166 13.78 2.76 2.3 22 90 1.35 0.68 0.41 1.03 9.58 0.7 1.68 615
167 13.73 4.36 2.26 22.5 88 1.28 0.47 0.52 1.15 6.62 0.78 1.75 520
168 13.45 3.7 2.6 23 111 1.7 0.92 0.43 1.46 10.68 0.85 1.56 695
169 12.82 3.37 2.3 19.5 88 1.48 0.66 0.4 0.97 10.26 0.72 1.75 685
170 13.58 2.58 2.69 24.5 105 1.55 0.84 0.39 1.54 8.66 0.74 1.8 750
171 13.4 4.6 2.86 25 112 1.98 0.96 0.27 1.11 8.5 0.67 1.92 630
172 12.2 3.03 2.32 19 96 1.25 0.49 0.4 0.73 5.5 0.66 1.83 510
173 12.77 2.39 2.28 19.5 86 1.39 0.51 0.48 0.64 9.899999 0.57 1.63 470
174 14.16 2.51 2.48 20 91 1.68 0.7 0.44 1.24 9.7 0.62 1.71 660
175 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.7 0.64 1.74 740
176 13.4 3.91 2.48 23 102 1.8 0.75 0.43 1.41 7.3 0.7 1.56 750
177 13.27 4.28 2.26 20 120 1.59 0.69 0.43 1.35 10.2 0.59 1.56 835
178 13.17 2.59 2.37 20 120 1.65 0.68 0.53 1.46 9.3 0.6 1.62 840
179 14.13 4.1 2.74 24.5 96 2.05 0.76 0.56 1.35 9.2 0.61 1.6 560