{ "cells": [ { "cell_type": "code", "execution_count": 76, "id": "e6e27297", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import random\n", "import time\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from sklearn.preprocessing import MinMaxScaler\n", "from sklearn.metrics import silhouette_score\n", "from sklearn.decomposition import PCA\n", "from IPython.display import Image\n", "from sklearn.datasets import make_classification, make_blobs" ] }, { "cell_type": "markdown", "id": "e1e5a2b7", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "# Analiza skupień metodą k-medoids " ] }, { "cell_type": "markdown", "id": "80d5deaf", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "### Co to jest klasteryzacja? " ] }, { "cell_type": "markdown", "id": "4040df16", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ " Analiza skupień lub klasteryzacja to zadanie polegające na grupowaniu zbioru obiektów w taki sposób, aby obiekty w tej samej grupie lub klastrze były do siebie bardziej podobne niż obiekty w innych grupach lub klastrach. " ] }, { "cell_type": "markdown", "id": "493a0d16", "metadata": {}, "source": [ " Idea algorytmu klastrowania:" ] }, { "cell_type": "code", "execution_count": 77, "id": "e84b8c18", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAFTCAYAAABoCPeTAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAClaADAAQAAAABAAABUwAAAACrrMwpAAAHXnRFWHRteGZpbGUAJTNDbXhmaWxlJTIwaG9zdCUzRCUyMmFwcC5kaWFncmFtcy5uZXQlMjIlMjBtb2RpZmllZCUzRCUyMjIwMjItMDYtMTdUMTclM0ExOSUzQTA4Ljg0NFolMjIlMjBhZ2VudCUzRCUyMjUuMCUyMChNYWNpbnRvc2glM0IlMjBJbnRlbCUyME1hYyUyME9TJTIwWCUyMDEwXzE1XzcpJTIwQXBwbGVXZWJLaXQlMkY2MDUuMS4xNSUyMChLSFRNTCUyQyUyMGxpa2UlMjBHZWNrbyklMjBWZXJzaW9uJTJGMTUuNCUyMFNhZmFyaSUyRjYwNS4xLjE1JTIyJTIwZXRhZyUzRCUyMkdLTWZucmFaYnFtcTFvVVBvV3ZJJTIyJTIwdmVyc2lvbiUzRCUyMjIwLjAuMSUyMiUyMHR5cGUlM0QlMjJkZXZpY2UlMjIlM0UlM0NkaWFncmFtJTIwaWQlM0QlMjJXU1V2Q0RDNkVjdTRGcnJHTVJvRSUyMiUyMG5hbWUlM0QlMjJQYWdlLTElMjIlM0U3WnRkajZNMkZJWiUyRlRTNWJnWTBKdWR5azIxMjFxclRTU0szVW04b0I4NkU0T0NMT0pObGZYN044SkJ3WU5UTmlmYlNlM2tSd2pHMTRYc2YyT1FjV2RMTyUyRmZLcjRJZjlESlVJdWlKZGNGdlNYQlNHcklEUyUyRnRlSGFHTUtBTllhc0twTEc1TjhNVDhWWDBScTkxbm9xRW5FY1hLaVZrcm80REkyeEtrc1I2NEdOVjVVNkR5OUxsUnoyZXVDWkdCbWVZaTdIMXIlMkJLUk9lTk5TTExtJTJGMnpLTEs4NjlrUFYwM0pubmNYdDA5eXpIbWl6bmNtJTJCbkZCTjVWU3VqbmFYelpDMXV3NkxrMjlYMThvN1clMkJzRXFWJTJCcE1MZnY1ODIlMkY1QThYNmRaOXR2dWFlZiUyRnVUdiUyRjFMYnl6T1dwZmVEMlp2VzFJeURLNUVNTjBwekZraCUyQlBSYnlnNjF6dnBUSDQ1ckJTcHpJUmRTZWVPVXNMS1RkS3F1cGJaWnB3RWFWMWhhT3UxRTdjbFlSeEpMYXBLV2s2Rk1sSWg5dUQlMkJUMHVNOHlFMmd0ZFhjMGw1NXNncklXYzMyblIyU29odVM2ZWg4M3pkbHhrZlhOOUQxOVVZVG9tWGp1RWc3YVpkZ0RUVHMlMkJ1aGFNNlZiRm9LOTN6QiUyQjMwRlY5cVNQTXFFM3JVa0RtNGUlMkJxYjZadThyNUNhJTJGQyUyRjFmMGtkQVlYQ04wb04yb25zQ2swZkVGcEtNNEdhayUyRlU1TDdSNE92QzRMam1iS1h5b09EOGVtbGsxTFM2MThDUFJtWWlTWUVyMGlHeHBHUGFpUDR0S2k4dHJaZThxZ0wlMkJPMzYwT2Q4UENueGdXdnZmeUNCaFFmeTNpd0gzRUFUSmk1aDVpc0pMNEZCbHg2QjdpRUNCbXlJaVg3aUZtQUxHSGpEaHlEJTJGRnlpSmhnejhVcjl4RXZrUkYzRGJ2RWVBVVloOWlNSCUyRkYyZnl6R1BheU9jWVROJTJCQkUzOHdkajdBSEcyUHMyMzcwbGo4QmRCV1hJak4xYjgwYU1RMlRHeEwwMWo0QjloYyUyQndHVHU0NW9GOWhiJTJGRVp1emdtZ2RDbUQ3Qlp2eElWUE9kaDY4RHNGRjVjNm9paElGdzI2bUtSJTJCS3I3MTFzbUpkNmE3SUNObVE1VzBIY0MlMkZRR2NQTEVUbGNROXlLOUk4YllNVExpWHFpWGdmVUVQV0ZCM0hOOEdjeTdZV2NzaUh1T0x3TkJNdlNVUmZjJTJGc3NJNFRVVVlUJTJCNTFrdVZxNjNrek1hWkR4dWc1QzJyVDhVVmlqSjIwb0RZZFgwdU1RWkFNUFdsQmJiN09ZNGt4VEw1aEp5Mm96ZmQ1TERFR2IwS2dKeTJvVFQ4dmpXSXh6WGdic1lETnhEaUUlMkJ3cnNwQVcxNmVjaE1jWk9XbENiZnA0bHhtQmZnWjYwb0RiOVBFdU1ZZklOTzJsQmJmcDVsaGpERnl5eGt4YmQlMkZjekMlMkJCNXBxVXJ4M1NOc3dmSm5OdUM1bXRoQyUyQkd6TUUwYVE1JTJCTTVwMCUyRjNDTTg1UnlkYlFwNDlQRHlnY3pwd2p3Q2RjNHNickNEUSUyRmxzclBLQlQzbG9vVGJmcnJUbkk2b012MVZjelI1cWJ2TzVVeWN0QzdPczdrWm1xcm5wJTJGNmk0MzNmYzFScG9ZYUhvSWYwaTZ4VCUyQmhDSmRGVnByVDJFQVd4cjZ1SlNoaUxqJTJCMEJmc2lTZVJMYWclMkJUYWpObzZJUHQzWlNYRWsxTTJmUzdDVGpsQ2tJQjFaMTZwJTJGY3JYaEF4VyUyQktaMDl1WGtrM3E4ZmE1S2YzNEx3JTNEJTNEJTNDJTJGZGlhZ3JhbSUzRSUzQyUyRm14ZmlsZSUzRdtwfewAAEAASURBVHgB7Z0HYBzF2YY/9S5LsiTbsmVJ7r0b94JNQgkdAoSE0CFASIBQAvyEkIQaAmlAqEkgIYGAqaEFYxtcwQXcuyVblotkWbZsden+eceskM3puDvt3u3uvQPru9udnfJ8p7l3p31RHhWEgQRIgARIgARIgARIgAQ6QCC6A/fyVhIgARIgARIgARIgARLQBCgq+UUgARIgARIgARIgARLoMAGKyg4jZAIkQAIkQAIkQAIkQAIUlfwOkAAJkAAJkAAJkAAJdJgARWWHETIBEiABEiABEiABEiABikp+B0iABEiABEiABEiABDpMgKKywwiZAAmQAAmQAAmQAAmQAEUlvwMkQAIkQAIkQAIkQAIdJkBR2WGETIAESIAESIAESIAESICikt8BRxCoqamR2tpaR5SVhSQBEiABEvBOoKWlRQ4fPiyNjY3eI/CsowlQVJpkvtLSUomOjm49YmNjZfLkyfKHP/xBrPSEOXToUImPjzepFl8l89///leSkpLk4Ycf/upkGN91795d+vTpE5YS5ObmSmFhYUjzXrVqldx///3y+eefhzRfZkYCJGAOgd///vetvwf4bUhPT5fzzz9fPvroI3MyCCCVyy+/XLfnW7duDeAua6Ki/qmpqXLLLbeYlsF1112nWS9evNi0NL8poYaGBnnggQfk3//+9zdFjajrsRFVWwsrC+GIIzMzU84++2w5cOCA/O9//5MFCxZIRkaGXHzxxZbk3tzcLE1NTaanjXTr6uosSTuYwl566aUCoR6OgCdr8Ahl+PTTT+WOO+6QrKwsGTFiRCizZl4kQAImEEC7gd+EkSNHyqhRowSC7j//+Y+8/fbbUlJSItnZ2Sbk4l8S9fX1uj23soPDv5KI9OjRQ6666iqZOHGiv7d8Yzzj9/cbI5oYAb+Pt99+u8ycOVMuuOACE1N2dlLsqTTZfvn5+fLMM8/oxuPuu+/WqePp6ZNPPpFx48bJQw89JCeddJLgGv6ocK7tMWfOHMFQ7/XXXy9Iq3fv3nLzzTe3ipotW7bIt771LcnLy9NCFV9sb+Hkk0+W8ePHCxqT999/X+dxzz336KhID3n++te/1q/PPvusPr99+3b9+YorrjgqSaTxve99T6ZOnSpvvfWWbijvvfde3XOYkpKi81m4cKG+B2II9fq///s/QRmKiop0XYxyzp8/X/fgdunSRaf3u9/9zq/7Vq5cKWvXrtVxffH55S9/qfNHL9+QIUNkwoQJ8vHHH8tFF12kGzMI/qqqqqPqhw8VFRXy/e9/X3r27CmDBg2Sq6++Wp87NiKeTvFUDNuA4W9+8xv9ajwhz5s3T8aOHSvg0q9fP21voyFHzzXSveGGGzSz7373u/re4uJinc1f//pX/fm+++4Tgwt6ul9//XUJpF4oF3pEjHDCCSfId77zHeMjX0mABEJIAG0OfhPQQ4c2Ge0X2jO0C+21o22Lh9Ei/E2/9957gvYHbdq0adP0/e+++66+ZrTlaKeN8IMf/EBf27t3r3FKvyJv3H/iiSdKeXm5PtAW5eTkCEZlkEZlZaWOi544tOcPPvigDB8+XMaMGSN/+9vf9DWUH79naGcxkoR6zp079xvvq66u1iMwO3fu1HH9ba985acTavPPiy++qMuF9hw9xkZbjSioc3v1RTuLuE8++aRgFPDOO+/Un739Rl544YU6x+XLl8uNN96of2fACvfgNxoja2i/H3/8cenfv7/mt2jRIn0POgyQz+bNm/Vn8MVn2MbxQRmKwQQCSpB51JfBM2zYMJ2a+uP3KHGmzykR53njjTf0e8TBcdttt3kmTZrkUY2MR/2xtl6bNWuW55prrtGf1RfRo76Y+j3SQDj++OP1Z9UAeNQQgn4fFRWlr7X9R/2B62tLlizxqKcp/R75IChB5FE9qh4l8PT56dOn6/Oq4dOfVQPVWl4lcDyql1WfV39EHvX07Xn00Uf15+TkZM/o0aP1+8TERI+aAuBRDZ/+jDqqP2gPzuP9K6+8ou9VYtijhus9p556qqdr1676mhJiPu9D4VRvr6dbt266nL74qCdGnaYabvIo4arfg4/q8fMooac/K3Gt02n7z09+8hN9Tf1he1TDqd//+Mc/1lE6d+7sUU/X+v0f//hHfQ38UB7Dnu+8845H9UTouuGcEpatdX/iiSf0vai3Eb9Xr14eJS7158cee0xfV428/vzmm2+2lkH1cHjUVASPv/WCfZAHvjtGMMpqfOYrCZCA9QTUg6H+W0R7iqDEjG578ff52Wef+WxH25buX//6l04HvwFKwOj3SGPjxo2en/3sZ/oz2l20UWjr9uzZ41Gi0IM2UAkjnZR6YNbx1MO/p6CgQF979dVX9TUlhPQ1NcWntXwzZszQ19SweWt+6iFZv8fvjpoT6VEdJfoz2vQzzjhD5402F8HXfWoET9/305/+VP8m+Nte+crP+E1Qos1TVlamyxITE+Mxyow81GiXLpuv+hqcEB+HEpP61dtvJH4PEUcJcc9dd93lwW+3cR9sYbyHHZTo1p+VANdlOPfcc/XnL774Qn9WPbf6M+ro9ICnHQYTCBiiEl9kfMkguIwvlXpCbRVpqufOo3ojW3OECFC9Sjrut7/9bY+avKzFCASQeorxrF692oM01VCJRz3hadGChuLQoUOtotCbqISQQf5//vOfPapn1JOQkOBRw8eebdu26fPqSU3/QUNgxsXFeQ4ePNgqXNavX99aXjQ0SEf1snlUj6Uut/GHumLFCv1Z9arqOKrXrlUcql5Nj1pY43nttdf0NTQyaOjUE5pH9ch51JxBD+qLtNWTr8/7kIkhKsELQtUbH1wzxJfqUdWMUGfUTz2ta3GG/NQTvC53238g7FTvqkf1BHtUL6cul+rd01HaikrV+6obrE2bNmkexgMBRCXuR/oQ8Qiqh1R/NsS8ISohTFXPrQcNIOKfdtpp+jO+M8ZDiSHw//KXv+i0/K0XRaXGxX9IIOwEDFGJtgq/CWjH8feOB0UEX+1o28Kj7UIbr3oXtchBe4bPqjfOg3ZWzX3Xbe1NN92k03/++ec9EIzIyxC0hljC7w/O//a3v9VZQNTg84ABA/RvDzpD8JuAcxs2bGgVh0Z8Q0hBxKIzAO05OidUD6VHzRnV90FwGqLS233Bikpf+bUVlc8995wuBzpEEH7xi1/ozxCV31Rfg9M555zj2bFjh8/fSDXFTaerhr91Poao/OEPf6g/n3766fr6008/7QFX/IbhdxjBzaKSw9/qr8fMgEUzWNSBeTSqN1IwLKx6F1uzUD10op56Wj9jSPqll16SwYMH6yFzdM1jqBir49B9jqEFzOfD8CzmaGL4Y8qUKXp4FV3tGEb2FtD9jqCeiEWJP1F/5Hp+JIZhEDD0oRomOe+88/QqvA8//FBmz54tStTornodSf1jDM1ipZ5qzPSQC+YGYdK5MdcPw+IIGJo3ArrylfjTw/Q4hyF0zDfFCu5rr71WDy188MEHRvTWV2/3tV5Ub3bv3t0uHwwrGQHDHqox1/NZMXcJQzvGHCYlvIxora/q6V0P62C6AYbuEdTffut14w2G0jFEBNvA1rCFEYyhDAwtIWCYCsyM8zinemf1dADVuOjhDuSLYTFj2gOGZXyFQOuFtLzVw1cevEYCJGAegU6dOunfBLTJGIpVo1Z+t6MoBdoutLXLli2TpUuXihrhEiUCRY1CCYZe0f6irUVbjoBhcrTnCMY5/UH9ozoVjLf61WizkSbmrKO9QruFYFzDe+M3C9OuEPA7hLYSv29o73Adw9rHBm/3HRvn2M/ttVf+5Ie00EYjYLoRAuY8GsGo0zfVF1OUMPfTn99II23jFW00AqYEIAwcOFBzxfcg1HPzdQFC/A9FpcnA+/btq//YMXcQ81GMP1AjG3yxjIBVYxCVEIZYbQ2hhoUZWCmIeGgw1JOVYJ4eDvVkq281hB7E5/79+43kjnrFHyDmM2I+nhoOEfX0pFfcqZ4vHQ+iEsFodFBWCFrjs76o/lG9bPpAA/bPf/5T/5GhkVM9m7Jr1y4dTQ3D6FeILSN4W1QDUayGzrVwRb28rf7zdp+RJl598VE9fW2j+v0ejRjmXKL+mEQPgddewDwbCPx9+/bpKG3nwBgC3+CBBhxi3DiPG9raHw0WRCQeIIz5t8fyb68c7Z1HmhCsSBMBDT0WjTGQAAmEh4DqRdO/CZj/qIZ8W8WKP+2oUWIIUjU6JZgreNxxx+l52//4xz/0OaMtxwN5oerQwMM65tGjg8D4zTDSUT1xWjxiLjjaO6PNVr2SRhQx2i/jGi6oXtbW63iDNhNpqB5KUT2kooac9e/NUZHUB2/3tY0TSHvlT35IG200ghpx069t22ijTt9UX/wWG8Fok9v7jTTi+fOK+iLgIQDBaKdVr6j+7IZ/KCrDZEWs/sOKZgQsDFHDr3LrrbfqnkUIUQgBLNxQcxH1UyBWmaE3E6IVjQYWfGAhDJ4Y2wtoiJAORAZWH+KAGEI6eApDQAMF8YkFNgjH9pSpYVd55JFH9DWUAb2BZ555pv6MidlqLknrdTWvRp9v7x/jKQ2NKXo7X3jhBR3VW89he2mgLu3xMf5g27vXOH9sPKNcEKUQtWg8ELw9MaOnGfHxBA6+xlMx4hv1x+R7iERj0rxxHnGODcaCGvCHgDd+BPBggYAeh7Y9ncfe3/azUS98R7DFFR4kYF9v9Wh7H9+TAAmEnkAg7SjaGgS054aoNB5ssfDTCGi/8dCL9tUQQ8Y1vKITA6NWSAcjMmpOvP4twAKSK6+8Ui655BLdkYHfBIhSX8H47VFzy/UoD/JECLS98be98jc/NZ1IlwO/p2hfMWJohGDq295vpNFGo332Nupm5Nn2tW0bjfNYkKuG2gUPHG4JFJUmWdL4shiv7SVrXDeGuREPPWNq7ok+MLyh5oTIWWedpVegYVWfWtQhao6kThKCBcLnqaeeEjzd4I/fSPPYPI2GCEMnGNbAqmQE48nWiG80Pm1FjXENr2rStl6xDqGCVckoE1YUY8Uznh7RQGH1GsSeURZvrygPnqbRGwixivwQMKzjLT6uGeeNP2Cc88UH1xHaxj9y5qtzRprGefDE0zZ6AtBAo1HEOTzhoiFrGx9iHiup1ZxK3VNrMMUTOaY5/OpXv9KNOl5RLwh/NadHZ9U2HSNvrKaEfREMO+A9hm4wXI+HCvAygj/1Qg8wxDdEO/aDw7QDb3kbafKVBEjAOgLe/maRm6929NjSoD3AvsEIaHOMdge7UGB41QjGQyo+t21PjOtoB36pVjhjahCmQmE4GCNQ6MHD57///e962BY9ovjNMIK3OqAtRAcB2k6MgBnTofAbZgRv9x3bFvnbXvmTH9KGSEUdkTemFhnTz9BGo4cwmPoaLNv+RqJtxYMBVrFDrBvBqJ/xapxv+4qRsULVq4zfCPz+43fANUH9gDLYlIB6EtWLdbD4om3AIh0splE9Zm1PB/3eWNGMieWBBDW/0aM25/ao3stAbvOoYeGA7/GWQXt8vMX15xwWEqkhfZ9RMTle9dx6VEPiUVsTeYyVhPhsBDWkoblgFaY/AZPtVQPoKS4uPio6Fm1hkj4W9QQasKgKZTr2uxNoOoxPAiRgLYFg21FvpTJWPmNXkUCC2utYL8zBivJAflfQRmHRYkfbGX/bK3/yU6JWt9FY2IN6KcGHyfEeNZ+1FUmg9fX1G4nfY9Wx0pp2IG/QRhsLYAO5z85x9V40rlHIrEjABPDEhCc3PHVh+MJYzBJwQhFyA3pJMXyEJ308+WJuKXoRsA9poAGLlzB0hHmxaqWgnsAfaBqMTwIkQAIgoFYfC/amxGJIjFLgfSQGzO/EvpCYqoWeVKwpwFx2jKxhgVOggb+RgRGLDSw6Y7uNAAQR5vFhuJ2C8puti3mwmHIAEYlhf8yHDbbxhijFxHnMXcL8VAYSIAESCJYAhsKxKAjDvaecckqwyTj+PqxQx7Ay5qOvW7dOt9cYpjamGQVaQf5GBkaMPZWB8WJsEiABEiABEiABEiABLwS4UMcLFJ4iARIgARIgARIgARIIjABFZWC8GJsESIAESIAESIAESMALAYpKL1B4igRIgARIgARIgARIIDACFJWB8WJsEiABEiABEiABEiABLwQoKr1A4SkSIAESIAESIAESIIHACFBUBsaLsUmABEiABEiABEiABLwQoKj0AoWnSIAESIAESIAESIAEAiNAURkYL8YmARIgARIgARIgARLwQoCi0gsUniIBEiABEiABEiABEgiMAEVlYLwYmwRIgARIgARIgARIwAsBikovUHiKBEiABEiABEiABEggMAIUlYHxYmwSIAESIAESIAESIAEvBCgqvUDhKRIgARIgARIgARIggcAIUFQGxouxSYAESIAESIAESIAEvBCgqPQChadIgARIgARIgARIgAQCI0BRGRgvxiYBEiABEiABEiABEvBCgKLSCxSeIgESIAESIAESIAESCIwARWVgvBibBEiABEiABEiABEjACwGKSi9QeIoESIAESIAESIAESCAwAhSVgfFibBIgARIgARIgARIgAS8EKCq9QOEpEiABEiABEiABEiCBwAhQVAbGi7FJgARIgARIgARIgAS8EKCo9AKFp0iABEiABEiABEiABAIjQFEZGC/GJgESIAESIAESIAES8EKAotILFJ4iARIgARIgARIgARIIjABFZWC8GJsESIAESIAESIAESMALAYpKL1B4igRIgARIgARIgARIIDACjhWVNXWN8tisLwSvDCRAAiRAAvYhwPbZPrZgSUgglAQcKyo/Wl4qW3cekNnLdoSSF/MiARIgARL4BgJsn78BEC+TgEsJOFJU1tY3yRwlKhuaWmTuip2CzwwkQAIkQALhJ8D2Ofw2YAlIIFwEHCkq0Tvp8RxBhtcPl24PFz/mSwIkQAIk0IYA2+c2MPiWBCKMgONEpfEU3NjUrE2FV/ZWRti3ltUlARKwJQG2z7Y0CwtFAiEj4DhR2fYpODoqSoNib2XIvi/MiARIgATaJcD2uV00vEACEUHAUaIST8H/+wxD3R5JSoiVFqUm8YrPH3y6nXMrI+Iry0qSAAnYkQDbZztahWUigdAScJSo3FxaJS0tHjl9ci+596qJmhRe8Rlh044q/cp/SIAESIAEQkuA7XNoeTM3ErAjgSiPCnYsWHtlalQrvuNij2jh6x+dK3+6cbqO2vZ8e/fyPAmQAAmQgHUE2rbDbJ+t48yUScCuBDB27KhgCMpjC93e+WPj8TMJkAAJkIA1BNprh9s7b00prEu1qqZCqmr2ycG6/VJdV9V6HFTv6xtrpb6pVhqa66W5pUmNqjWriVkeiVL/RUfHSEx0rMTHJEhCbJIkxiVJWmLGUUd6YqZkJGero7N1FWDKJGAxAceJSot5MHkSIAESIIEIJwBRWFZVLHurd8qegzhKZa86EuNStOiDAIQozEzOkZ5ZfaVTUpbExyYqwZioBWNUVLTERMVoMQlx2exRAtPTInVaeNapPZbr5EBtZaso3avygFCFaK1rrJHc9B7SRR/dJTetu+RlFGpRGuFmYfUdQICi0gFGYhFJgARIgASsIwDht1OJyOJ9G6S4YoN6v1VylJjLTcvT4m5Qt9H6NSk+JeBCoJdSSUx9H4SnEbpnFhlvj3qtbTh8RMQqQVtWVSKf71gk5ep994xeUpjdXwo791fvC7VgPepGfiABGxCgqLSBEVgEEiABEiCB0BJoaKqXjXtWytpdS2VbxXrJUr2OBUqwjes1UwqyfiQJaog6HAHCVYtHJSCNgKH1kspNWvC+t/pfUllTLkXZA2RQtzHSr8sw1UuaYETlKwmElQBFZVjxM3MSIAESIIFQEWhsbjgiJMuWytbytZKf1UcG5Y2R04dfooetQ1WOQPOBwIV4xIGAYfT1u1fIytJF8t+VL0ivnEG6HrgeFxMfaPKMTwKmEaCoNA0lEyIBEiABErAjAcxVXFo8Tw0lL5Dumb1kQNeRcuqwiySY4Ww71A8LfUbkT9QHhsvX7/5cCczF8u6qF2W4Oj+2cLpe9GOHsrIMkUWAojKy7M3akgAJkEDEENi8d7UWk6X7t2ixdcWUO1wntiCMR/acpA9DPD/zyX3SI7O3jCmcJn1yh0SMvVnR8BOgqAy/DVgCEiABEiABEwlsLV8nH61/Ta+4HqN67c4ZfWVEDAtjS6ITBp0j0/qfJqt3fipz1r8ucze8KTMGnKWGyAeaSJhJkYB3AhSV3rnwLAmQAAmQgMMI7KjcInM2vK636pne/wwZrOZLRmLAvMqRPSfrY42aP/ru6hf1FkjH9z9TzSPtHYlIWOcQEaCoDBFoZkMCJEACJGANgYO1++W91f+W3Qe3y9R+p8qwHhMkWu0VySBaWA/sNkov6nltxTPSNb2nnDTkAklPyiQeEjCdAEWl6Ujtk2DFod0yf/O7apXjGsFkbsy96ZUzWCb3OVmyU7vap6AsCQmQAAkEQQAbimMBzryNb6mtgE7Qw9zwXOOEEMr2GQJ7RP4kGdp9nCzc8oE89fGvZVq/0/ScS2zUzkACZhFwxl+fWbWNoHT2VpfJc/PvlwF5x8nUAedKUlyq1DYekm1718gTc++Wq6fdrTf2jSAkrCoJkICLCMDTzdtqO51YJSIvmXSrox6Uw9U+Q3BP6XuKoOfyvyv/ISt3Llar4H+oNnbv7qJvBqsSTgJ8RAknfYvyxhPwk/PukVGFM6Vf11GSHJ8mUVFR+nVwj/EyrvfJWnAiHgMJkAAJOI3AZ9vmyD8WP6LnDP5wws8cJSjt0D5jpArcRvWcojmCJwMJmEGAotIMijZLA0PeA7odJz2UT1pvAefRg4l4DCRAAiTgFALwmf3y0ifkC7Xp9+WT71CiaLJ+YHZK+VFOu7TP6GjAYh5wBE9wBV8GEugIAYrKjtCz6b1b1RB3Ue5gn6WDsMRcSwYSIAEScAKBysPl8uz8ByQlIV0unXSb2m+ysxOK/bUy2q19BkfwBFfwBWcGEgiWAEVlsORsfF9to1qUo+ZQ+gp6jqVavMNAAiRAAnYnULp/q/xt4UMyrmimfGfo9yUmOsbuRW63fHZsn8ETXMEXnMGbgQSCIUBRGQw1m9+TFJeiF+X4KiYW7TjVRZmvevEaCZCAuwhsq1gvL332uJymFpSMKpji+MrZuX0GX3B+6bPHBNwZSCBQAhSVgRJzQPxeaui7tHKTz5JiFTi2F2IgARIgAbsS2H1gh7y67Cm5YOx10rfLULsWM6By2b19BuezRl6hFvA8KvsO7QmoboxMAhSVLvwOYB/K9WWftissITjX7/pU71fpwuqzSiRAAi4gsOvAdnn6k9/I2aOulO6ZRS6o0ZEqOKF9hkvH74/7qTz58a9kR+Vm17BnRawnQFFpPeOQ54DtIi6bfLss2fKurCldLDUN1coHrke/bty9XJYXz9b7VHID9JCbhhmSAAn4QQD7OL645A/ynWEXuc5ntVPa5145g+S8MdeoVeF/kb1qT1AGEvCHQJQSGx5/ItoxzvWPzpU/3TjdjkU7qkyh9JzQNuPWfNVQ95HJ4cqjjhoap0edtpT4ngRIwAoCwbbP8P71zCf3yrT+pyt3i+OtKNpRaba2kyH2PNaar83b51WlS5Q/9Tfkyil3ch7+Ud8cfvBGgKLSGxUTz7X1nIBtfNp6tsEQND3bmAibSZEACdiGQDCiEn0c/1j8e+mR2UuOH3CG5XVh++wf4jnrX5edVdvUkPgNjtsX1L8aMpZZBDj8bRZJL+ngSZSebbyA4SkSIAES8EJg4Zb3pbmlSfVSnublqrmn2D77zxO9xk3NTcpv+Pv+38SYEUmAotJCs9vFc4KFVWTSJEACJGAKAczbW7z1Qzln9FUSHWX9TxPbZ//NBnvALou3/o/zK/3HFpExrf/LjUisRyptN88JEWwKVp0ESMDGBDDs/dbK52XmwLMkLbFTSErK9jkwzLDLjAFnKzu9oBd+BnY3Y0cKgdhIqWg46mlHzwnh4MA8SYAESMAXgS9KF+reyRH5k3xFM/Ua2+fAcY7sOUlWbJ+vfYWPyJ8YeAIuuaN2716pLd8rdfsqpK6yUuor96n3R16bamqkqVYddXXiaWqSluZmkZYWkehoiY6JkajYWIlNTJTYpGSJTUmRhMwsSeycJQlZnSUx68hrcpcukpST60haFJUWms3wnJAcn9ZuLvRs0y4aXiABEogAAo3NDTJn/RvyveOuD2lt2T4Hh/uUoRfKvz79kwzOGyNxMfHBJeKQu1oaG+XAls1yaHuJVJfgKNZHXGqqFn2JnTtrMZjcpatkDhwsidnZSiwmHRGMyckSpYQkRCTEJMQlRKZHCcxW4VlbK3UVFUdEqRKnh1T6EKm1e3ZL4+HDklZQ+OVRIKk9C6RT7z4SHRdna3oUlRaax/Cc0K/rqHZzoWebdtHwAgmQQAQQWF7yiV7t3bVTfkhry/Y5ONywE1bnw27jes0MLhGb3gXhd2DzJqlcvUofBzZtlNT8nkrQ9dTiruvESVrcxae131HUXtUgLAWHChCeIp31e+nb78jrMf82VFd/KWaLtbDdOecjObRju3RS8bOGDNVHpz59tWA95tawfqSotBA/9oPEfmvoqcR2QscGw7PNNdPvOfYSP5MACZCA6wm0tDTLoq0fqF7Kn4S8rmyfg0c+td9pqrfyjzK2cLoa1T0ilIJPLbx3Ypi6fOlnsnvRAtm3aqWg1xGireDU0yRL9T7Gqh7HcAQI16zBQ/Rh5I8ezsp1a5TgXS3rnnlKalSPZuehw6TrhEmSM2asHlY34obrlaLSQvKG5wRsK3SgZp8UqY3HjX0qtaBUrhSxTyU921hoBCZNAiRgWwIb9nwhGcnZ0iW9e8jLyPY5eOSwF+wG+w3s1v5IXPA5WHtnc329lC9TQnLhAqn44nPJHDBI0As55NrrJU7Nc7RrgMDNHT1WHygjhsj3frpEyubNlTVPPi7Zw0foeuSoODEJCWGpBjc/DwF2p3hOCAEKZkECJBAhBPzZ/PzFJX+U4fkT1Py8sWGjwvY5OPRryj6TL3YskgvHhb6XObgSi2CBzfb335WdH82WTv36SZdx46XLceMFcySdHhoPHZI9ny6WPUsWy4GNG6X78TOk50mnSFJuaBf8sKcyBN8kPBGfOeLSEOTELEiABEjAGQTgjnHH/i1y7uirw1pgts/B4e/XZbi8/cULAjsmxdu3dw+1K1+xXHYoMVm1YYMWWxMefDjkYis4yv7fBWHcY8YJ+jDE86LbbpaM/v0l/8STJWdkaHqUKSr9txljkgAJkAAJmERg095V0jtnsMTHhmeYzqRqRGwyWPndO3eIwI6h8NEeDOh9K7+QjS/+QzxqAQ567YbfeHPYhoWDKX+w96B3sv9FF0uf8y6QXfM/kU2KweaX/iX9LvyBdB42PNhk/bqPotIvTIxEAiRAAiRgJoHiig1S2Nn7ylcz82Fa1hEo7NxfiivW205U7t+wXgup+v37pe8F31PzDCdbB8HGKWNeZY+ZqvdSHbsXzpe1anFPQmam9FXiMrP/AEtKTlFpCVYmSgIkQAIk4ItASeVGmdTnJF9ReM3mBIqyB+jV+3YpZt2+fbLu2afk4LZt0vu750v3adMl6sttfOxSxnCVA8K6y7gJslMt6ln5+0ckvahIBl5+ldp4/cutjUwqGEWlSSCZDAnYlYBeiLDpHdlSvkbqGmv0/KdeatgRW6pw5wG7Ws3d5WpoqpNDdQckKyXH3RV1ee1gv0N1B6Ve2TMhNjFstcWG4liAs+Xll/RWQBjmtvsm4Qaswzt3ytZZ/5GKz1fo1dxYfZ49YpT0OvtcSelu7q4IENg9ZsyUvClTZdubr8vCm2+U3uedLz3VnEts1G5GoKg0gyLTIAGbEthbXSbPzb9fBuYdJ9MHnieJcSkCL07YdP+JuXfrLa1y0/JsWnoWy60Eyqt3Sa7aliYqypwfMrdysnu9YL/c9DypUPbsnlkUluLC082avzymReS439xvuhCzslLYzHzx7bdK4eQpMvriSyQ+NU3q1abnu9TCovk3/FgmPfIHvfm62WWA4O59znel6/iJeiuiXR/Pk8E/uk5t8F7Q4az4F91hhEyABOxJAD2U2CN1VOFM6au8OiXFp6of8Si9Gf/gHuNlXO+TteBEPAYSCCWBg3X7JS0xI5RZMi+LCMCOsGc4Qsm7/5XPfvULNWfwWzL2nt84SlCih3LBTT+V/qecKvlqa6OEtHTdPiemp0uRGrYfdNY5WnAinlUBPaHg1uOEb2uO4NnRQFHZUYK8nwRsSmD+5ndlQLfjvHpzQpHh5WmA6sFEPAYSCCUBDH2nJ2aFMkvmZRGBTklZUl1XZVHq3pNtUj6zV/z2ASmbO0cmPPBbJYq+pQWZ99j2PLt11itSMGmy5A4c6LWAOF+oriOelQEdDVjIA47gCa7gG2ygqAyWHO8jAZsT2KqGuOHFyVeAsNyq5loykEAoCTQ2N0hsNGdfhZK5VXnFKDvCnqEKNbt3yeI7bpX4Thky7t4HJCkntJt7m1XPii9WSLdv2DsyZ9Bg2afihSKAI3iCK/iCczCBf9XBUAvzPVx4EWYDOCT72ka1KXGcb08R2m2o2ryYgQRCSQAiBPscujHo9ln1/uNhzdgY3M0L4+Ki46WpuTEkpqzauEH3pPU5/3uSr4ZsnRzgASdB+ff2FXC9QcULVYiOjZXBV/1Idnz4gSy56w4ZecvPJaNf/4CyZ09lQLjCHxkLL5755F61UitOL7w4c/R1MnXAuepJsUUvvMB1BhIAgaQvF+X4ooFFO3b3huGr/LzmTAIQlKHs3QoVJaN9lqhY3S5HQvvc2KJ6nWPiLEe8b9VKWfHg/TJELShxuqAELHjAwaIcX6HhUHVYfJGDLzgvf/A+AfdAAkVlILTCHJcLL8JsAIdl30sNfZdWbvJZaqwCRy8KAwmEkgBEZVNLUyiztDyvtu1zP7UwLjk+LSIWxjUrO1rd64x9J7945GEZ+fM7JGf0GMttGYoMsoePlPK1vqcela1YobYXGhmK4nwtD3Ae/tObZOmv7pbDZf4vFqKo/BpK+57gwgv72saOJcM+lOvLPm1XWEJwrt/1qd6v0o7lZ5ncSyA1sZNaMVzpqgpGavt8oLbS0pX8B7dukUW33qRcLP5MMvq6xwMT9qEsXjBf9q5b5/XvAOdLlIvFXmd/1+v1UJyES8fR/3e33s9y/3rv5Ty2HBSVxxKx8WcuvLCxcWxYNGxsftnk22XJlndlTeliqWmoFo/Ho1837l4uy4tn630quQG6DY3n8iKlJ2aGfMWw1UgjtX3Gym/Y04qAfRyX3vsrGXz1tZb7rLai/L7SxHY+4+9/SNa+9qpsmzdX6g4e1O0zXncsXiQb3nlb71Np9gbovsrk7Vr28BEy4pbb5PPfPijV20u8RTnqHBfqHIXD3h+48MLe9vmm0oVjgRU2Nr9m+j1626CP172iNj7H4p0UwdD4FVPupEedbzIar1tCICetm+w9uFP9iLaoIWJ39G1EYvsM+8GOsKfZoUHNN1z+wL0y4OJLJW/qdLOT/1p6ofRsY2Semt9TJv/+z3rboOUv/F2weCdezbXsrIbGJzz4O9vsu5kzcrT0V3aAPVCueB8LjCgqDes64NVYeIG5Ou0FLrxoj0x4z4fTsw16Is8ccWl4ATB3EmhDIF659MMQeOXhcumc2qXNFee+jcT2GfaDHWFPMwNGVL545LfSbcq0kAjKcHm2ATP0RA69/qdm4rMkrbyp0+TwzlL54tGHZcxdv2x3X1B3PCJagtB+iXLhhf1s4k+J2k7gp2cbf4gxTiQQKMjqJ9sq/Jun5QQekdg+b6tYLwVqr1uzw7Y3XpOWpibp893zzU76a+nZwbPN1wpl0xN9zrtAWhobBfZpL1BUtkfGhue58MKGRvGjSJE6gd8PNIwSwQQKs/tL8b6NriEQie1z8b4NUpg9wFQbYt5eyVtvyoibbpaomBhT0/aWmF0823grm93OwR6wS/Fbb7Q7v5Ki0m5W81EeLrzwAcfGlyJ1Ar+NTcKi2YBA39yhskVtEN7QVG+D0nS8CJHWPsNusB/saFbAsPeaJx6Tvt+/SBIyQ+PG026ebcxiaVU6sEs/ZR/YCfY6NnBO5bFELPhs5gINLrywwEAWJxmJE/gtRsrkXUAAm+7nZ/aWTXtXyuC8sWGrkW6fTfKAE0ntM+wG+5npPGHnnI+UY49o6TFjZsi+D3b0bBOyygeZUY8ZJ0jp7A+1r/Dux884KhWKyqNwmP/BigUaXHhhvp2sTNGfCfx1alV2YlyylcVg2iRgOwIje06WJdtmh01UGu3zgLzjtAcc7bZUeZmCU4An5t6tt9yCUAwkREr7/FnxXBlXZJ74a66vl03/+qeMvuOuQHB3OK7h2SYxPb3dtMLl2abdAtngwqArrpZl9/1auk6cJDEJCa0l4vB3Kwrz33CBhvlMnZiiXxP4y1dLb3q2caJ5WeYOEOjfZbhU1VTIHrUtTahD2/Y5kjzgmMEZ9oLdYD+zQqnyNw0/0+lFRWYl6Vc6dvds41clwhAJdoK9YLe2gaKyLQ2T33OBhslAHZqcPxP41ynPN5P7nuLQGrLYJBAcgejoGJnY+0SZt/HN4BLowF1sn4OH9/HGt2RCr28L7GdGaGlulm1vviFYXRzq4ATPNqFm4m9+sBfsBvsZgaLSIGHBKxdoWADVgUlG2gR+B5qIRQ4jAQyB79y/TXYf2BHSUrB9Dg437FS6f6uMKpgSXAJe7ipf+qkk5eZKWkGBl6vWnnKKZxtrKQSXOuwFu8F+RqCoNEhY8MoFGhZAdWiSxgT+uJhogWeb15c9pl/F06Q92wQ6b8uhGFhsEvgagbiYeDl+wBny7uoXv3bNyhNsn4Oj+86qF5W9zhTYzaxQ+uH/pOdJ4RupMTzbNMbECjzbfPzQA7JCvdY2NWsPMrjO4J0A7Ab7GYELdQwSFrz6s0CDHnAsAG/TJCNlAr9N8bNYNiYwvMdEWVbysXy+Y4GMyJ8UkpKyfQ4c84rtC8Sj/hveY0LgN7dzB1Zf79+wXob/7NZ2YoTmtFM824SGhv+55I4ZK2v+8ph2MYlFT+yp9J9dwDH9WqChVhn24gKNgNnyBhIgAfcQiIqKktOG/VBmr5sl1XUHQlIxts+BYYZdPlr/mrLTRe266AssxSOxy5ctlewRIyU20VxXj8GUhfcETgArv7NHjhLYEYGiMnCGft/hzwKN9bvUAo0+J/udJiOSAAmQgBsJ5KZ3l/G9viWvLntKWjwtlleR7bP/iGEP2GV8rxMEdjIzVK5ZJVmDhpiZJNMKMYGswUNk3+qVOleKSgvhc4GGhXCZNAmQgOsIYCV4THSszNvwluV1Y/vsP+J5G96UWDXfEPYxO1SuWSOdhw0zO1mmF0ICnYcOk/1r1+ocOafSYvDGAg1sX4EFGkcmh6cIhl6umHKnoGELdzDT40+468L8SYAEnEsAw+Dnjr5KnvnkXumc2kWG9RhvaWUc0z6b5PEnGJirSpfIqp2fypXq9wr2MTM01dZKfdV+Se7azcxkmVaICcB+sCPsSVEZAvh2XqBheJQYqDxKTB94nvLqkqKEb8c8SoQAKbMgARJwKQG4/Tt/7HXywuJHJTk+VfrkWjs06oT22UyPP4F8bVZsn6/mUb4uF42/0VR3jEYZDpXukLSeBdo1o3GOr84jANeasCPsyeFv59nPtBK39SjRt+so1Wik6ifR5Pg0Gax6CMb1Plmem3+/IB4DCZAACYSKAObtnTfmR/KfpX+RLeVHhtVClbdd8mnbPofD48+2inXy9soX5MJxPzF9HqXBuG7fPknIyjI+8tXBBGBH2JOi0sFG7GjR6VGiowR5PwmQgFUE8rP6yFVT75IXl/xBtkagsAxn+4zN6F9d9rQa8v4/6dbJuj0a6/dXSmLnbKu+Qkw3hAQSs3OkvrKSojKEzG2XFT1K2M4kLBAJkEAbAphX+QM19Praiudk055Vba64/2242mdw/vdnj8k5am5r1075loJuqW+Q6Lg4S/Ng4qEhEB0XK80N9ZxTGRrc9syFHiXsaRd/S8UFVv6SYjwnEyjKHqDmWF4rLy99Qqb3O91U94B25hKO9nl5yScyV/lhB+8emb0sxwMRgn0O3RgO79wpW2f9Ryo+XyGNhw9LXEqK2o9zlMDXODZad1uIiU+Qlgb1kOC2irE+/hMwPEr4uqOu8bBavJPsKwqvhYEAFlhhhWxUdJxeYHXm6Otk6oBzpbG5RZ6Ye7fgOgMJuIUABM4lE2+VJdtmC9wENrc0u6Vq7dbDn/bZLI9s4Amu4AvOoRCUqDiESHN9fbsMnHrh0I7tsui2n0mS6oUdffElMvXWn8uoH14icc1NMv+GHwuuuy3gASE6Pp6i0m2GDaQ+fnmUKF8tvenxJxCslsdtO4GfC6wsx80MbEIgKyVHLp/8czmkPLv8dcGDUlWzzyYls6YYfrXPJnhkA0fwBFfwBedQheiEeGlpbAxVdiHJBz2UC276qfQ/5VTJHzdeEtLS9QLYxPR0KZo2XQaddY4svv1WQTw3hZbGJv2QwJ5KN1k1wLr441FiXZny+NP3lABTZnQrCYRzAr+V9WLaJPBNBOJjE+W8sddo39PPzr9Plqstbzwezzfd5sjr/rTPHfHIBm7gB47w5Q2u4BvKkJCJFcMVoczS8ry2znpFCiZNltyBA73mhfOF6jriuSnUVZTrlfwUlW6yaoB1oUeJAIHZJHq4JvDbpPosBgnI2KLj1QKemwT7KD6/6Heu3PbMyvYZox3gBn7gCJ7hCImdO+sVw+HI26o8K75YId2UL2xfIWfQYNmn4rkpYOU37MnNz91k1SDq4gSPEkFUy9W3hGMCv6uBsnKOJNBF7WV52aRbZWnxPPnbgodknPJLPbH3t7WbR0dWyEuhzW6fm1uaZOGWD2TJ1g9lWr/TZEzhNDU0G76+pdQe+VK9vUQ8LS2u2QC98dAhNeSd5sWaX53C9QYVzy0B9oMdYU+KSrdYtQP1sLNHiQ5Uy7W3GhP4sUl9e4ELrNojw/NuIgBBhF62/l1HyHur/y2PzblLpiqxBPeO0WEUS2YyNqN9bvG0yMrSxfLxxreka3pPvf9nelKmmcUMKq3YpCRJyMiUmt27JCXPHSui41JTpb66WjCHsr3QcKharwZv77rTzsN+sCPsSVHpNOuxvBFPwJjADy8b7YVtXGDVHhqedyEBCCTMCdxRuUW5FXxNFm5+T6b1P10G541xYW0Dq9KasqUyb8ObkpKQLmeNvELys3oHloDFsbMGq6HglStdIyqzh4+U8rVrJH/8hHbJla1YobYXGtnudadd2LdqpWQOGqSLHb5+b6dRY3lJwCYE/JnAzwVWNjEWixFSAhBMF0+8WU4acoEsUsO8T3/8Gz1vsLG5IaTlCHdmqC/mS6L+4AAe4GI3QQlOWYOHSuXa1eFGZlr+2IeyeMF82btundc0cb5k/idqv8rver3uxJOVa1ZL5yHDdNHZU+lEC7LMEU3AmMD/5Lx75IDaDqQod7DaDy1VsGddaeUmWa9W7F897W5BPAYSiEQCvXIGCY7Ne1frOZez182S4fkT1RzC6ZKZ7F63gPtrKlR958oXOxaqvSZ7y/EDzpQ+uUNs/RXIGT1G1j77lDTV1UlsYmhXn1sBBhubj7//Ib2t0OG9k/WiHcyhxJA4ejAhOCc98gfXbIAOu2GD98FXXaNxUlRa8a1imiTghYCZHnDMnsDvpbg8RQKOJwBBhaNKi6158uwn90leRqEM7DZKBnQdKUnxKY6vY23DYVm/e4Ws27VcyqqKZUT+JLliyh2S4RDxjDmImf0HSPmypdJNbbUTrmCmB5zU/J4y+fd/1tsGLX/h74LFO/Gqnp3V0PiEB3/nGkEJW8FusB/siBCl9qpy7CZf1z86V/5043RdEf5DAnYmAA83z82/XwbmHSc9svopL0Upumdxm9q8GHvNoWcRQpGBBNxCwI7tc1Nzo2zcs1LW7loqW9TfXn5WHxmUN1oJzFHqbzLJMejrGmuVkFwua8uWqXmkm6W3Gq0Y1G2M9OsyTGJjnOdLe8+SRVL89lsy7tf3hcUG8HCDDckLJ0+RXDU3MD71SM/irhXLpeTLnkUIRYavE1hy1x1SeOpp0mXckTmk7Kn8OiOeIQFTCRgecMb1PlkJyr6taWP19mC1SrVTcmctOK+YcieHrFvp8A0JmE8AggsiEkdDU71s2qsEphJm7695WQ+LF3buL4XK13iB+jtNsJHIrFciskRNbSmuWC/F+zYIhrl7ZQ9UQ/oT5NzRV6tNy53tPztnzHGy7rlnpbqkRNIKCsw3vI8UDQ848HTTdsNywwNOSm4XLTjd1sPoA4nfl2Cv2r17BfYzAkWlQYKvJGARAX884NQ0VAvinTniUotKwWRJgATaEoAQG5w3Vh8tyvd12YFiJdo2qD0cZ8us5U9LTlp3PXqQq167pPfQRyiGyzGcvedgqT72VpfK3updUl69U7pn9JKi7P5yytALJa9ToURHx7StjqPfR8fESNEZZ8rml/8lI2/5eUjr4o8HnPoDVXooe+j1Pw1p2eye2eaX/y1Fp58hsJ8RKCoNEnwlAYsIwAPO1IHn+kwdPZgfr3eX2y6fFeZFErARAQg0LGzBAbe02CS8rKpECTqIu516vuKegzvUEHmynquYnpgpaYkZrUenpCzt4jBBuTlEDyf2yIyOilEbsceotJqlxYOjRdDjWN9Up3pJ6+RAbaVU11W1Hgfr9uu5n3WNNUrA5kuu2tw9L6NIzZGcrF4LXLWpuzfT95j5Ldn62iw5uG2bpBcVeYtiyTl4wBl10cU+04YHnBVqbiTDVwRgp6qNG2TYT2746qR6R1F5FA5+IAHzCdADjvlMmSIJWEkgJjpWb79z7BY8VWq3BSz6gQCEINxfUy7b1bD0QfUegrGhGYKxXppaGrWI9CghiQ3aITJjo+P0MHV8TKKev9lWlEJAQqhicU2Gmg4TiSEmIUH6fu/7su6ZJ2XcvQ+EDEEkesAxA+5aZad+F/5AYLe2gaKyLQ2+JwELCNADjgVQmSQJhIEABF+kir5Q4O5+/Awp/d/7UvrRbOkxY2YostSrliPNA05HwZZ+9KGIcs2YN/3rPuO5+XlH6fJ+EvgGAoYHHF/R6AHHFx1eIwESiAQCUVFRMvia62TjP5+X+v2VIamy4QHHV2Zu84Djq67fdA122fTPf2g7wV7HBorKY4nwMwmYTIAecEwGyuRIgARcSyCtZ4EUnnaGfP7Iw+Jpbra8npHoASdYqLAH7FJw2ukCO3kLFJXeqPAcCZhIwPCAs2TLu7KmdLFgpTe2h8XrRrXX3PLi2fSAYyJvJkUCJOBsAkVnnCXRsbGy+T8vWV4RwwPO2tdelW3z5krdwYO6fcbrjsWLZMM7b7vKA05HgGK1d3RcnFqpf1a7yXBOZbtoeIEEzCPgBA842uOP2tZoa/kawbYm2D6lV85gQU8rXT6a911gSiRAAr4JYFh1+E23yOKf3ywpeXmSN3W67xs6eNUJHnDM9PgTDK6yj+dJ2SfztEcgb8PeRpoUlQYJvpKAxQQgzOy6D6Xh8WeA8vgzdcC5rb7E4fHnibl30+OPxd8NJk8CJHA0gXjlL3vkbXfI0nvuljj1Pmfk6KMjmPwJPZZ23Yeyrcef0RdfcpTHn/k3/Fj3pFrp8ad09oey6cV/yJi77xHYxVfg8LcvOrxGAhFAwPD4M6pwpvRT7urg6QdPoobHH3gCgotJxGMgARIggVARwLy9EbfcJp8//JBgP8lIDIbHn/6nnCr548ZLQlq6bp8Njz/wBAQXk4hnRdi3aqWs+ctjMvrOu9qdR9k2X4rKtjT4ngQikIA/Hn/Qg4l4DCRAAiQQSgKZAwbKxN8+Ist+8yslLD8PZda2yMsfjz+FkyZrjz9mF7hq00b5Qi3MmfDQI5Leq7dfyVNU+oWJkUjAvQTg8acod7DPCsLjD+ZaMpAACZBAqAmk5HWXMb+4R1b98fdSvmxpqLMPa37ooe02cpTPMsDjzz6Te3LBecUD96m5rTcH5OGIotKnqXiRBNxPgB5/3G9j1pAEnE6g89Bhao7l7bJaDcXu+PADp1fH7/KHw+MP+IIzeIN7IIGiMhBajEsCLiRgePzxVbXaxkN6NbivOLxGAiRAAlYSyOjXX8b9+j4p+e9bsvbpJ6WlqcnK7GyRdlxqqsDjj6/QcKha4lJSfEXx6xp4giv4gjN4BxooKgMlxvgk4DICfnn8UUPk2F6IgQRIgATCSSC5azcZf99D2uPOkjt/LrXle8NZHMvzDpXHH3AET3jMAV9wDiZQVAZDjfeQgIsI+OPxZ/2uT/V+lS6qNqtCAiTgUAKxSUky8tbbte/pRT+/RUo//J/esNyh1fFZbKs9/sARB/iBI3x5gyv4Bhu4T2Ww5HgfCbiEgOHx58l598iBmn160U5SXKpgyLu0cpOsL/uUHn9cYmtWgwTcRKDg5O9I1qAhesubso/nyuCrrxXsN+mmYHj8WXDTT+Xw3sl60U6C2isSQ+Lla9dI8YL5QXv8wTZEa558XFoaG2XsL34laQXeXS8GwjNKqVRPIDfYKe71j86VP9043U5FYllIwLEEWj3qqKHuI4t3lEcdtSqcHnUca9KwFpztc1jxR1TmnpYW2f7+u7Ll5Zek4NTTpOj0M7U7QTdBOOJR5xW9XycW78SruZadh48U9GQGKqQhIre9+bqUvP2W9D7vfOl54skSFW3OwDV7Kt30rWNdSKADBOzs8acD1eKtJEACLicAQYReyy7HjZd1zz4ln/zkOulz3gXKveM0iYqJcUXtzfD442luFrhbhA/v9KIimfjwo5LYubOpfCgqTcXJxEiABEiABEiABMJBAAIJcwL3b1iv3Qpuff1V6Xv+96TrxMnhKI6t8ty9cL5seulfkpCRKcNuuEky+w+wpHwUlZZgZaIkQAIkQAIkQALhIADBdNw9v9EeeDb965+y9bVZ0vOkU6Tb5CkSk5AQjiKFJc/m+nrZNf8T2f7eO7rHduBlV0r28BGWloWi0lK8TJwESIAESIAESCAcBCCgcJSvWC471JzLjf94XrofP0Py1RzC5C5dwlGkkORZs2ePru/OOR9JRv/+0vfCH0jON3jlMatgFJVmkWQ6JEACJEACJEACtiMAQYWjdu9evaBnsdo+p1OfvtJl/ATpMm68YINxpwcs3tmzZLHsWbxIDmzeJN1nzJQJDz4sSbm5Ia0aRWVIcTMzEiABEiABEiCBcBCAwOp/0cXSR82zLF/2mexeuEDW/+1ZyRwwULpMmHREYJrgmSZUdWs8fPiIkFy0QPavXyfZI0YqMTlDRtxym8TEx4eqGEflQ1F5FA5+IAESIAESIAEScDMBCK6uSkTiaKqrUwJzaavAxLB41uChkjVUHQMHS2xysm1QNNXUSOW6NVK5apVUrlklGObuPHS42rR8hgz/2a0Sm5gY9rJSVIbdBCwACZAACZAACZBAOAhAiHWbpDYVV0eL2nLnoBo6rlyzWu/huPLR30lqfk9J7dlT0noWSGpBodogvFDi1ebjVocGtbl5dUmxHFJHdUmJHNqxXR+d+vZTQnKYDLriaklXQ/jRNtsyiaLS6m8G0ycBEiABEiABErA9AQi0DLVyHAc2Fccm4Qe2bjki7LaXyG41X7G6eJvEqSHypC5dJTErSxKyOn/1mp2tXRzCzWFscoreUBz7ZEbHxkpLU5Ngn0hs1N5Uc1iaamv1UVdRIfWV+6SusvLI6759au7nHsHQdlphkfZyg/mf3WeeIJ169bb9pu4Ulbb/mrOAJEACJEACJEACoSYQHRen93M8dk/H2vK9eujZEIM1e3ZL5dq1WhRiiLqprlbobkHdAAAhcklEQVSa1bA6RKkhJLFBuxaYKs0Y1Tsam6iEpxKnCZlZagPyI+IUbhITO2frxTVJOaFdYGMWW4pKs0gyHRIgARIgARIgAdcTgOBzquiz2jjmOHu0upRMnwRIgARIgARIgARIwNYEKCptbR4WjgRIgARIgARIgAScQYCi0hl2YilJgARIgARIgARIwNYEKCptbR4WjgRIgARIgARIgAScQYCi0hl2YilJgARIgARIgARIwNYEKCptbR4WjgRIgARIgARIgAScQYCi0hl2YilJgARIgARIgARIwNYEKCptbR4WjgRIgARIgARIgAScQYCi0hl2YilJgARIgARIgARIwNYEKCptbR4WjgRIgARIgARIgAScQYCi0hl2YilJgARIgARIgARIwNYEKCptbR4WjgRIgARIgARIgAScQYCi0hl2YilJgARIgARIgARIwNYEKCptbR4WjgRIgARIgARIgAScQYCi0hl2YilJgARIgARIgARIwNYEKCptbR4WjgRIgARIgARIgAScQYCi0hl2YilJgARIgARIgARIwNYEKCptbR4WjgRIgARIgARIgAScQYCi0hl2YilJgARIgARIgARIwNYEKCptbR4WjgRIgARIgARIgAScQYCi0hl2YilJgARIgARIgARIwNYEKCptbR4WjgRIgARIgARIgAScQYCi0hl2YilJgARIgARIgARIwNYEYm1dOhaOBEiABEiABEjAVAIN1cXSqI6mw6XSVLNTve6Uxi9fWxoOSEvjQXUcEk9LgzoaRf0jEhWt/o9TR7xEx6WqI12i4zMkNiVP4pK7q1d1fPkan9ZL4tIKTC0zE3MGAYpKZ9iJpSQBEiABEiCBgAh4mhuktvwzqd+/SuorV7Ye0fGZSvQVSlxKDy0E49J7S1K3qepz/pdiMV1i4jspIRnzpZCMVbqy6UuB2SzNEJ4NEJ4HpfHwDi1KIUyRRyMEavVWdb1KErKGfXVkDpWknLEqyfiA6sDIziJAUekse7G0JEACJEACJOCVAIRfbfmnUlM2R2p2zZHavYslIXPIkUMJvLSi8yRRvcYkZnm939fJqOhYJTCPSAb0VIrqmURIknFeb2uuq5S6L4VsXflSObDxb0rcrpak3PGS3O14Sc47XonM41rT9JoITzqOAEWl40zGApMACZAACZDAEQItjYfl0Pa35ODWl5WYnC3odYRoyxpygyR1nap6HNPDggrCNSVvuj6MAjSr3s3a3R/LYSV69yz8sTQe3KLE5UxJ73WepPY8TfWSphhR+epQAhSVDjUci00CJEACJBCZBFqaarWQrFZC8vDODySpy2RJU8Ks27S/Hhm2tikWCNzUnqfqA0XEMHp18WtyYNPzsnv+Varz89u6HlpgxibZtBYsli8CFJW+6PAaCZAACZAACdiEABbYVK19XKo2PqeHkdMKz5auU56WmIRMm5QwsGJg3mZGv0v00Vy//yuBueBade5SyRh0ncSruZ8MziFAUekcW7GkJEACJEACEUjg0I73pGrd41KzZ6EWW4VnLnWd2IIwzuh/mT4M8Vz8+hhJ7jJRMgZeK6n5J0Wg5Z1XZYpK59mMJSYBEiABEogAAod3fijln90hHk+TZKpeu7wZL0l0BAwLo3cyd9xDkj36Hjm45UUpX3qHVCz7heSMvU8NkZ8QAZZ3bhUpKp1rO5acBEiABEjAhQTQI1mx9E61PU+Z5Iz5tV7I4sJqfmOVIKAz+l+uDyxE2r3gOrXtUZ5kj7lX92B+YwKMEHICFJUhR84MSYAESIAESODrBLDHI1ZF1+1bIdkj75ZOfX+ottyJ+XrECDyDFeJphefoRT1lcy6UxM4jpcvEPyuReWRrowhEYssqU1Ta0iwsVFsCFYd2y/xN78iW8jVS11gjSfEp0itnsEzuc7Jkp3ZtG5XvSYAESMBxBDzKYw0W4JQv/6XaCuhG6a6GuZ2ySXh91Qap/PxeOVz6nlrNvV+tPs+UlB4nS9aIOyQho7+ptoDAzuh/qXTq833Zt/K3sm3WcMkZ9Uu1oOdaiVIefxjCT4BWCL8NWAIfBPZWl8kzn9yrvTpMH3ienDn6Opk64FxpbG6RJ+beLbjOQAIkQAJOJVBXuUpK3pwoB7f9RwpOW6B6KO90jqDcv0ZKXh8tCXFZUjDp79LvpIVSMPFvEitxsu2VAWqz8zWWmAWCG5zAC9xK3pygNlpfZUleTDQwAhSVgfFi7BASQA/lk/PukVGFM6Vv11GqhzJVPY1GSXJ8mgzuMV7G9T5Znpt/vyAeAwmQAAk4jcD+NX+WHe/MVL1vV0jP78w1vWfPSh7oodz26hDpOuwuyep1kcQl5urewrikLpLT/xrJG/WAlLwxThDPqoCeUHDLGHCV5gieDOElQFEZXv7M3QeB+ZvflQHdjpMeWX29xsL5AXnHCeIxkAAJkIBTCLQ0HpLS/52t5gf+XQrP+EyJoiv0A7NTyo9yVn5+n3Tuc7mkd/O+Ghvns9V1xLMyoKMBi3nAETzBFXwZwkOAojI83JmrHwS27l0jRbmDfcaEsNyq5loykAAJkIATCDQo14TFqgcvVvXoFZy+UOLSCpxQ7K+V8fDO9yWj59lfO9/2RFreicrjz/ttT1n2HhzBE1zBF5wZQk+AojL0zJmjnwRqlU/bpLhUn7FxvbbhsM84vEgCJEACdiBQu3exlLw1Wfvl7jr5CT1X3A7lCqYMzfX7JDYxx+etuI54oQpR0XECrvB7Ds7gzRBaAhSVoeXN3AIgkBSXIrXfMIxRp4RnYlxyAKkyKgmQAAmEnsDhso+k9IMzpNuUZ9Rw95WhL4DJOcYkdJamunKfqTbVV+jV4D4jWXARfMG59IPTBdwZQkeAojJ0rJlTgAR6qaHv0spNPu/aVr5aeqvthRhIgARIwK4E6vZ9Ljtnnyc9vv2mpPb8jl2LGVC5UrqfKNVlvoe2q0pmqe2FwuNeEZzzjn9RL+BpOLAxoLoxcvAEKCqDZ8c7LSaAfSjXl33arrCE4Fynrk/ue4rFJWHyJEACJBAcgbqK5VL82ki19+S/JSl3XHCJ2PAu7ENZsflZObjrQ6+lw/l9m59R+1Xe6fV6KE7CpWP+SR/o/Sxrdi8IRZYRnwdFZcR/BewLABubXzb5dlmy5V1ZU7pYahqqlQ9cj37duHu5LC+eLVdPu5sboNvXhCwZCUQ0AezTuOO9k9Q8v6dd57Ma2/kUnLFEypb/XMo3PCGNtXtU+9yiXyu3PC+7V/5ais5ZHfZtklJ6fEu6nzBLdn54ttRXro7o72MoKk+POqGg7JI8wuHZJjctT66Zfo/eNujjda+oOZZYvKM86qih8Sum3ElB6ZLvFqtBAm4j0FxXKaXvnya54x5R7hZ/YHn1jni2uU+vtsbiGMx5xBC1FZ5tjMokZA6WonPX622DShZdphflGPkWnLks7ILSKGdq/smSO/4RNcfyNClU5YpJzDIu8dVkAhSVJgN1a3LwXIONxgeqfSHh2Sbxy0U029S2P/Bsgx5DCEArAnoszxxxqRVJM00SIAESMJ0ARlR2fnSepCt3giERlPBso7bRwb6Q2ROe06uysYimavss7dlG9xgqAWhFQI9lt+l/tyJpU9OEa8eGqnXKLudL/skfOG5fUFNhWJgYh78thOuWpOnZxi2WZD1IgARCQaBy5UPiaa6XbOWX2upwlGeb3j8UeLSBH+xQeraxuo5mpZ896h5llzqBfRisIUBRaQ1XV6VKzzauMicrQwIkYCEBzNurXPWIdJ/5stqHMsbCnI4kbRfPNpZX1IQMYA/YpXLV7zi/0gSe3pKgqPRGheeOIkDPNkfh4AcSIAES8EoAw967PrlccsY+ILHJ3bzGMfuk3TzbmF0/s9ODXWCfXZ9coRd+mp1+pKdHURnp3wA/6k/PNn5AYhQSIIGIJ3Bg49/U0HOs8kUdujngdvRsY/cvQkb/y0R1I2tf4XYvq9PKR1HpNIuFobz0bBMG6MySBEjAUQRammqkfOmd0mXSYyEtt1+ebdSiHcRj+IpA10mPS/lndwjsxmAeAYpK81i6NiV6tnGtaVkxEiABkwhUrX9akrpMkMTOI0xK0b9k/PJso1aBIx7DVwRgJ9gLdmMwjwBFpXksXZsSPdu41rSsGAmQgAkEPC1NakXxwyFZ7X1scf3zbPOs3q/y2Hsj/TNW58NusB+DOQQoKs3h6OpU6NnG1eZl5UiABDpI4FDJmxKXViSJWUM7mFLgtzvFs03gNbP+DtgLdoP9GMwhwM3PzeHo+lTo2cb1JmYFSYAEgiRQteFpyRx0XZB3d/w2p3i26XhNzU8BdoP90orONj/xCEyRojICjR5slenZJlhyvI8ESMCtBJrr90vtnoVq/8NXwlpFp3i2CSskL5mnFpwmu+dfqVxM7leLmTK9xOCpQAhw+DsQWoxLAiRAAiRAAm0IHNr+tqT0OFGiletaBucRiI5NVvY7SWBHho4ToKjsOEOmQAIkQAIkEKEEanbNkeRu0yO09u6odnK346Wm7CN3VCbMtaCoDLMBmD0JkAAJkIBzCdTsmqe26znBuRVgyZX9ZkrN7o9JwgQCFJUmQGQSJEACJEACkUegpfGQNNXskrj0PpFXeRfVGPZrqtktzQ3VLqpVeKpCURke7syVBEiABEjA4QTq96+RBLUtTZRy+cfgXAKwX0LWEGmoWuvcStik5PxLsIkhWAwSIAESIAFnEWg8XCqxyd2dVWiW1isB2BH2ZOgYAYrKjvHj3SRAAiRAAhFKoBlD36n5EVp7d1U7LrWnGgIvc1elwlAbisowQGeWJEACJEACzifQ0lQjUdEJzq8IayBRMQniUfZk6BgBbn7eMX68uwMEKg7tlvmb35Wt5WuktuGwJMWnSK+cwQJf49honYEESIAE7ExAi0q1z6EbQ33VBqn8/D45vPN9tTH4PrUPZ4ak5p+sfIjfKdho3W0hKiZJWppq3VatkNeHPZUhR84MQWBvdZk888m9IlGxMnXAuXLm6Ov0a2Nzizwx9259naRIgARIwM4EsHG2G3u3sACp5PXRkhCbIQUTnpN+Jy2UwsnPS6wkyLZXBgiuuy14mmslOjbJbdUKeX0oKkOOnBmih/LJeffIqMKZ0q/rKEmOT1OrJ6P06+Ae42Vc75Plufn3C+IxkAAJkIBdCWhR2VJv1+IFVS70UG57dYh0HXaXZPX+ocQlddGr2+MScyWn/48kb9QDUvLGOEE8NwVPc73q43Bnr3Mo7URRGUrazEsTwJD3gG7HSY+svl6J4PyAvOP00LjXCDxJAiRAAjYgEJPcTRoP7bBBScwrAoa8O/e5XNK7ed/QHeez1XXEc1NoPLRdreTPc1OVwlIXisqwYI/sTLfuXSNFuYN9QoCwxFxLBhIgARKwK4G4lB5qxfBOuxYvqHJhDmVGz7N93puWd6Kea+kzksMuwo6wJ0PHCFBUdowf7w6CQG2jWpQTl+rzTlzH4h0GEiABErArgYTMwVJfuUo8nha7FjHgcmFRTmxijs/7cB3x3BJgP9gR9mToGAGKyo7x491BEEiKS5Fa5d7MV6hTwjMxjvNbfDHiNRIggfASiFYPv7EYAj+4ObwFMTH3mITO0lRX7jPFpvoKiYnP9BnHSRdhP9gR9mToGAGKyo7x491BEOilhr5LKzf5vHNb+WrprbYXYiABEiABOxNI7jZNDQV/aOciBlS2lO4nSnXZ+z7vqSqZJSk9TvIZx0kXD++cLcldpzqpyLYtK0WlbU3j3oJhH8r1ZZ+2KywhONep65P7nuJeCKwZCZCAKwgkdzteanbNdUVdUImsEXdIxeZn5eAu70IZ5/dtfkbvV+mWStfsmiPJeTPcUp2w1oOiMqz4IzNzbGx+2eTbZcmWd2VN6WKpaahWc5I8+nXj7uWyvHi2XD3tbm6AHplfD9aaBBxFILXnqXK49H1pUVN23BCwsXnBGUukbPnPpXzDE9JYu0fPGcVr5ZbnZffKX0vROatdswE67Ab7wY4MHSdAjzodZxgxKZjpASc3LU+umX6P3jbo43WvqDmWWLyjPOqoofErptxJQRkx3ypWlAScTSAmIVOSukyUQ9vflvTe54etMsd6wMHcSAxlo+cxUA84WLBSdO56vW1QyaLL9KIcI72CM5cFnF7YoPiRMewG+8GODB0nQFHZcYYRkQI84GBDcuwfCQ84enW2WmyzTW0PBA846FmEUAwkoMfyzBGXBnIL45IACZCA7Qhk9L9SKlf/PmyiUnvAURuSY//IbOUBB6uzsdimavss7QFH9ywGuLIZQrTb9L/bjrXZBdq/9jHJGnKD2clGbHoc/o5Y0/tfcXrA8Z8VY5IACUQegdSC06WxepvUqW1pQh3a9YCjPOHk9L/GtR5wzOAMe8FusB+DOQQoKs3h6OpU6AHH1eZl5UiABDpIICo6VrKG3SIVy+7uYEqB3x6pHnACJ/X1OyqW/1LZ7WaB/RjMIUBRaQ5HV6dCDziuNi8rRwIkYAKBjAFXSO3exVK373MTUvM/iUj1gOM/Ie8xYafaPYskY8CV3iPwbFAEKCqDwhZZN9EDTmTZm7UlARIInEB0bLLkjLlX9iy4LvCbO3BHJHrA6QCu1lt3L7hWcsbeJ7Abg3kEKCrNY+nalOgBx7WmZcVIgARMJNCp3yVq+50mqdrwVxNT9Z2UXx5w1KIdxGM4QqBqw3MiyjVjp74XE4nJBCgqTQbqxuToAceNVmWdSIAEzCYQFRUl3aY8K+Wf3SZNNbvMTt5ren55wFGrwBGPQbRdyj+7XdnpGYG9GMwlQFFpLk9XpkYPOK40KytFAiRgAYGErCGSNfRnsnP2eaozrNmCHI5O0j8POM/q/SqPvjPyPsEesEvW0JsEdmIwnwBFpflMXZciPeC4zqSsEAmQgIUEsobdKlExCYLVxVaHSPOA0xGeFcvvVnZJVCu+b+1IMrzXBwGuo/cBh5e+IuAEDzhmevz5quZ8RwIkQAKBEcCwavcZL0vx62MkvlN/NXfvB4ElEGBsJ3jAOdbjT3RchqTmn6x9iAfq8SdAPDr6gc3/lIPqKFQegTjsHQxB/+6hqPSPE2MpAnb2gGOFxx8anQRIgASCJRCTmCU9vv2mbH9npsQkdtYCKti0/LnPzh5wvHr8qa+QqpLgPf74w8SIU7UB81zvkJ6nzFa2yDJO89UCAhz+tgAqkwwtAXr8CS1v5kYCJOAfAczb637CLNn54TlyuPQD/25yWax2Pf4k5iqPPz+y3OPP4Z2zZfcnV0j+Se9yHmUIvlsUlSGAzCysJUCPP9byZeokQALBE0juOkmKzv5cdrx3ohKW/ws+IYfeGU6PP7V7l8jOj86XwrNWSGL2KIcSdFaxKSqdZS+W1gsBevzxAoWnSIAEbEMgvlM/yVdDr2VzfyCHtv/XNuUKRUHC5fEHnEs/OF26z3xZEjuPCEVVmYciQFHJr4HjCdDjj+NNyAqQgOsJpOTNUHMs35Bdaii2av3Trq+vUcFwePwBX3AGb3BnCB0BisrQsWZOFhGgxx+LwDJZEiABUwkk5Y6XgtPmS+Xq3wvcBHpaGk1N346J+eXxRy3aiYnP7HDxwRNcwRecwZshtAQoKkPLm7lZQIAefyyAyiRJgAQsIRCf3lsKz1iiPbuUvDlRGqtLLMnHLon65fFHrQJP6XFSh4oMjuAJT0bgC84MoSdAURl65szRZAL0+GMyUCZHAiRgKYHouFTp8a3XtO/p4jfGquHwZ5TPcI+leYYrcf88/jyj96sMpozgBn7gCF/e4Aq+DOEhwH0qw8OduZpIwPD48+S8e+RAzT4pyh0sSapRqW08JKWVm2R92ady9bS79T6bJmbLpEiABEigQwQyB/9YkrpNU1veXCkHNr8gXSc/JaHYCLxDhQ7wZsPjz7ZXh0h9n8slo+fZEpuYI0115VJd9r5UbH5Wis5ZHVS9sV3R7vlXiae5Xi+ESswaGmDpGN1sAuypNJso0wsLAcPjT1xMtHy87hV5fdlj+lU8TXLFlDsF1xlIgARIwG4EIIQKTl8o6UXflZK3JknFinuVSGqwWzE7VB7D40+TNErJostk43sT9Wt9U5UUKA83uB5IAB9wAi9wAz8KykAIWheXPZXWsWXKISZgZ48/IUbB7EiABBxEICoqWtBrmVp4luxZ+GPZ8p9+kj3ql9Kpz0USFR3joJq0X1QzPP54Wpp1jy58qid2Hqn2//xC4lK6t58pr4ScAEVlyJEzQxIgARIgARL4OgEIJMwJrNmzULsVrPziAcke/StJ73Xe1yNH2JmDW1+WimW/kJikrpJ3/IuS3GVihBFwRnUpKp1hJ5aSBEiABEggQghAMBWcOld74ClfeqfsU+Iyc9B1kt77QomOTYoQCiItTbVycMuLsn/tYxIVFStdJvxJrRL/VsTU34kVpah0otVYZhIgARIgAdcTgIDCcWjHe1K17nHZ++ltktHvUskYdK3EpxW5tv4N1dukau3jUrXxr7pHMmfMfZKa37Eth1wLy2YVo6i0mUFYHBIgARIgARJoSwCCCkdDdbEWW8Wvj5WknOMkregcSSs8W2ISOr5xeNv8wvG+uX6/VBfPkuptr0pt+adKPF8mhWcuVeK5MBzFYZ5BEqCoDBIcbyMBEiABEiCBUBKAwMod95CeZ3lo+1tSreYZ7l18oyR1maQE5nnqUAIzvlMoi9ShvJobDigRCSH5stTuWSDYKL2T6ontfsIsNcyf2KG0eXN4CFBUhoc7cyUBEiABEiCBoAhAcKX3+q4+WhoPy6Htb8tBJcz2Lr5B4tJ6SXLe8drndVLXqUpkpgeVhxU3NTcclNrdH8vhso+kpmyO8ia0VZK7n6A2Lb9Eus98RW1anmJFtkwzhAQoKkMIm1mRAAmQAAmQgJkEIMTSe5+vD09Lk9SVfyaHd83R/q9rP7pA7QE55Mih9sNMyBqm9nMcLjGJWWYWwWtazXWVUlf5hdRXrjxy7F8j9ftXa3/cyXkzpOukxyUxZ6zaMokyxCtAh56kNR1qOBabBEiABEiABNoSgEBL6jJBHzLiDr2Jem3F0i+F3So1zPyKev+FRMdn6B5NbGEUm6wOvKojLiVf9Ramq+tp6rWTFnxIMyo6Tjwtjepo0kdL4wFpaaiWlsaD0nh4hzQd3nnkqNmpPpeqHsht6nqVErHDjwhZNf+zU//LJSl7jETFxLctMt+7jABFpcsMyuqQAAmQAAmQAAhAwGF7omP3dGysLlGLfrZ+JQQPbpEaNSwNcdii5jm2NEIwHlICsl6LSKVOkdiXIjNB+9aOjlPCU4nT2JQ8iftSmKInNDalh16ZHpdWQCNEIAGKygg0OqtMAiRAAiQQuQQg+Cj6Itf+Vtacvr+tpMu0SYAESIAESIAESCBCCFBURoihWU0SIAESIAESIAESsJIARaWVdJk2CZAACZAACZAACUQIAYrKCDE0q0kCJEACJEACJEACVhKgqLSSLtMmARIgARIgARIggQghQFEZIYZmNUmABEiABEiABEjASgIUlVbSZdokQAIkQAIkQAIkECEEKCojxNCsJgmQAAmQAAmQAAlYSYCi0kq6TJsESIAESIAESIAEIoQARWWEGJrVJAESIAESIAESIAErCVBUWkmXaZMACZAACZAACZBAhBCgqIwQQ7OaJEACJEACJEACJGAlAYpKK+kybRIgARIgARIgARKIEAIUlRFiaFaTBEiABEiABEiABKwkQFFpJV2mTQIRTGDl5gqprW+KYAKsOgmQAAnYk4BV7XOsPavLUpEACTiZQGNTizz91mqJjo6SE8bkq6OnJCWwuXGyTVl2EiABdxCwsn1mT6U7viOsBQnYikBcbLScM72PxChROWf5Tvm/pxfJWwu2sufSVlZiYUiABCKRgJXtM0VlJH6jWGcSCAGBSUPzJDYmWhqbmqWhsfkocVlT1xiCEjALEiABEiABbwSsap+jPCp4yxDn3llULO8uLsZbBhIgARIIikB0VJS0tGlm4lUvZq/uneS6s4cHlR5vOkKA7TO/CSRAAh0lYHb77FNUdrSwVt9//aNz5U83Trc6G6ZPAiQQBAHM27nzqYWtQ95xsTGi9KUcP6qHzFBHcmJcEKnyFqcQYPvsFEuxnJFIwKr2mTPnI/HbxDqTQAgILFhVJk3NLdJWTM4cnc8FOyFgzyxIgARIwBcBq9pnikpf1HmNBEggKAJ4Cn517mZ974njCoRiMiiMvIkESIAETCdgZftMUWm6uZggCZAAVhdedfoQ6dMjgz2T/DqQAAmQgI0IWNk+U1TayNAsCgm4icDQ3tluqg7rQgIkQAKuIWBV+8wthVzzFWFFSIAESIAESIAESCB8BCgqw8eeOZMACZAACZAACZCAawhQVLrGlKwICZAACZAACZAACYSPAEVl+NgzZxIgARIgARIgARJwDQGKSteYkhUhARIgARIgARIggfARoKgMH3vmTAIkQAIkQAIkQAKuIUBR6RpTsiIkQAIkQAIkQAIkED4CFJXhY8+cSYAESIAESIAESMA1BCgqXWNKVoQESIAESIAESIAEwkeAojJ87JkzCZAACZAACZAACbiGAEWla0zJipAACZAACZAACZBA+AhQVIaPPXMmARIgARIgARIgAdcQoKh0jSlZERIgARIgARIgARIIHwGKyvCxZ84kQAIkQAIkQAIk4BoCFJWuMSUrQgIkQAIkQAIkQALhI0BRGT72zJkESIAESIAESIAEXEOAotI1pmRFSIAESIAESIAESCB8BCgqw8eeOZMACZAACZAACZCAawhQVLrGlKwICZAACZAACZAACYSPAEVl+NgzZxIgARIgARIgARJwDQGKSteYkhUhARIgARIgARIggfARoKgMH3vmTAIkQAIkQAIkQAKuIUBR6RpTsiIkQAIkQAIkQAIkED4CFJXhY8+cSYAESIAESIAESMA1BCgqXWNKVoQESIAESIAESIAEwkeAojJ87JkzCZAACZAACZAACbiGAEWla0zJipAACZAACZAACZBA+AhQVIaPPXMmARIgARIgARIgAdcQoKh0jSlZERIgARIgARIgARIIHwGKyvCxZ84kQAIkQAIkQAIk4BoCFJWuMSUrQgIkQAIkQAIkQALhI0BRGT72zJkESIAESIAESIAEXEOAotI1pmRFSIAESIAESIAESCB8BCgqw8eeOZMACZAACZAACZCAawg4WlSePL7QNYZgRUiABEjATQTYPrvJmqwLCfhHIMqjgn9RGYsESIAESIAESIAESIAEvBNwdE+l9yrxLAmQAAmQAAmQAAmQQKgJUFSGmjjzIwESIAESIAESIAEXEqCodKFRWSUSIAESIAESIAESCDUBispQE2d+JEACJEACJEACJOBCAhSVLjQqq0QCJEACJEACJEACoSZAURlq4syPBEiABEiABEiABFxIgKLShUZllUiABEiABEiABEgg1AT+Hz8JfMoE6SI2AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Image(\"algorithm.png\")" ] }, { "cell_type": "markdown", "id": "5813bd1a", "metadata": {}, "source": [ " Sama analiza skupień nie jest jednym konkretnym algorytmem, lecz ogólnym zadaniem do rozwiązania. Można je zrealizować za pomocą różnych algorytmów (algorytm $k-średnich$, algorytm $k-medoid$), które różnią się znacznie w rozumieniu tego, czym jest klaster i jak skutecznie je znaleźć. Popularne pojęcia klastrów obejmują grupy o małych odległościach między elementami klastra. Klastrowanie można zatem sformułować jako wieloprzedmiotowy problem optymalizacyjny. Wybór odpowiedniego algorytmu grupowania i ustawień parametrów zależy od indywidualnego zbioru danych i przeznaczenia wyników. Analiza skupień jako taka nie jest zadaniem automatycznym, lecz iteracyjnym procesem odkrywania wiedzy lub interaktywnej optymalizacji wieloprzedmiotowej, który wymaga prób i błędów. Często konieczne jest modyfikowanie wstępnego przetwarzania danych i parametrów modelu, aż do uzyskania pożądanych właściwości." ] }, { "cell_type": "markdown", "id": "3dc57d21", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ " W naszym projekcie przedstawimy metodę $k-medoid$ i porównamy ją z metodą $k-średnich$." ] }, { "cell_type": "markdown", "id": "2e28109b", "metadata": {}, "source": [ "### Algorytm k-średnich" ] }, { "cell_type": "markdown", "id": "01b24fd7", "metadata": {}, "source": [ " W uczeniu maszynowym występują głównie dwa rodzaje algorytmów uczenia. Są to algorytm uczenia nadzorowanego i algorytm uczenia nienadzorowanego. \n", "Klastrowanie metodą $k-średnich$ jest algorytmem uczenia nienadzorowanego, który grupuje nieoznakowane zbiory danych w różne klastry lub grupy. W algorytmie $k-średnich$ $k$ określa liczbę wstępnie zdefiniowanych klastrów lub grup, które należy utworzyć w danym zbiorze danych. Na przykład jeśli $k = 3$, powstaną trzy klastry, dla $k = 5$ będzie pięć klastrów itd." ] }, { "cell_type": "markdown", "id": "7f4d7284", "metadata": {}, "source": [ " Algorytm $k-średnich$ pomaga grupować dane w różne klastry w sposób konwencjonalny, umożliwiając samodzielne odkrywanie kategorii grup w nieoznakowanym zbiorze danych bez konieczności uczenia. Algorytm klasteryzacji $k-średnich$ jest algorytmem opartym na centroidach, w którym każdy klaster jest powiązany z centroidem. Głównym celem tego algorytmu jest zminimalizowanie sumy odległości wewnętrznych punktów danych w odpowiadających im klastrach. Algorytm przyjmuje jako dane wejściowe nieuporządkowany zbiór danych i dzieli go na $k$ grup, a następnie powtarza ten proces aż do uzyskania najlepszych klastrów. Wartość $k$ jest zawsze określona z góry." ] }, { "cell_type": "markdown", "id": "22642017", "metadata": {}, "source": [ " Główne zadanie algorytmu $k-średnich$ jest następujące:\n", "\n", "  $1.$ Wybierz liczbę klastrów $k$. \n", "  $2.$ Wybierz losowo $k$ punktów z zestawu danych jako centroidy. \n", "  $3.$ Przypisz każdy punkt danych do najbliższego mu centroida. \n", "  $4.$ Oblicz wariancję i umieść nowy centroid dla każdego klastra. \n", "  $5.$ Powtórz $krok 3$, czyli ponownie przypisz każdy punkt danych do nowego najbliższego centroidu." ] }, { "cell_type": "markdown", "id": "15d683c2", "metadata": {}, "source": [ " **Rozwiązanie**: Implementacja algorytmu $k-średnich$ przy użyciu Pythona. Do wykonania algorytmu $k-średnich$ potrzebne jest wstępne przetwarzanie danych. W naszym rozwiązaniu przeprowadziliśmy wstępne przetwarzanie danych w celu zaimplementowania algorytmu. Dodatkowo oceniliśmy jaka jest jakość naszego grupowania. Posłużyliśmy się tzw. sylwetką (ang. silhouette) $s(x_i)$ obliczaną dla każdego obiektu $x_i$. Najpierw dla $x_i$ znajduje się jego średnią odległość $a(x_i)$ od pozostałych obiektów grupy, do której został przydzielony, a następnie wybiera się minimalną wartość $b(x_i)$ spośród obliczonych odległości od $x_i$ do każdej spośród pozostałych grup osobno. Odległość $x_i$ od danej grupy oblicza się jako średnią odległość od $x_i$ do wszystkich elementów tej grupy. Obie wielkości zestawia się we wzorze: " ] }, { "cell_type": "markdown", "id": "e276f546", "metadata": {}, "source": [ "

$s(x_i) = \\frac{b(x_i)-a(x_i)}{max(a(x_i),b(x_i))}$

" ] }, { "cell_type": "markdown", "id": "9af1d9d2", "metadata": {}, "source": [ "otrzymując wartość sylwetki dla danego obiektu $x_i$. Jej zbiór wartości to $[-1, 1]$. Zatem ma ona prostą interpretację: obiekty, dla których wskaźnik jest bliski $1$, zostały trafnie zgrupowane, pozostałe (o wartości ok. $0$ i $ujemnej$) prawdopodobnie trafiły do złych grup." ] }, { "cell_type": "code", "execution_count": 118, "id": "409d4187", "metadata": {}, "outputs": [], "source": [ "class TrainModel_means:\n", " def __init__(self, data, k_value, max_iteration):\n", " self.data = data\n", " scaler = MinMaxScaler()\n", " self.data = scaler.fit_transform(self.data)\n", " self.k_value = k_value\n", " self.max_iteration = max_iteration\n", " self.centroids = []\n", " self.final_clusters, self.silhouette = self.data_cluster()\n", "\n", " def generate_column(self, col, data):\n", " values = []\n", " for i in range(len(data)):\n", " values.append(data[i][col])\n", " return values\n", "\n", " def calculateDistance(self, x, y):\n", " return np.linalg.norm(x-y)\n", "\n", " def get_closest_centroid(self, points, centroids):\n", " closest_centroids = []\n", " for i in points:\n", " distance = []\n", " for c in centroids:\n", " dis = self.calculateDistance(i, c)\n", " distance.append(dis)\n", " closest_centroids.append(np.argmin(distance))\n", " return closest_centroids\n", "\n", " def calculate_new_centroids(self, clusters, X):\n", " new_centroids = []\n", " new_df = pd.concat([pd.DataFrame(X), pd.DataFrame(clusters, columns=['cluster'])], axis=1)\n", " for c in set(new_df['cluster']):\n", " current_cluster = new_df[new_df['cluster'] == c][new_df.columns[:-1]]\n", " cluster_mean = current_cluster.mean(axis=0)\n", " new_centroids.append(cluster_mean)\n", " return new_centroids\n", "\n", " def get_clustered_data(self, points, centroids):\n", " closest_centroids = self.get_closest_centroid(points, centroids)\n", " clustered_data = {}\n", " for i in range(self.k_value):\n", " clustered_data[i] = []\n", " for i in range(len(points)):\n", " clustered_data[closest_centroids[i]].append(points[i])\n", " return clustered_data\n", "\n", " def get_clusters_label(self, data_points, clusters):\n", " labels = []\n", " for i in range(len(data_points)):\n", " labels.append(0)\n", " for i in clusters.keys():\n", " cluster = clusters[i]\n", " for j in range(len(cluster)):\n", " for k in range(len(data_points)):\n", " if (cluster[j] == data_points[k]).all():\n", " labels[k] = i\n", " break\n", " return labels\n", "\n", " def data_cluster(self):\n", " centroid_points = random.sample(range(0, len(self.data)), self.k_value)\n", " for i in centroid_points:\n", " self.centroids.append(self.data[i])\n", " for i in range(self.max_iteration):\n", " closest_centroids = self.get_closest_centroid(self.data, self.centroids)\n", " self.centroids = self.calculate_new_centroids(closest_centroids, np.array(self.data))\n", " final_clusters = self.get_clustered_data(self.data, self.centroids)\n", " cluster_labels = self.get_clusters_label(self.data, final_clusters)\n", " silhouette_avg = silhouette_score(self.data, cluster_labels)\n", " print(\"Sylwetka (ang.silhouette) dla metody k-średnich i dla k =\", self.k_value, round(silhouette_avg,2))\n", " \n", " return final_clusters, round(silhouette_avg,2)\n", " \n", " def return_values(self):\n", " return self.centroids, self.final_clusters, self.silhouette" ] }, { "cell_type": "code", "execution_count": 130, "id": "b42a9194", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-średnich i dla k = 3 0.44\n" ] } ], "source": [ "# iris\n", "dataset = pd.read_csv('iris.csv')\n", "dataset = dataset.iloc[: , 1:-1]\n", "dataset = dataset.values\n", "model = TrainModel_means(dataset, 3, 10)\n", "centroids, final_clusters, silhouette = model.return_values()" ] }, { "cell_type": "code", "execution_count": 131, "id": "15541704", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-średnich i dla k = 4 0.33\n" ] } ], "source": [ "# glass\n", "dataset2= pd.read_csv('glass.csv')\n", "dataset2 = dataset2.iloc[:,:-1]\n", "dataset2 = dataset2.values\n", "model2 = TrainModel_means(dataset2, 4, 10)\n", "centroids2, final_clusters2, silhouette2 = model2.return_values()" ] }, { "cell_type": "code", "execution_count": 132, "id": "c29dca2b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-średnich i dla k = 3 0.3\n" ] } ], "source": [ "# wine\n", "dataset3= pd.read_csv('wine.csv')\n", "dataset3 = dataset3.values\n", "model3 = TrainModel_means(dataset3, 3, 10)\n", "centroids3, final_clusters3, silhouette3 = model3.return_values()" ] }, { "cell_type": "markdown", "id": "f7c684c9", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "### Algorytm k-medoid" ] }, { "cell_type": "markdown", "id": "af45d7c7", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "$1.$ Inicjalizacja: wybierz $k$ losowych punktów spośród $n$ punktów danych jako medoidy. \n", "$2.$ Przyporządkuj każdy punkt danych do najbliższego medoidu, używając dowolnych popularnych metod metryki odległości. \n", "$3.$ Podczas gdy koszt maleje: \n", "  Dla każdej medoidy $m$, dla każdego punktu danych $o$, który nie jest medoidą: \n", "    $i.$ Zamień punkty $m$ i $o$, przyporządkuj każdy punkt danych do najbliższej medoidy, ponownie oblicz koszt. \n", "    $ii.$ Jeśli całkowity koszt jest większy niż w poprzednim kroku, cofnij zamianę." ] }, { "cell_type": "markdown", "id": "d8f6dd1e", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ " **Rozwiązanie**: Implementacja algorytmu k-medoid w Pythonie. Do wykonania algorytmu k-medoidy potrzebne jest wstępne przetworzenie danych. W naszym rozwiązaniu przeprowadziliśmy wstępne przetwarzanie danych w celu zaimplementowania algorytmu k-medoid. " ] }, { "cell_type": "code", "execution_count": 102, "id": "73cffc81", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "class TrainModel_medoids:\n", " def __init__(self, data, k_value):\n", " self.data = data\n", " scaler = MinMaxScaler()\n", " self.data = scaler.fit_transform(self.data)\n", " self.k_value = k_value\n", " self.medoids, self.res_cluster, self.cluster_labels, self.silhouette = self.kmedoids(self.data)\n", "\n", " def get_random_medoids(self, data):\n", " points = random.sample(range(0, len(data)), self.k_value)\n", " medoids = []\n", " for i in points:\n", " medoids.append(data[i])\n", " return medoids\n", "\n", " def get_closest_medoids(self, sample_point, medoids):\n", " min_distance = float('inf')\n", " closest_medoid = None\n", " for i in range(len(medoids)):\n", " distance = self.calculateDistance(sample_point, medoids[i])\n", " if distance < min_distance:\n", " min_distance = distance\n", " closest_medoid = i\n", " return closest_medoid\n", "\n", " def get_clusters(self, data_points, medoids):\n", " clusters = [[] for _ in range(self.k_value)]\n", " for i in range(len(data_points)):\n", " x = self.get_closest_medoids(data_points[i], medoids)\n", " clusters[x].append(data_points[i])\n", " return clusters\n", "\n", " def calculate_cost(self, data_points, clusters, medoids):\n", " cost = 0\n", " for i in range(len(clusters)):\n", " for j in range(len(clusters[i])):\n", " cost += self.calculateDistance(medoids[i], clusters[i][j])\n", " return cost\n", "\n", " def get_non_medoids(self, data_points, medoids):\n", " non_medoids = []\n", " for sample in data_points:\n", " flag = False\n", " for m in medoids:\n", " if (sample == m).all():\n", " flag = True\n", " if flag == False:\n", " non_medoids.append(sample)\n", " return non_medoids\n", "\n", " def get_clusters_label(self, data_points, clusters):\n", " labels = []\n", " for i in range(len(data_points)):\n", " labels.append(0)\n", " for i in range(len(clusters)):\n", " cluster = clusters[i]\n", " for j in range(len(cluster)):\n", " for k in range(len(data_points)):\n", " if (cluster[j] == data_points[k]).all():\n", " labels[k] = i\n", " break\n", " return labels\n", " \n", " def plot_results(self, clusters, medoids):\n", " colors = ['b', 'g', 'r', 'c', 'm', 'k']\n", " X = []\n", " Y = []\n", " plt.figure(figsize=(10,8))\n", " for i in range(self.k_value):\n", " X.append(np.squeeze(clusters[i])[:, 0])\n", " Y.append(np.squeeze(clusters[i])[:, 1])\n", "\n", " for i in range(len(X)):\n", " plt.scatter(X[i], Y[i], c=colors[i])\n", "\n", " mx = []\n", " my = []\n", "\n", " for m in medoids:\n", " mx.append(m[0])\n", " my.append(m[1])\n", "\n", " plt.scatter(mx, my, c='yellow', marker='*')\n", " plt.xlabel(\"X\")\n", " plt.ylabel(\"Y\")\n", " plt.title(f\"K-medoids. Number of clusters: {self.k_value}\")\n", " plt.show()\n", " time.sleep(4)\n", "\n", " def kmedoids(self, data):\n", " medoids = self.get_random_medoids(data)\n", " clusters = self.get_clusters(data, medoids)\n", " initial_cost = self.calculate_cost(data, clusters, medoids)\n", " while True:\n", " best_medoids = medoids\n", " lowest_cost = initial_cost\n", " for i in range(len(medoids)):\n", " non_medoids = self.get_non_medoids(data, medoids)\n", " for j in range(len(non_medoids)):\n", " new_medoids = medoids.copy()\n", " for k in range(len(new_medoids)):\n", " if (new_medoids[k] == medoids[i]).all():\n", " new_medoids[k] = non_medoids[j]\n", " new_clusters = self.get_clusters(data, new_medoids)\n", " new_cost = self.calculate_cost(data, new_clusters, new_medoids)\n", " if new_cost < lowest_cost:\n", " lowest_cost = new_cost\n", " best_medoids = new_medoids\n", " if lowest_cost < initial_cost:\n", " initial_cost = lowest_cost\n", " medoids = best_medoids\n", " else:\n", " break\n", " final_clusters = self.get_clusters(data, medoids)\n", " cluster_labels = self.get_clusters_label(data, final_clusters)\n", " silhouette_avg = silhouette_score(data, cluster_labels)\n", " self.plot_results(final_clusters, medoids)\n", "\n", " print(\"Sylwetka (ang.silhouette) dla metody k-medoid i dla k =\", self.k_value, round(silhouette_avg,2))\n", "\n", " res_cluster = []\n", " for i in range(0, self.k_value):\n", " res_cluster.append([data[s] for s in range(0, len(data)) if cluster_labels[s] == i])\n", " return medoids, res_cluster, cluster_labels, round(silhouette_avg,2)\n", "\n", " def calculateDistance(self, x, y):\n", " return np.linalg.norm(x-y)\n", "\n", " def return_values(self):\n", " return self.medoids, self.res_cluster, self.cluster_labels, self.silhouette" ] }, { "cell_type": "markdown", "id": "c5290f06", "metadata": {}, "source": [ "#### Uruchomienie algorytmu k-medoid dla zbioru danych iris" ] }, { "cell_type": "code", "execution_count": 84, "id": "4c1f8423", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 3 0.48\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Długość kielichaSzerokość kielichaDługość płatkaSzerokość płatkaWartość medoidu 0Wartość medoidu 1Wartość medoidu 2Medoid
00.170.460.080.00(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
10.170.460.080.00(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
20.750.500.630.54(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
30.580.500.590.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
40.720.460.660.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
50.330.120.510.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
60.610.330.610.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
70.390.330.590.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
80.560.540.630.63(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
90.170.170.390.38(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
100.640.380.610.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
110.250.290.490.54(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
120.190.000.420.38(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
130.440.420.540.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
140.470.080.510.38(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
150.500.380.630.54(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
160.360.380.440.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
170.670.460.580.54(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
180.360.420.590.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
190.420.290.530.38(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
200.530.080.590.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
210.360.210.490.42(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
220.440.500.640.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
230.500.330.510.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
240.560.210.660.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
250.500.330.630.46(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
260.580.380.560.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
270.640.420.580.54(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
280.690.330.640.54(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
290.470.380.590.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
300.390.250.420.38(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
310.330.170.470.42(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
320.330.170.460.38(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
330.420.290.490.46(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
340.470.290.690.63(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
350.310.420.590.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
360.470.580.590.63(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
370.670.460.630.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
380.560.120.580.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
390.360.420.530.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
400.330.210.510.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
410.330.250.580.46(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
420.500.420.610.54(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
430.420.250.510.46(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
440.190.120.390.38(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
450.360.290.540.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
460.390.420.540.46(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
470.390.380.540.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
480.530.380.560.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
490.220.210.340.42(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
500.390.330.530.50(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
510.420.290.690.75(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
520.170.210.590.67(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
530.390.210.680.79(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
540.470.080.680.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
550.360.330.660.79(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
560.560.290.660.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
570.530.330.640.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
580.500.420.660.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
590.560.330.690.58(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
600.500.250.780.54(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
610.470.420.640.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
620.420.290.690.75(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
630.560.210.680.75(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
640.440.420.690.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)0
650.220.620.070.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
660.170.420.070.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
670.110.500.050.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
680.080.460.080.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
690.190.670.070.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
700.310.790.120.12(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
710.080.580.070.08(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
720.190.580.080.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
730.030.380.070.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
740.170.460.080.00(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
750.310.710.080.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
760.140.580.100.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
770.140.420.070.00(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
780.000.420.020.00(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
790.420.830.030.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
800.391.000.080.12(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
810.310.790.050.12(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
820.220.620.070.08(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
830.390.750.120.08(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
840.220.750.080.08(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
850.310.580.120.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
860.220.710.080.12(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
870.080.670.000.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
880.220.540.120.17(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
890.140.580.150.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
900.190.420.100.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
910.190.580.100.12(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
920.250.620.080.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
930.250.580.070.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
940.110.500.100.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
950.140.460.100.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
960.310.580.080.12(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
970.250.870.080.00(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
980.330.920.070.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
990.190.500.030.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1000.330.620.050.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1010.030.420.050.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1020.220.580.080.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1030.190.620.050.08(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1040.060.120.050.08(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1050.030.500.050.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1060.190.620.100.21(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1070.220.750.150.12(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1080.140.420.070.08(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1090.220.750.100.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1100.080.500.070.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1110.280.710.080.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1120.190.540.070.04(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)1
1130.670.420.680.67(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1140.560.540.851.00(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1150.780.420.830.83(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1160.560.380.780.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1170.610.420.810.88(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1180.920.420.950.83(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1190.830.380.900.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1200.670.210.810.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1210.810.670.861.00(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1220.610.500.690.79(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1230.580.290.730.75(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1240.690.420.760.83(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1250.420.330.690.96(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1260.580.500.730.92(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1270.610.420.760.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1280.940.750.970.88(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1290.940.251.000.92(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1300.720.500.800.92(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1310.940.330.970.79(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1320.670.540.800.83(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1330.810.500.850.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1340.580.330.780.83(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1350.810.420.810.63(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1360.860.330.860.75(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1371.000.750.920.79(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1380.580.330.780.88(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1390.940.420.860.92(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1400.560.580.780.96(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1410.580.460.760.71(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1420.720.460.750.83(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1430.670.460.780.96(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1440.720.460.690.92(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1450.690.500.830.92(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1460.670.540.801.00(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1470.670.420.710.92(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1480.610.420.710.79(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
1490.530.580.750.92(0.47, 0.38, 0.59, 0.58)(0.19, 0.58, 0.08, 0.04)(0.69, 0.42, 0.76, 0.83)2
\n", "
" ], "text/plain": [ " Długość kielicha \\\n", "0 0.17 \n", "1 0.17 \n", "2 0.75 \n", "3 0.58 \n", "4 0.72 \n", "5 0.33 \n", "6 0.61 \n", "7 0.39 \n", "8 0.56 \n", "9 0.17 \n", "10 0.64 \n", "11 0.25 \n", "12 0.19 \n", "13 0.44 \n", "14 0.47 \n", "15 0.50 \n", "16 0.36 \n", "17 0.67 \n", "18 0.36 \n", "19 0.42 \n", "20 0.53 \n", "21 0.36 \n", "22 0.44 \n", "23 0.50 \n", "24 0.56 \n", "25 0.50 \n", "26 0.58 \n", "27 0.64 \n", "28 0.69 \n", "29 0.47 \n", "30 0.39 \n", "31 0.33 \n", "32 0.33 \n", "33 0.42 \n", "34 0.47 \n", "35 0.31 \n", "36 0.47 \n", "37 0.67 \n", "38 0.56 \n", "39 0.36 \n", "40 0.33 \n", "41 0.33 \n", "42 0.50 \n", "43 0.42 \n", "44 0.19 \n", "45 0.36 \n", "46 0.39 \n", "47 0.39 \n", "48 0.53 \n", "49 0.22 \n", "50 0.39 \n", "51 0.42 \n", "52 0.17 \n", "53 0.39 \n", "54 0.47 \n", "55 0.36 \n", "56 0.56 \n", "57 0.53 \n", "58 0.50 \n", "59 0.56 \n", "60 0.50 \n", "61 0.47 \n", "62 0.42 \n", "63 0.56 \n", "64 0.44 \n", "65 0.22 \n", "66 0.17 \n", "67 0.11 \n", "68 0.08 \n", "69 0.19 \n", "70 0.31 \n", "71 0.08 \n", "72 0.19 \n", "73 0.03 \n", "74 0.17 \n", "75 0.31 \n", "76 0.14 \n", "77 0.14 \n", "78 0.00 \n", "79 0.42 \n", "80 0.39 \n", "81 0.31 \n", "82 0.22 \n", "83 0.39 \n", "84 0.22 \n", "85 0.31 \n", "86 0.22 \n", "87 0.08 \n", "88 0.22 \n", "89 0.14 \n", "90 0.19 \n", "91 0.19 \n", "92 0.25 \n", "93 0.25 \n", "94 0.11 \n", "95 0.14 \n", "96 0.31 \n", "97 0.25 \n", "98 0.33 \n", "99 0.19 \n", "100 0.33 \n", "101 0.03 \n", "102 0.22 \n", "103 0.19 \n", "104 0.06 \n", "105 0.03 \n", "106 0.19 \n", "107 0.22 \n", "108 0.14 \n", "109 0.22 \n", "110 0.08 \n", "111 0.28 \n", "112 0.19 \n", "113 0.67 \n", "114 0.56 \n", "115 0.78 \n", "116 0.56 \n", "117 0.61 \n", "118 0.92 \n", "119 0.83 \n", "120 0.67 \n", "121 0.81 \n", "122 0.61 \n", "123 0.58 \n", "124 0.69 \n", "125 0.42 \n", "126 0.58 \n", "127 0.61 \n", "128 0.94 \n", "129 0.94 \n", "130 0.72 \n", "131 0.94 \n", "132 0.67 \n", "133 0.81 \n", "134 0.58 \n", "135 0.81 \n", "136 0.86 \n", "137 1.00 \n", "138 0.58 \n", "139 0.94 \n", "140 0.56 \n", "141 0.58 \n", "142 0.72 \n", "143 0.67 \n", "144 0.72 \n", "145 0.69 \n", "146 0.67 \n", "147 0.67 \n", "148 0.61 \n", "149 0.53 \n", "\n", " Szerokość kielicha \\\n", "0 0.46 \n", "1 0.46 \n", "2 0.50 \n", "3 0.50 \n", "4 0.46 \n", "5 0.12 \n", "6 0.33 \n", "7 0.33 \n", "8 0.54 \n", "9 0.17 \n", "10 0.38 \n", "11 0.29 \n", "12 0.00 \n", "13 0.42 \n", "14 0.08 \n", "15 0.38 \n", "16 0.38 \n", "17 0.46 \n", "18 0.42 \n", "19 0.29 \n", "20 0.08 \n", "21 0.21 \n", "22 0.50 \n", "23 0.33 \n", "24 0.21 \n", "25 0.33 \n", "26 0.38 \n", "27 0.42 \n", "28 0.33 \n", "29 0.38 \n", "30 0.25 \n", "31 0.17 \n", "32 0.17 \n", "33 0.29 \n", "34 0.29 \n", "35 0.42 \n", "36 0.58 \n", "37 0.46 \n", "38 0.12 \n", "39 0.42 \n", "40 0.21 \n", "41 0.25 \n", "42 0.42 \n", "43 0.25 \n", "44 0.12 \n", "45 0.29 \n", "46 0.42 \n", "47 0.38 \n", "48 0.38 \n", "49 0.21 \n", "50 0.33 \n", "51 0.29 \n", "52 0.21 \n", "53 0.21 \n", "54 0.08 \n", "55 0.33 \n", "56 0.29 \n", "57 0.33 \n", "58 0.42 \n", "59 0.33 \n", "60 0.25 \n", "61 0.42 \n", "62 0.29 \n", "63 0.21 \n", "64 0.42 \n", "65 0.62 \n", "66 0.42 \n", "67 0.50 \n", "68 0.46 \n", "69 0.67 \n", "70 0.79 \n", "71 0.58 \n", "72 0.58 \n", "73 0.38 \n", "74 0.46 \n", "75 0.71 \n", "76 0.58 \n", "77 0.42 \n", "78 0.42 \n", "79 0.83 \n", "80 1.00 \n", "81 0.79 \n", "82 0.62 \n", "83 0.75 \n", "84 0.75 \n", "85 0.58 \n", "86 0.71 \n", "87 0.67 \n", "88 0.54 \n", "89 0.58 \n", "90 0.42 \n", "91 0.58 \n", "92 0.62 \n", "93 0.58 \n", "94 0.50 \n", "95 0.46 \n", "96 0.58 \n", "97 0.87 \n", "98 0.92 \n", "99 0.50 \n", "100 0.62 \n", "101 0.42 \n", "102 0.58 \n", "103 0.62 \n", "104 0.12 \n", "105 0.50 \n", "106 0.62 \n", "107 0.75 \n", "108 0.42 \n", "109 0.75 \n", "110 0.50 \n", "111 0.71 \n", "112 0.54 \n", "113 0.42 \n", "114 0.54 \n", "115 0.42 \n", "116 0.38 \n", "117 0.42 \n", "118 0.42 \n", "119 0.38 \n", "120 0.21 \n", "121 0.67 \n", "122 0.50 \n", "123 0.29 \n", "124 0.42 \n", "125 0.33 \n", "126 0.50 \n", "127 0.42 \n", "128 0.75 \n", "129 0.25 \n", "130 0.50 \n", "131 0.33 \n", "132 0.54 \n", "133 0.50 \n", "134 0.33 \n", "135 0.42 \n", "136 0.33 \n", "137 0.75 \n", "138 0.33 \n", "139 0.42 \n", "140 0.58 \n", "141 0.46 \n", "142 0.46 \n", "143 0.46 \n", "144 0.46 \n", "145 0.50 \n", "146 0.54 \n", "147 0.42 \n", "148 0.42 \n", "149 0.58 \n", "\n", " Długość płatka \\\n", "0 0.08 \n", "1 0.08 \n", "2 0.63 \n", "3 0.59 \n", "4 0.66 \n", "5 0.51 \n", "6 0.61 \n", "7 0.59 \n", "8 0.63 \n", "9 0.39 \n", "10 0.61 \n", "11 0.49 \n", "12 0.42 \n", "13 0.54 \n", "14 0.51 \n", "15 0.63 \n", "16 0.44 \n", "17 0.58 \n", "18 0.59 \n", "19 0.53 \n", "20 0.59 \n", "21 0.49 \n", "22 0.64 \n", "23 0.51 \n", "24 0.66 \n", "25 0.63 \n", "26 0.56 \n", "27 0.58 \n", "28 0.64 \n", "29 0.59 \n", "30 0.42 \n", "31 0.47 \n", "32 0.46 \n", "33 0.49 \n", "34 0.69 \n", "35 0.59 \n", "36 0.59 \n", "37 0.63 \n", "38 0.58 \n", "39 0.53 \n", "40 0.51 \n", "41 0.58 \n", "42 0.61 \n", "43 0.51 \n", "44 0.39 \n", "45 0.54 \n", "46 0.54 \n", "47 0.54 \n", "48 0.56 \n", "49 0.34 \n", "50 0.53 \n", "51 0.69 \n", "52 0.59 \n", "53 0.68 \n", "54 0.68 \n", "55 0.66 \n", "56 0.66 \n", "57 0.64 \n", "58 0.66 \n", "59 0.69 \n", "60 0.78 \n", "61 0.64 \n", "62 0.69 \n", "63 0.68 \n", "64 0.69 \n", "65 0.07 \n", "66 0.07 \n", "67 0.05 \n", "68 0.08 \n", "69 0.07 \n", "70 0.12 \n", "71 0.07 \n", "72 0.08 \n", "73 0.07 \n", "74 0.08 \n", "75 0.08 \n", "76 0.10 \n", "77 0.07 \n", "78 0.02 \n", "79 0.03 \n", "80 0.08 \n", "81 0.05 \n", "82 0.07 \n", "83 0.12 \n", "84 0.08 \n", "85 0.12 \n", "86 0.08 \n", "87 0.00 \n", "88 0.12 \n", "89 0.15 \n", "90 0.10 \n", "91 0.10 \n", "92 0.08 \n", "93 0.07 \n", "94 0.10 \n", "95 0.10 \n", "96 0.08 \n", "97 0.08 \n", "98 0.07 \n", "99 0.03 \n", "100 0.05 \n", "101 0.05 \n", "102 0.08 \n", "103 0.05 \n", "104 0.05 \n", "105 0.05 \n", "106 0.10 \n", "107 0.15 \n", "108 0.07 \n", "109 0.10 \n", "110 0.07 \n", "111 0.08 \n", "112 0.07 \n", "113 0.68 \n", "114 0.85 \n", "115 0.83 \n", "116 0.78 \n", "117 0.81 \n", "118 0.95 \n", "119 0.90 \n", "120 0.81 \n", "121 0.86 \n", "122 0.69 \n", "123 0.73 \n", "124 0.76 \n", "125 0.69 \n", "126 0.73 \n", "127 0.76 \n", "128 0.97 \n", "129 1.00 \n", "130 0.80 \n", "131 0.97 \n", "132 0.80 \n", "133 0.85 \n", "134 0.78 \n", "135 0.81 \n", "136 0.86 \n", "137 0.92 \n", "138 0.78 \n", "139 0.86 \n", "140 0.78 \n", "141 0.76 \n", "142 0.75 \n", "143 0.78 \n", "144 0.69 \n", "145 0.83 \n", "146 0.80 \n", "147 0.71 \n", "148 0.71 \n", "149 0.75 \n", "\n", " Szerokość płatka \\\n", "0 0.00 \n", "1 0.00 \n", "2 0.54 \n", "3 0.58 \n", "4 0.58 \n", "5 0.50 \n", "6 0.58 \n", "7 0.50 \n", "8 0.63 \n", "9 0.38 \n", "10 0.50 \n", "11 0.54 \n", "12 0.38 \n", "13 0.58 \n", "14 0.38 \n", "15 0.54 \n", "16 0.50 \n", "17 0.54 \n", "18 0.58 \n", "19 0.38 \n", "20 0.58 \n", "21 0.42 \n", "22 0.71 \n", "23 0.50 \n", "24 0.58 \n", "25 0.46 \n", "26 0.50 \n", "27 0.54 \n", "28 0.54 \n", "29 0.58 \n", "30 0.38 \n", "31 0.42 \n", "32 0.38 \n", "33 0.46 \n", "34 0.63 \n", "35 0.58 \n", "36 0.63 \n", "37 0.58 \n", "38 0.50 \n", "39 0.50 \n", "40 0.50 \n", "41 0.46 \n", "42 0.54 \n", "43 0.46 \n", "44 0.38 \n", "45 0.50 \n", "46 0.46 \n", "47 0.50 \n", "48 0.50 \n", "49 0.42 \n", "50 0.50 \n", "51 0.75 \n", "52 0.67 \n", "53 0.79 \n", "54 0.58 \n", "55 0.79 \n", "56 0.71 \n", "57 0.71 \n", "58 0.71 \n", "59 0.58 \n", "60 0.54 \n", "61 0.71 \n", "62 0.75 \n", "63 0.75 \n", "64 0.71 \n", "65 0.04 \n", "66 0.04 \n", "67 0.04 \n", "68 0.04 \n", "69 0.04 \n", "70 0.12 \n", "71 0.08 \n", "72 0.04 \n", "73 0.04 \n", "74 0.00 \n", "75 0.04 \n", "76 0.04 \n", "77 0.00 \n", "78 0.00 \n", "79 0.04 \n", "80 0.12 \n", "81 0.12 \n", "82 0.08 \n", "83 0.08 \n", "84 0.08 \n", "85 0.04 \n", "86 0.12 \n", "87 0.04 \n", "88 0.17 \n", "89 0.04 \n", "90 0.04 \n", "91 0.12 \n", "92 0.04 \n", "93 0.04 \n", "94 0.04 \n", "95 0.04 \n", "96 0.12 \n", "97 0.00 \n", "98 0.04 \n", "99 0.04 \n", "100 0.04 \n", "101 0.04 \n", "102 0.04 \n", "103 0.08 \n", "104 0.08 \n", "105 0.04 \n", "106 0.21 \n", "107 0.12 \n", "108 0.08 \n", "109 0.04 \n", "110 0.04 \n", "111 0.04 \n", "112 0.04 \n", "113 0.67 \n", "114 1.00 \n", "115 0.83 \n", "116 0.71 \n", "117 0.88 \n", "118 0.83 \n", "119 0.71 \n", "120 0.71 \n", "121 1.00 \n", "122 0.79 \n", "123 0.75 \n", "124 0.83 \n", "125 0.96 \n", "126 0.92 \n", "127 0.71 \n", "128 0.88 \n", "129 0.92 \n", "130 0.92 \n", "131 0.79 \n", "132 0.83 \n", "133 0.71 \n", "134 0.83 \n", "135 0.63 \n", "136 0.75 \n", "137 0.79 \n", "138 0.88 \n", "139 0.92 \n", "140 0.96 \n", "141 0.71 \n", "142 0.83 \n", "143 0.96 \n", "144 0.92 \n", "145 0.92 \n", "146 1.00 \n", "147 0.92 \n", "148 0.79 \n", "149 0.92 \n", "\n", " Wartość medoidu 0 \\\n", "0 (0.47, 0.38, 0.59, 0.58) \n", "1 (0.47, 0.38, 0.59, 0.58) \n", "2 (0.47, 0.38, 0.59, 0.58) \n", "3 (0.47, 0.38, 0.59, 0.58) \n", "4 (0.47, 0.38, 0.59, 0.58) \n", "5 (0.47, 0.38, 0.59, 0.58) \n", "6 (0.47, 0.38, 0.59, 0.58) \n", "7 (0.47, 0.38, 0.59, 0.58) \n", "8 (0.47, 0.38, 0.59, 0.58) \n", "9 (0.47, 0.38, 0.59, 0.58) \n", "10 (0.47, 0.38, 0.59, 0.58) \n", "11 (0.47, 0.38, 0.59, 0.58) \n", "12 (0.47, 0.38, 0.59, 0.58) \n", "13 (0.47, 0.38, 0.59, 0.58) \n", "14 (0.47, 0.38, 0.59, 0.58) \n", "15 (0.47, 0.38, 0.59, 0.58) \n", "16 (0.47, 0.38, 0.59, 0.58) \n", "17 (0.47, 0.38, 0.59, 0.58) \n", "18 (0.47, 0.38, 0.59, 0.58) \n", "19 (0.47, 0.38, 0.59, 0.58) \n", "20 (0.47, 0.38, 0.59, 0.58) \n", "21 (0.47, 0.38, 0.59, 0.58) \n", "22 (0.47, 0.38, 0.59, 0.58) \n", "23 (0.47, 0.38, 0.59, 0.58) \n", "24 (0.47, 0.38, 0.59, 0.58) \n", "25 (0.47, 0.38, 0.59, 0.58) \n", "26 (0.47, 0.38, 0.59, 0.58) \n", "27 (0.47, 0.38, 0.59, 0.58) \n", "28 (0.47, 0.38, 0.59, 0.58) \n", "29 (0.47, 0.38, 0.59, 0.58) \n", "30 (0.47, 0.38, 0.59, 0.58) \n", "31 (0.47, 0.38, 0.59, 0.58) \n", "32 (0.47, 0.38, 0.59, 0.58) \n", "33 (0.47, 0.38, 0.59, 0.58) \n", "34 (0.47, 0.38, 0.59, 0.58) \n", "35 (0.47, 0.38, 0.59, 0.58) \n", "36 (0.47, 0.38, 0.59, 0.58) \n", "37 (0.47, 0.38, 0.59, 0.58) \n", "38 (0.47, 0.38, 0.59, 0.58) \n", "39 (0.47, 0.38, 0.59, 0.58) \n", "40 (0.47, 0.38, 0.59, 0.58) \n", "41 (0.47, 0.38, 0.59, 0.58) \n", "42 (0.47, 0.38, 0.59, 0.58) \n", "43 (0.47, 0.38, 0.59, 0.58) \n", "44 (0.47, 0.38, 0.59, 0.58) \n", "45 (0.47, 0.38, 0.59, 0.58) \n", "46 (0.47, 0.38, 0.59, 0.58) \n", "47 (0.47, 0.38, 0.59, 0.58) \n", "48 (0.47, 0.38, 0.59, 0.58) \n", "49 (0.47, 0.38, 0.59, 0.58) \n", "50 (0.47, 0.38, 0.59, 0.58) \n", "51 (0.47, 0.38, 0.59, 0.58) \n", "52 (0.47, 0.38, 0.59, 0.58) \n", "53 (0.47, 0.38, 0.59, 0.58) \n", "54 (0.47, 0.38, 0.59, 0.58) \n", "55 (0.47, 0.38, 0.59, 0.58) \n", "56 (0.47, 0.38, 0.59, 0.58) \n", "57 (0.47, 0.38, 0.59, 0.58) \n", "58 (0.47, 0.38, 0.59, 0.58) \n", "59 (0.47, 0.38, 0.59, 0.58) \n", "60 (0.47, 0.38, 0.59, 0.58) \n", "61 (0.47, 0.38, 0.59, 0.58) \n", "62 (0.47, 0.38, 0.59, 0.58) \n", "63 (0.47, 0.38, 0.59, 0.58) \n", "64 (0.47, 0.38, 0.59, 0.58) \n", "65 (0.47, 0.38, 0.59, 0.58) \n", "66 (0.47, 0.38, 0.59, 0.58) \n", "67 (0.47, 0.38, 0.59, 0.58) \n", "68 (0.47, 0.38, 0.59, 0.58) \n", "69 (0.47, 0.38, 0.59, 0.58) \n", "70 (0.47, 0.38, 0.59, 0.58) \n", "71 (0.47, 0.38, 0.59, 0.58) \n", "72 (0.47, 0.38, 0.59, 0.58) \n", "73 (0.47, 0.38, 0.59, 0.58) \n", "74 (0.47, 0.38, 0.59, 0.58) \n", "75 (0.47, 0.38, 0.59, 0.58) \n", "76 (0.47, 0.38, 0.59, 0.58) \n", "77 (0.47, 0.38, 0.59, 0.58) \n", "78 (0.47, 0.38, 0.59, 0.58) \n", "79 (0.47, 0.38, 0.59, 0.58) \n", "80 (0.47, 0.38, 0.59, 0.58) \n", "81 (0.47, 0.38, 0.59, 0.58) \n", "82 (0.47, 0.38, 0.59, 0.58) \n", "83 (0.47, 0.38, 0.59, 0.58) \n", "84 (0.47, 0.38, 0.59, 0.58) \n", "85 (0.47, 0.38, 0.59, 0.58) \n", "86 (0.47, 0.38, 0.59, 0.58) \n", "87 (0.47, 0.38, 0.59, 0.58) \n", "88 (0.47, 0.38, 0.59, 0.58) \n", "89 (0.47, 0.38, 0.59, 0.58) \n", "90 (0.47, 0.38, 0.59, 0.58) \n", "91 (0.47, 0.38, 0.59, 0.58) \n", "92 (0.47, 0.38, 0.59, 0.58) \n", "93 (0.47, 0.38, 0.59, 0.58) \n", "94 (0.47, 0.38, 0.59, 0.58) \n", "95 (0.47, 0.38, 0.59, 0.58) \n", "96 (0.47, 0.38, 0.59, 0.58) \n", "97 (0.47, 0.38, 0.59, 0.58) \n", "98 (0.47, 0.38, 0.59, 0.58) \n", "99 (0.47, 0.38, 0.59, 0.58) \n", "100 (0.47, 0.38, 0.59, 0.58) \n", "101 (0.47, 0.38, 0.59, 0.58) \n", "102 (0.47, 0.38, 0.59, 0.58) \n", "103 (0.47, 0.38, 0.59, 0.58) \n", "104 (0.47, 0.38, 0.59, 0.58) \n", "105 (0.47, 0.38, 0.59, 0.58) \n", "106 (0.47, 0.38, 0.59, 0.58) \n", "107 (0.47, 0.38, 0.59, 0.58) \n", "108 (0.47, 0.38, 0.59, 0.58) \n", "109 (0.47, 0.38, 0.59, 0.58) \n", "110 (0.47, 0.38, 0.59, 0.58) \n", "111 (0.47, 0.38, 0.59, 0.58) \n", "112 (0.47, 0.38, 0.59, 0.58) \n", "113 (0.47, 0.38, 0.59, 0.58) \n", "114 (0.47, 0.38, 0.59, 0.58) \n", "115 (0.47, 0.38, 0.59, 0.58) \n", "116 (0.47, 0.38, 0.59, 0.58) \n", "117 (0.47, 0.38, 0.59, 0.58) \n", "118 (0.47, 0.38, 0.59, 0.58) \n", "119 (0.47, 0.38, 0.59, 0.58) \n", "120 (0.47, 0.38, 0.59, 0.58) \n", "121 (0.47, 0.38, 0.59, 0.58) \n", "122 (0.47, 0.38, 0.59, 0.58) \n", "123 (0.47, 0.38, 0.59, 0.58) \n", "124 (0.47, 0.38, 0.59, 0.58) \n", "125 (0.47, 0.38, 0.59, 0.58) \n", "126 (0.47, 0.38, 0.59, 0.58) \n", "127 (0.47, 0.38, 0.59, 0.58) \n", "128 (0.47, 0.38, 0.59, 0.58) \n", "129 (0.47, 0.38, 0.59, 0.58) \n", "130 (0.47, 0.38, 0.59, 0.58) \n", "131 (0.47, 0.38, 0.59, 0.58) \n", "132 (0.47, 0.38, 0.59, 0.58) \n", "133 (0.47, 0.38, 0.59, 0.58) \n", "134 (0.47, 0.38, 0.59, 0.58) \n", "135 (0.47, 0.38, 0.59, 0.58) \n", "136 (0.47, 0.38, 0.59, 0.58) \n", "137 (0.47, 0.38, 0.59, 0.58) \n", "138 (0.47, 0.38, 0.59, 0.58) \n", "139 (0.47, 0.38, 0.59, 0.58) \n", "140 (0.47, 0.38, 0.59, 0.58) \n", "141 (0.47, 0.38, 0.59, 0.58) \n", "142 (0.47, 0.38, 0.59, 0.58) \n", "143 (0.47, 0.38, 0.59, 0.58) \n", "144 (0.47, 0.38, 0.59, 0.58) \n", "145 (0.47, 0.38, 0.59, 0.58) \n", "146 (0.47, 0.38, 0.59, 0.58) \n", "147 (0.47, 0.38, 0.59, 0.58) \n", "148 (0.47, 0.38, 0.59, 0.58) \n", "149 (0.47, 0.38, 0.59, 0.58) \n", "\n", " Wartość medoidu 1 \\\n", "0 (0.19, 0.58, 0.08, 0.04) \n", "1 (0.19, 0.58, 0.08, 0.04) \n", "2 (0.19, 0.58, 0.08, 0.04) \n", "3 (0.19, 0.58, 0.08, 0.04) \n", "4 (0.19, 0.58, 0.08, 0.04) \n", "5 (0.19, 0.58, 0.08, 0.04) \n", "6 (0.19, 0.58, 0.08, 0.04) \n", "7 (0.19, 0.58, 0.08, 0.04) \n", "8 (0.19, 0.58, 0.08, 0.04) \n", "9 (0.19, 0.58, 0.08, 0.04) \n", "10 (0.19, 0.58, 0.08, 0.04) \n", "11 (0.19, 0.58, 0.08, 0.04) \n", "12 (0.19, 0.58, 0.08, 0.04) \n", "13 (0.19, 0.58, 0.08, 0.04) \n", "14 (0.19, 0.58, 0.08, 0.04) \n", "15 (0.19, 0.58, 0.08, 0.04) \n", "16 (0.19, 0.58, 0.08, 0.04) \n", "17 (0.19, 0.58, 0.08, 0.04) \n", "18 (0.19, 0.58, 0.08, 0.04) \n", "19 (0.19, 0.58, 0.08, 0.04) \n", "20 (0.19, 0.58, 0.08, 0.04) \n", "21 (0.19, 0.58, 0.08, 0.04) \n", "22 (0.19, 0.58, 0.08, 0.04) \n", "23 (0.19, 0.58, 0.08, 0.04) \n", "24 (0.19, 0.58, 0.08, 0.04) \n", "25 (0.19, 0.58, 0.08, 0.04) \n", "26 (0.19, 0.58, 0.08, 0.04) \n", "27 (0.19, 0.58, 0.08, 0.04) \n", "28 (0.19, 0.58, 0.08, 0.04) \n", "29 (0.19, 0.58, 0.08, 0.04) \n", "30 (0.19, 0.58, 0.08, 0.04) \n", "31 (0.19, 0.58, 0.08, 0.04) \n", "32 (0.19, 0.58, 0.08, 0.04) \n", "33 (0.19, 0.58, 0.08, 0.04) \n", "34 (0.19, 0.58, 0.08, 0.04) \n", "35 (0.19, 0.58, 0.08, 0.04) \n", "36 (0.19, 0.58, 0.08, 0.04) \n", "37 (0.19, 0.58, 0.08, 0.04) \n", "38 (0.19, 0.58, 0.08, 0.04) \n", "39 (0.19, 0.58, 0.08, 0.04) \n", "40 (0.19, 0.58, 0.08, 0.04) \n", "41 (0.19, 0.58, 0.08, 0.04) \n", "42 (0.19, 0.58, 0.08, 0.04) \n", "43 (0.19, 0.58, 0.08, 0.04) \n", "44 (0.19, 0.58, 0.08, 0.04) \n", "45 (0.19, 0.58, 0.08, 0.04) \n", "46 (0.19, 0.58, 0.08, 0.04) \n", "47 (0.19, 0.58, 0.08, 0.04) \n", "48 (0.19, 0.58, 0.08, 0.04) \n", "49 (0.19, 0.58, 0.08, 0.04) \n", "50 (0.19, 0.58, 0.08, 0.04) \n", "51 (0.19, 0.58, 0.08, 0.04) \n", "52 (0.19, 0.58, 0.08, 0.04) \n", "53 (0.19, 0.58, 0.08, 0.04) \n", "54 (0.19, 0.58, 0.08, 0.04) \n", "55 (0.19, 0.58, 0.08, 0.04) \n", "56 (0.19, 0.58, 0.08, 0.04) \n", "57 (0.19, 0.58, 0.08, 0.04) \n", "58 (0.19, 0.58, 0.08, 0.04) \n", "59 (0.19, 0.58, 0.08, 0.04) \n", "60 (0.19, 0.58, 0.08, 0.04) \n", "61 (0.19, 0.58, 0.08, 0.04) \n", "62 (0.19, 0.58, 0.08, 0.04) \n", "63 (0.19, 0.58, 0.08, 0.04) \n", "64 (0.19, 0.58, 0.08, 0.04) \n", "65 (0.19, 0.58, 0.08, 0.04) \n", "66 (0.19, 0.58, 0.08, 0.04) \n", "67 (0.19, 0.58, 0.08, 0.04) \n", "68 (0.19, 0.58, 0.08, 0.04) \n", "69 (0.19, 0.58, 0.08, 0.04) \n", "70 (0.19, 0.58, 0.08, 0.04) \n", "71 (0.19, 0.58, 0.08, 0.04) \n", "72 (0.19, 0.58, 0.08, 0.04) \n", "73 (0.19, 0.58, 0.08, 0.04) \n", "74 (0.19, 0.58, 0.08, 0.04) \n", "75 (0.19, 0.58, 0.08, 0.04) \n", "76 (0.19, 0.58, 0.08, 0.04) \n", "77 (0.19, 0.58, 0.08, 0.04) \n", "78 (0.19, 0.58, 0.08, 0.04) \n", "79 (0.19, 0.58, 0.08, 0.04) \n", "80 (0.19, 0.58, 0.08, 0.04) \n", "81 (0.19, 0.58, 0.08, 0.04) \n", "82 (0.19, 0.58, 0.08, 0.04) \n", "83 (0.19, 0.58, 0.08, 0.04) \n", "84 (0.19, 0.58, 0.08, 0.04) \n", "85 (0.19, 0.58, 0.08, 0.04) \n", "86 (0.19, 0.58, 0.08, 0.04) \n", "87 (0.19, 0.58, 0.08, 0.04) \n", "88 (0.19, 0.58, 0.08, 0.04) \n", "89 (0.19, 0.58, 0.08, 0.04) \n", "90 (0.19, 0.58, 0.08, 0.04) \n", "91 (0.19, 0.58, 0.08, 0.04) \n", "92 (0.19, 0.58, 0.08, 0.04) \n", "93 (0.19, 0.58, 0.08, 0.04) \n", "94 (0.19, 0.58, 0.08, 0.04) \n", "95 (0.19, 0.58, 0.08, 0.04) \n", "96 (0.19, 0.58, 0.08, 0.04) \n", "97 (0.19, 0.58, 0.08, 0.04) \n", "98 (0.19, 0.58, 0.08, 0.04) \n", "99 (0.19, 0.58, 0.08, 0.04) \n", "100 (0.19, 0.58, 0.08, 0.04) \n", "101 (0.19, 0.58, 0.08, 0.04) \n", "102 (0.19, 0.58, 0.08, 0.04) \n", "103 (0.19, 0.58, 0.08, 0.04) \n", "104 (0.19, 0.58, 0.08, 0.04) \n", "105 (0.19, 0.58, 0.08, 0.04) \n", "106 (0.19, 0.58, 0.08, 0.04) \n", "107 (0.19, 0.58, 0.08, 0.04) \n", "108 (0.19, 0.58, 0.08, 0.04) \n", "109 (0.19, 0.58, 0.08, 0.04) \n", "110 (0.19, 0.58, 0.08, 0.04) \n", "111 (0.19, 0.58, 0.08, 0.04) \n", "112 (0.19, 0.58, 0.08, 0.04) \n", "113 (0.19, 0.58, 0.08, 0.04) \n", "114 (0.19, 0.58, 0.08, 0.04) \n", "115 (0.19, 0.58, 0.08, 0.04) \n", "116 (0.19, 0.58, 0.08, 0.04) \n", "117 (0.19, 0.58, 0.08, 0.04) \n", "118 (0.19, 0.58, 0.08, 0.04) \n", "119 (0.19, 0.58, 0.08, 0.04) \n", "120 (0.19, 0.58, 0.08, 0.04) \n", "121 (0.19, 0.58, 0.08, 0.04) \n", "122 (0.19, 0.58, 0.08, 0.04) \n", "123 (0.19, 0.58, 0.08, 0.04) \n", "124 (0.19, 0.58, 0.08, 0.04) \n", "125 (0.19, 0.58, 0.08, 0.04) \n", "126 (0.19, 0.58, 0.08, 0.04) \n", "127 (0.19, 0.58, 0.08, 0.04) \n", "128 (0.19, 0.58, 0.08, 0.04) \n", "129 (0.19, 0.58, 0.08, 0.04) \n", "130 (0.19, 0.58, 0.08, 0.04) \n", "131 (0.19, 0.58, 0.08, 0.04) \n", "132 (0.19, 0.58, 0.08, 0.04) \n", "133 (0.19, 0.58, 0.08, 0.04) \n", "134 (0.19, 0.58, 0.08, 0.04) \n", "135 (0.19, 0.58, 0.08, 0.04) \n", "136 (0.19, 0.58, 0.08, 0.04) \n", "137 (0.19, 0.58, 0.08, 0.04) \n", "138 (0.19, 0.58, 0.08, 0.04) \n", "139 (0.19, 0.58, 0.08, 0.04) \n", "140 (0.19, 0.58, 0.08, 0.04) \n", "141 (0.19, 0.58, 0.08, 0.04) \n", "142 (0.19, 0.58, 0.08, 0.04) \n", "143 (0.19, 0.58, 0.08, 0.04) \n", "144 (0.19, 0.58, 0.08, 0.04) \n", "145 (0.19, 0.58, 0.08, 0.04) \n", "146 (0.19, 0.58, 0.08, 0.04) \n", "147 (0.19, 0.58, 0.08, 0.04) \n", "148 (0.19, 0.58, 0.08, 0.04) \n", "149 (0.19, 0.58, 0.08, 0.04) \n", "\n", " Wartość medoidu 2 \\\n", "0 (0.69, 0.42, 0.76, 0.83) \n", "1 (0.69, 0.42, 0.76, 0.83) \n", "2 (0.69, 0.42, 0.76, 0.83) \n", "3 (0.69, 0.42, 0.76, 0.83) \n", "4 (0.69, 0.42, 0.76, 0.83) \n", "5 (0.69, 0.42, 0.76, 0.83) \n", "6 (0.69, 0.42, 0.76, 0.83) \n", "7 (0.69, 0.42, 0.76, 0.83) \n", "8 (0.69, 0.42, 0.76, 0.83) \n", "9 (0.69, 0.42, 0.76, 0.83) \n", "10 (0.69, 0.42, 0.76, 0.83) \n", "11 (0.69, 0.42, 0.76, 0.83) \n", "12 (0.69, 0.42, 0.76, 0.83) \n", "13 (0.69, 0.42, 0.76, 0.83) \n", "14 (0.69, 0.42, 0.76, 0.83) \n", "15 (0.69, 0.42, 0.76, 0.83) \n", "16 (0.69, 0.42, 0.76, 0.83) \n", "17 (0.69, 0.42, 0.76, 0.83) \n", "18 (0.69, 0.42, 0.76, 0.83) \n", "19 (0.69, 0.42, 0.76, 0.83) \n", "20 (0.69, 0.42, 0.76, 0.83) \n", "21 (0.69, 0.42, 0.76, 0.83) \n", "22 (0.69, 0.42, 0.76, 0.83) \n", "23 (0.69, 0.42, 0.76, 0.83) \n", "24 (0.69, 0.42, 0.76, 0.83) \n", "25 (0.69, 0.42, 0.76, 0.83) \n", "26 (0.69, 0.42, 0.76, 0.83) \n", "27 (0.69, 0.42, 0.76, 0.83) \n", "28 (0.69, 0.42, 0.76, 0.83) \n", "29 (0.69, 0.42, 0.76, 0.83) \n", "30 (0.69, 0.42, 0.76, 0.83) \n", "31 (0.69, 0.42, 0.76, 0.83) \n", "32 (0.69, 0.42, 0.76, 0.83) \n", "33 (0.69, 0.42, 0.76, 0.83) \n", "34 (0.69, 0.42, 0.76, 0.83) \n", "35 (0.69, 0.42, 0.76, 0.83) \n", "36 (0.69, 0.42, 0.76, 0.83) \n", "37 (0.69, 0.42, 0.76, 0.83) \n", "38 (0.69, 0.42, 0.76, 0.83) \n", "39 (0.69, 0.42, 0.76, 0.83) \n", "40 (0.69, 0.42, 0.76, 0.83) \n", "41 (0.69, 0.42, 0.76, 0.83) \n", "42 (0.69, 0.42, 0.76, 0.83) \n", "43 (0.69, 0.42, 0.76, 0.83) \n", "44 (0.69, 0.42, 0.76, 0.83) \n", "45 (0.69, 0.42, 0.76, 0.83) \n", "46 (0.69, 0.42, 0.76, 0.83) \n", "47 (0.69, 0.42, 0.76, 0.83) \n", "48 (0.69, 0.42, 0.76, 0.83) \n", "49 (0.69, 0.42, 0.76, 0.83) \n", "50 (0.69, 0.42, 0.76, 0.83) \n", "51 (0.69, 0.42, 0.76, 0.83) \n", "52 (0.69, 0.42, 0.76, 0.83) \n", "53 (0.69, 0.42, 0.76, 0.83) \n", "54 (0.69, 0.42, 0.76, 0.83) \n", "55 (0.69, 0.42, 0.76, 0.83) \n", "56 (0.69, 0.42, 0.76, 0.83) \n", "57 (0.69, 0.42, 0.76, 0.83) \n", "58 (0.69, 0.42, 0.76, 0.83) \n", "59 (0.69, 0.42, 0.76, 0.83) \n", "60 (0.69, 0.42, 0.76, 0.83) \n", "61 (0.69, 0.42, 0.76, 0.83) \n", "62 (0.69, 0.42, 0.76, 0.83) \n", "63 (0.69, 0.42, 0.76, 0.83) \n", "64 (0.69, 0.42, 0.76, 0.83) \n", "65 (0.69, 0.42, 0.76, 0.83) \n", "66 (0.69, 0.42, 0.76, 0.83) \n", "67 (0.69, 0.42, 0.76, 0.83) \n", "68 (0.69, 0.42, 0.76, 0.83) \n", "69 (0.69, 0.42, 0.76, 0.83) \n", "70 (0.69, 0.42, 0.76, 0.83) \n", "71 (0.69, 0.42, 0.76, 0.83) \n", "72 (0.69, 0.42, 0.76, 0.83) \n", "73 (0.69, 0.42, 0.76, 0.83) \n", "74 (0.69, 0.42, 0.76, 0.83) \n", "75 (0.69, 0.42, 0.76, 0.83) \n", "76 (0.69, 0.42, 0.76, 0.83) \n", "77 (0.69, 0.42, 0.76, 0.83) \n", "78 (0.69, 0.42, 0.76, 0.83) \n", "79 (0.69, 0.42, 0.76, 0.83) \n", "80 (0.69, 0.42, 0.76, 0.83) \n", "81 (0.69, 0.42, 0.76, 0.83) \n", "82 (0.69, 0.42, 0.76, 0.83) \n", "83 (0.69, 0.42, 0.76, 0.83) \n", "84 (0.69, 0.42, 0.76, 0.83) \n", "85 (0.69, 0.42, 0.76, 0.83) \n", "86 (0.69, 0.42, 0.76, 0.83) \n", "87 (0.69, 0.42, 0.76, 0.83) \n", "88 (0.69, 0.42, 0.76, 0.83) \n", "89 (0.69, 0.42, 0.76, 0.83) \n", "90 (0.69, 0.42, 0.76, 0.83) \n", "91 (0.69, 0.42, 0.76, 0.83) \n", "92 (0.69, 0.42, 0.76, 0.83) \n", "93 (0.69, 0.42, 0.76, 0.83) \n", "94 (0.69, 0.42, 0.76, 0.83) \n", "95 (0.69, 0.42, 0.76, 0.83) \n", "96 (0.69, 0.42, 0.76, 0.83) \n", "97 (0.69, 0.42, 0.76, 0.83) \n", "98 (0.69, 0.42, 0.76, 0.83) \n", "99 (0.69, 0.42, 0.76, 0.83) \n", "100 (0.69, 0.42, 0.76, 0.83) \n", "101 (0.69, 0.42, 0.76, 0.83) \n", "102 (0.69, 0.42, 0.76, 0.83) \n", "103 (0.69, 0.42, 0.76, 0.83) \n", "104 (0.69, 0.42, 0.76, 0.83) \n", "105 (0.69, 0.42, 0.76, 0.83) \n", "106 (0.69, 0.42, 0.76, 0.83) \n", "107 (0.69, 0.42, 0.76, 0.83) \n", "108 (0.69, 0.42, 0.76, 0.83) \n", "109 (0.69, 0.42, 0.76, 0.83) \n", "110 (0.69, 0.42, 0.76, 0.83) \n", "111 (0.69, 0.42, 0.76, 0.83) \n", "112 (0.69, 0.42, 0.76, 0.83) \n", "113 (0.69, 0.42, 0.76, 0.83) \n", "114 (0.69, 0.42, 0.76, 0.83) \n", "115 (0.69, 0.42, 0.76, 0.83) \n", "116 (0.69, 0.42, 0.76, 0.83) \n", "117 (0.69, 0.42, 0.76, 0.83) \n", "118 (0.69, 0.42, 0.76, 0.83) \n", "119 (0.69, 0.42, 0.76, 0.83) \n", "120 (0.69, 0.42, 0.76, 0.83) \n", "121 (0.69, 0.42, 0.76, 0.83) \n", "122 (0.69, 0.42, 0.76, 0.83) \n", "123 (0.69, 0.42, 0.76, 0.83) \n", "124 (0.69, 0.42, 0.76, 0.83) \n", "125 (0.69, 0.42, 0.76, 0.83) \n", "126 (0.69, 0.42, 0.76, 0.83) \n", "127 (0.69, 0.42, 0.76, 0.83) \n", "128 (0.69, 0.42, 0.76, 0.83) \n", "129 (0.69, 0.42, 0.76, 0.83) \n", "130 (0.69, 0.42, 0.76, 0.83) \n", "131 (0.69, 0.42, 0.76, 0.83) \n", "132 (0.69, 0.42, 0.76, 0.83) \n", "133 (0.69, 0.42, 0.76, 0.83) \n", "134 (0.69, 0.42, 0.76, 0.83) \n", "135 (0.69, 0.42, 0.76, 0.83) \n", "136 (0.69, 0.42, 0.76, 0.83) \n", "137 (0.69, 0.42, 0.76, 0.83) \n", "138 (0.69, 0.42, 0.76, 0.83) \n", "139 (0.69, 0.42, 0.76, 0.83) \n", "140 (0.69, 0.42, 0.76, 0.83) \n", "141 (0.69, 0.42, 0.76, 0.83) \n", "142 (0.69, 0.42, 0.76, 0.83) \n", "143 (0.69, 0.42, 0.76, 0.83) \n", "144 (0.69, 0.42, 0.76, 0.83) \n", "145 (0.69, 0.42, 0.76, 0.83) \n", "146 (0.69, 0.42, 0.76, 0.83) \n", "147 (0.69, 0.42, 0.76, 0.83) \n", "148 (0.69, 0.42, 0.76, 0.83) \n", "149 (0.69, 0.42, 0.76, 0.83) \n", "\n", " Medoid \n", "0 0 \n", "1 0 \n", "2 0 \n", "3 0 \n", "4 0 \n", "5 0 \n", "6 0 \n", "7 0 \n", "8 0 \n", "9 0 \n", "10 0 \n", "11 0 \n", "12 0 \n", "13 0 \n", "14 0 \n", "15 0 \n", "16 0 \n", "17 0 \n", "18 0 \n", "19 0 \n", "20 0 \n", "21 0 \n", "22 0 \n", "23 0 \n", "24 0 \n", "25 0 \n", "26 0 \n", "27 0 \n", "28 0 \n", "29 0 \n", "30 0 \n", "31 0 \n", "32 0 \n", "33 0 \n", "34 0 \n", "35 0 \n", "36 0 \n", "37 0 \n", "38 0 \n", "39 0 \n", "40 0 \n", "41 0 \n", "42 0 \n", "43 0 \n", "44 0 \n", "45 0 \n", "46 0 \n", "47 0 \n", "48 0 \n", "49 0 \n", "50 0 \n", "51 0 \n", "52 0 \n", "53 0 \n", "54 0 \n", "55 0 \n", "56 0 \n", "57 0 \n", "58 0 \n", "59 0 \n", "60 0 \n", "61 0 \n", "62 0 \n", "63 0 \n", "64 0 \n", "65 1 \n", "66 1 \n", "67 1 \n", "68 1 \n", "69 1 \n", "70 1 \n", "71 1 \n", "72 1 \n", "73 1 \n", "74 1 \n", "75 1 \n", "76 1 \n", "77 1 \n", "78 1 \n", "79 1 \n", "80 1 \n", "81 1 \n", "82 1 \n", "83 1 \n", "84 1 \n", "85 1 \n", "86 1 \n", "87 1 \n", "88 1 \n", "89 1 \n", "90 1 \n", "91 1 \n", "92 1 \n", "93 1 \n", "94 1 \n", "95 1 \n", "96 1 \n", "97 1 \n", "98 1 \n", "99 1 \n", "100 1 \n", "101 1 \n", "102 1 \n", "103 1 \n", "104 1 \n", "105 1 \n", "106 1 \n", "107 1 \n", "108 1 \n", "109 1 \n", "110 1 \n", "111 1 \n", "112 1 \n", "113 2 \n", "114 2 \n", "115 2 \n", "116 2 \n", "117 2 \n", "118 2 \n", "119 2 \n", "120 2 \n", "121 2 \n", "122 2 \n", "123 2 \n", "124 2 \n", "125 2 \n", "126 2 \n", "127 2 \n", "128 2 \n", "129 2 \n", "130 2 \n", "131 2 \n", "132 2 \n", "133 2 \n", "134 2 \n", "135 2 \n", "136 2 \n", "137 2 \n", "138 2 \n", "139 2 \n", "140 2 \n", "141 2 \n", "142 2 \n", "143 2 \n", "144 2 \n", "145 2 \n", "146 2 \n", "147 2 \n", "148 2 \n", "149 2 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# iris\n", "model4 = TrainModel_medoids(dataset, 3)\n", "medoids4, res_cluster4, cluster_labels4, silhouette4 = model4.return_values()\n", "\n", "res = res_cluster4[0] + res_cluster4[1] + res_cluster4[2]\n", "\n", "medoids_values = []\n", "for i in range(0, len(res_cluster4[0])):\n", " medoids_values.append(0)\n", " \n", "for i in range(0, len(res_cluster4[1])):\n", " medoids_values.append(1)\n", " \n", "for i in range(0, len(res_cluster4[2])):\n", " medoids_values.append(2)\n", "\n", "\n", "data = {'Długość kielicha': [round(res[i][0],2) for i in range(0, len(res))],\n", " 'Szerokość kielicha': [round(res[i][1],2) for i in range(0, len(res))],\n", " 'Długość płatka': [round(res[i][2],2) for i in range(0, len(res))],\n", " 'Szerokość płatka': [round(res[i][3],2) for i in range(0, len(res))],\n", " 'Wartość medoidu 0': [(round(medoids4[0][0],2),round(medoids4[0][1],2), round(medoids4[0][2],2), round(medoids4[0][3],2)) for i in range(150)],\n", " 'Wartość medoidu 1': [(round(medoids4[1][0],2), round(medoids4[1][1],2), round(medoids4[1][2],2), round(medoids4[1][3],2)) for i in range(150)],\n", " 'Wartość medoidu 2': [(round(medoids4[2][0],2), round(medoids4[2][1],2), round(medoids4[2][2],2), round(medoids4[2][3],2)) for i in range(150)],\n", " 'Medoid': medoids_values}\n", "df = pd.DataFrame(data)\n", "df.to_csv('iris_data.csv')\n", "\n", "pd.set_option('display.max_rows', None)\n", "pd.set_option('display.max_columns', None)\n", "pd.set_option('display.width', 10)\n", "pd.set_option('display.colheader_justify', 'center')\n", "pd.set_option('display.precision', 5)\n", "display(df)" ] }, { "cell_type": "markdown", "id": "655da39a", "metadata": {}, "source": [ "#### Uruchomienie algorytmu k-medoid dla zbioru danych glass" ] }, { "cell_type": "code", "execution_count": 85, "id": "bb83f704", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 4 0.35\n" ] } ], "source": [ "# glass\n", "model5 = TrainModel_medoids(dataset2, 4)\n", "medoids5, res_cluster5, cluster_labels5, silhouette5 = model5.return_values()" ] }, { "cell_type": "markdown", "id": "17f279ec", "metadata": {}, "source": [ "#### Uruchomienie algorytmu k-medoid dla zbioru danych wine" ] }, { "cell_type": "code", "execution_count": 86, "id": "6ffe3810", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 3 0.28\n" ] } ], "source": [ "# wine\n", "model6 = TrainModel_medoids(dataset3, 3)\n", "medoids6, res_cluster6, cluster_labels6, silhouette6 = model6.return_values()" ] }, { "cell_type": "markdown", "id": "3db40fc5", "metadata": {}, "source": [ "### Algorytm k-medoid + PCA" ] }, { "cell_type": "code", "execution_count": 87, "id": "662d4cf5", "metadata": {}, "outputs": [], "source": [ "pca = PCA(n_components=2)" ] }, { "cell_type": "markdown", "id": "ab279486", "metadata": {}, "source": [ "#### Redukcja wymiaru z 4 do 2 przy pomocy PCA na zbiorze danych iris" ] }, { "cell_type": "code", "execution_count": 88, "id": "21f2332b", "metadata": {}, "outputs": [], "source": [ "pca.fit(dataset)\n", "dataset_pca = pca.transform(dataset)" ] }, { "cell_type": "code", "execution_count": 94, "id": "71128af5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 3 0.5\n" ] } ], "source": [ "# iris\n", "model7 = TrainModel_medoids(dataset_pca, 3)\n", "medoids7, res_cluster7, cluster_labels7, silhouette7 = model7.return_values()" ] }, { "cell_type": "markdown", "id": "7a82f399", "metadata": {}, "source": [ "#### Redukcja wymiaru z 9 do 2 przy pomocy PCA na zbiorze danych glass" ] }, { "cell_type": "code", "execution_count": 95, "id": "5c305f99", "metadata": {}, "outputs": [], "source": [ "pca.fit(dataset2)\n", "dataset2_pca = pca.transform(dataset2)" ] }, { "cell_type": "code", "execution_count": 96, "id": "e4621daf", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 4 0.5\n" ] } ], "source": [ "# glass\n", "model8 = TrainModel_medoids(dataset2_pca, 4)\n", "medoids8, res_cluster8, cluster_labels8, silhouette8 = model8.return_values()" ] }, { "cell_type": "markdown", "id": "14a5a5dd", "metadata": {}, "source": [ "#### Redukcja wymiaru z 13 do 2 przy pomocy PCA na zbiorze danych wine" ] }, { "cell_type": "code", "execution_count": 98, "id": "b63e355c", "metadata": {}, "outputs": [], "source": [ "pca.fit(dataset3)\n", "dataset3_pca = pca.transform(dataset3)" ] }, { "cell_type": "code", "execution_count": 101, "id": "bf13c5e4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 3 0.45\n" ] } ], "source": [ "# wine\n", "model9 = TrainModel_medoids(dataset3_pca, 3)\n", "medoids9, res_cluster9, cluster_labels9, silhouette9 = model9.return_values()" ] }, { "cell_type": "markdown", "id": "ba1dd5c6", "metadata": {}, "source": [ "### Porównanie metody k-średnich, k-medoid, k-medoid + PCA" ] }, { "cell_type": "markdown", "id": "80537977", "metadata": {}, "source": [ " W celu porównania przedstawionych powyżej trzech metod został stworzony wykres. Na wykresie zostały porównane wartości sylwetek trzech metod na trzech zbiorach danych (iris, glass, wine): " ] }, { "cell_type": "code", "execution_count": 133, "id": "c5909200", "metadata": {}, "outputs": [], "source": [ "result_data = {'Iris': [silhouette, silhouette4, silhouette7],\n", " 'Glass': [silhouette2, silhouette5, silhouette8],\n", " 'Wine': [silhouette3, silhouette6, silhouette9]}\n", "df_shoulette = pd.DataFrame(result_data)\n", "df_shoulette.index = ['k-średnich', 'k-medoid', 'k-medoid + PCA']" ] }, { "cell_type": "code", "execution_count": 134, "id": "a8983527", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtYAAAHmCAYAAABXgsn2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA9JUlEQVR4nO3deVxV1f7/8fcBBAUERcEhu4455Ig5ICBaluSAqbfBLC1Ny7Rb4U0zpZwH1DTNn6aUQ6aWlTfkZmhqWaiZGYWW5txkAokTkwjn/P7w2ymuUkdd5zD0ej4ePh7svdfZ67MPLB9vFuvsbbHZbDYBAAAAuC5uxV0AAAAAUBYQrAEAAAADCNYAAACAAQRrAAAAwACCNQAAAGAAwRoAAAAwwKO4CzDp9OksWa3cPbA0q1LFV6dOZRZ3GcDfBmMOcC3GXOnn5mZR5co+VzxWpoK11WojWJcBfA8B12LMAa7FmCu7WAoCAAAAGECwBgAAAAwgWAMAAAAGlKk11gAAAK5UUJCv06fTlZ+f51D7tDQ3Wa1WJ1cFEzw8PFW5cqDc3R2PywRrAACAa3T6dLrKl/eWj091WSyWv2zv4eGm/HyCdUlns9mUlXVOp0+nq2rVGg6/jqUgAAAA1yg/P08+Pn4OhWqUHhaLRT4+fg7/JeI3BGsAAIDrQKgum67l+0qwBgAAAAxgjTUAAIAhr694RZlZ2cbP6+vjrYEPDfvLdl9++YWWLl2iBQuW/Gm7Q4e+0+jR0XrjjbXy8fG9ppp++eWE/vWvx/TOOwlFtnnvvXckSb17333F46+9tliS9Mgjj11TDSUNwRoAAMCQzKxs9exg/pHl/91p9ny7d+/Sv//97DWHakcVFajLKoI1AABAGbR27Rp98slHmj17vsqXLy9Jys/P1/TpE3X06BFJUkZGhnr16qOpUyfo7Nmz+vnnH/X440+qSpUqmj9/ji5cyJW/fyWNGjVWNWveoIMHD2jGjMmSpAYNGtr7mjp1gnx8fPXdd/v166/pevjhIerRo1ehGelNmxL1+uuvSbKoSZOb9eyzMZKk/fu/0bBhg5Wenqbu3aNK9ew1a6wBAADKmA0bErRt21bNnPmSPVRL0t69X+vcuXNatmy1Zs2ap6+/TrYf8/f316pV76h9+w6aMWOKxo+fqqVLV6lfvwcVGztVkjRlyng9/vi/tHTpKtWseUOhPtPSUrVw4auaMWOO/t//m1foWHp6ml5+eY7mzFmgN95YK6u1QDt2JEm6FO7nz39Fr732htasWans7CxnvS1Ox4w1AABAGXLs2BHFxk7RxInT5O3tXehYvXr19cMP32vkyCcUEhKmESOesh+7+eZmkqQff/xeJ078pDFjRtqPZWVl6cyZM/r111/Vtm2IJKlbt57673/j7W3atWsvi8WievXq69y5s4X63bcvRc2bt1RQUDVJ0vPPX5r1PnToO4WEhMrT01Oenp7y96+kc+fOydvbx+A74joEawAAgDLE29tHzz03XvPmvaimTZtr1KinJUlVq1bV7NnztXLlWu3evUs7d27X4MEPauXKtZIkLy8vSVJBgVU1a96g5ctX/992gU6fzpDFcunBKb/53ycSenpeev2VblPn4eGhP+4+ffr0H87jbv/aYrEU6qO0YSkIAABAGVKtWnWFh0coOLi13nxzlZYvX63ly1dr9uz5SkrapsmTX1BoaLiefvoZVahQQWlpqYVeX7t2HZ07d86+TOT999drwoRx8vevpOrVq9uXcHz4YaLDNTVp0lTffLNPp079Kkl6+eU5SkraZuiKSw6XzlgnJCRo0aJFys/P10MPPaQHHnig0PEFCxbo3XfflZ+fnyTp3nvvvawNAABASeXr4238Dh6/nfdqjRjxlAYMuE9du3ZTo0aNJUkhIWH6+OOtGjDgXnl6eioysrvq129Q6HWenp6aPHmG5s2brby8PHl7+ygmZqKkS0s4pk+fqLi4hWratIXDtVStGqinnvq3Ro78l6zWAjVr1kLdu0dp+fJXr/q6SjKLzUXz7ampqbr//vu1bt06eXp6ql+/fpozZ44aNPj9mzls2DA99thjCg4OvqY+Tp3KlNVaev98ACkwsKLS088XdxnA3wZjDrg+J09+r+rVazvc3sPDTfn5VidWBJOu9P11c7OoSpUr36bQZUtBduzYoZCQEFWqVEne3t6KjIxUYmLhPyHs27dPixcvVlRUlCZNmqQLFy64qjwAAADgurhsKUhaWpoCAwPt20FBQUpJSbFvZ2VlqUmTJho1apRq166tMWPGaOHChYqOjna4j6J+e0DpEhhY0SX9zJozV9nnz7mkr+LgXdFPo0Y6Pn7w9+WqMSeV7XHHmPt7Sktzk4fH1c1TXm17FB83N7er+j/SZcHaarUW+pSozWYrtO3j46O4uDj79uDBgzV27NirCtYsBSn9XPln6ezz5/RT2yiX9FUcau1O4E/8+EuuXgpSlscdY+7vyWq1XtXSDpaClC5Wq/WycV0iloJUr15d6enp9u309HQFBQXZt0+cOKF33nnHvm2z2eThwd0AAQAAUDq4LFiHhoZq586dysjIUE5OjjZt2qSIiAj78fLly2vWrFn68ccfZbPZtGrVKt1xxx2uKg8AAAC4Li4L1tWqVVN0dLQGDhyo3r17q2fPnmrRooWGDh2qvXv3KiAgQJMmTdLjjz+uO++8UzabTYMGDXJVeQAAAMB1celai6ioKEVFFV5b98d11ZGRkYqMjHRlSQAAAMYsW7ZEOTmZxs9boYKvBg161Ph5YRaLmAEAAAzJycmU5dwt5s+rPQ61+/LLL7R06RItWLDEeA1XEh7eRklJXxR5PClpmw4c2K8hQ4YV2u/qOl2FYA0AAACnCA/vpPDwTsVdhssQrAEAAMqgtWvX6JNPPtLs2fNVvnx5+/5evSLVsWMnffvtPgUEVFWPHr30zjtvKj09TWPHjldw8C366acfNXv2dJ07d1ZeXuUVHT1KDRs21i+/nNCkSc8rJydHTZs2s58zNzdXsbFTdPjwQbm5ualfvwfVrVtPbdiQoOTkPRo3boI+//wzzZ8/R56enqpdu04xvCPOxx3KAQAAypgNGxK0bdtWzZz5UqFQLUkZGacUEhKqZctWKy/vgj755CMtXPiqBg9+VGvXrpEkTZ06XsOHP6mlS1dp9OhxGj9+rCRp7tyZ6t49SsuXr1bz5i3t51y6dLH8/f21cuVazZv3ipYujdPhw4fsx/Py8jR16nhNmRKrpUvfkJeXlwveBdcjWAMAAJQhx44dUWzsFN1zTz95e3tfsU1ISJgkqXr1GrrllraSpGrVquv8+XPKzs7W/v3fatq0SXr44f6aODFGOTk5Onv2jJKT96hLl0u3Q+7atZv9mSN79nyhHj3ukiRVqlRJHTtGKDn593XhR48eVpUqgapTp64kqVu3ns65+GLGUhAAAIAyxNvbR889N17z5r2opk2ba9SopyVJVatW1ezZ8yVJ5cqVs7d3d3cv9Hqr1SpPTy8tX77avi8tLVV+fv6SLPanXFssFrm5XXqtzVb4aZI2m1RQkP+HPRZJvz8d+3/7LCuYsQYAAChDqlWrrvDwCAUHt9abb67S8uWrtXz5anuo/iu+vr6qVetGbdy4QZK0e/dnGjHi0q3+2rRpZ9+/bdtW5eVdkCS1bt1W778fL0k6c+aMPv30YwUHt7Gfs0GDm5SRkaFDhw5KkjZv3mjiUkscZqwBAAAMqVDB1+Fb413tea/WiBFPacCA+9S1azc1atT4ql47fvwUzZo1TatXvy4Pj3KaNGmaLBaLRo4crcmTX9D69f9R48ZN5O3tI0kaNGiIXnwxVgMH3ier1aqBAwerUaPGOnLk0jprDw8PTZgwVVOmvCB3d3c1bHh19ZQWFpvNZvvrZqXDqVOZ9j9PoHQKDKyo9PTzLulr4cI5+qlt1F83LKVq7U7Q8OEji7sMlHCuHHNS2R53jLm/p5Mnv1f16rUdbu/h4ab8fOtfN0SJcKXvr5ubRVWqXPkXHZaCAAAAAAYQrAEAAAADWGONP7Vs2RLl5GQWdxkAAAAlHsEafyonJ1OWc7cUdxlOYfMz/+ESAADw98VSEAAAAMAAgjUAAABgAEtBAAAADFm6Yolys8x/Nqm8j68GP/Ton7b58ssvtHTpEi1YsMR4/0UJD2+jpKQvijyelLRNBw7s15Ahwwrtv55av/zyCz37bLRuuOFGWSzShQsXVK9efY0dO17e3j6y2Wx6661VSky89CAbNzeL+vcfqNtvj7SfIz8/X//8Zw917txF0dGjr7qGohCsAQAADMnNynTKvdpr7U4wfk5XCA/vpPDwTsbP26hRk0KhPCZmtF5/fZmGDXtCS5Ys1MGD32nBgiXy9fVVWlqqnnjiUfn7V1Lbtu0lSZ99tl1NmjTV1q2b9fjjT6p8+fJG6iJYAwAAlDFr167RJ598pNmz518WGnv1ilTHjp307bf7FBBQVT169NI777yp9PQ0jR07XsHBt+inn37U7NnTde7cWXl5lVd09Cg1bNhYv/xyQpMmPa+cnBw1bdrMfs7c3FzFxk7R4cMH5ebmpn79HlS3bj21YUOCkpP3aNy4Cfr88880f/4ceXp6qnbtOn9a/xNPPKpx4yaoRo2aDl1vcPAt2rXrM2VnZ2vt2tVaseJN+fpeeohLUFA1TZw4TV5ev78P77+foIiIW2W12rR580b17HmXg+/sn2ONNQAAQBmyYUOCtm3bqpkzX7riTGxGximFhIRq2bLVysu7oE8++UgLF76qwYMf1dq1ayRJU6eO1/DhT2rp0lUaPXqcxo8fK0maO3emuneP0vLlq9W8eUv7OZcuXSx/f3+tXLlW8+a9oqVL43T48CH78by8PE2dOl5TpsRq6dI35OXlZex6c3JylJT0iZo1a64ffjguDw8P1ap1Y6E2TZo0Vb169SVJp0+f1hdf7FJ4eCd16XKH4uPXGauFYA0AAFBGHDt2RLGxU3TPPf3k7e1dZLuQkDBJUvXqNXTLLW0lSdWqVdf58+eUnZ2t/fu/1bRpk/Tww/01cWKMcnJydPbsGSUn71GXLndIkrp27SYPj0uLH/bs+UI9elya9a1UqZI6doxQcvLvt7U9evSwqlQJVJ06dSVJ3br1vGJdI0c+oYcf7q/vvtuvUaOe0sMP99c33+y7rN133+3Xww/318MP99fQoQ/pH/+orfvue0AWi5vKlfP80/do06YNuuWWtvLz81PHjp105MhhHTx44E9f4yiWggAAAJQR3t4+eu658Zo370W1bx+qrKxMPfPMU5KkqlWravbs+ZKkcuXK2V/j7u5e6BxWq1Wenl5avny1fV9aWqr8/PwlWWS12iRJFotFbm6XXmuzWQudw2aTCgry/7DHIslWZJ+/mTNngaS/Xgryv2usf1OnTh1duJCrkydPqnr16vb9mzdvVEZGhu69935t2PBfnTqVrrvvvrQW3s3Novj4dRo1auwV+7oazFgDAACUEdWqVVd4eISCg1vr1VdfUdWqgVq+fLWWL19tD9V/xdfXV7Vq3aiNGy/dVWP37s80YsSlO5K0adPOvn/btq3Ky7sgSWrduq3efz9eknTmzBl9+unHCg5uYz9ngwY3KSMjQ4cOHZR0Keg6g5dXefXte69efHG6sv7v7iy//HJCixcvVJ06dXXgwH6lpaXq3Xf/q3feSdA77yRo5syXtGlTorKzs667f2asAQAADCnv4+uUO3iU9/G9qvYjRjylAQPuU9eu3dSoUeOr7m/8+CmaNWuaVq9+XR4e5TRp0jRZLBaNHDlakye/oPXr/6PGjZvI29tHkjRo0BC9+GKsBg68T1arVQMHDlajRo115MilddYeHh6aMGGqpkx5Qe7u7mrY8M9rup5bBj766HAtX/6qHntskNzdPeTu7qZhw55Qu3YhmjMnVt27RxX6IGPr1m10443/0KZNH6h377uvuV9JsthsNttfNysdTp3KtP95AmYsXDinTD/S3Bm3RCopau1O0PDhI4u7DJRwgYEVlZ5+3mX9LVw4p8yOO8bc39PJk9+revXaDrf38HBTfr71rxuiRLjS99fNzaIqVa78iw5LQQAAAAADCNYAAACAAQRrAAAAwACCNQAAwHUoQx9Xwx9cy/eVYA0AAHCNPDw8lZV1jnBdxthsNmVlnZOHx58/bOZ/cbs9AACAa1S5cqBOn05XZuYZh9q7ubnJauWuIKWBh4enKlcOvLrXOKkWAACAMs/d3UNVq9ZwuL2rb3EJ12IpCAAAAGAAwRoAAAAwgGANAAAAGECwBgAAAAwgWAMAAAAGcFcQAACAMmrpiiXKzcos7jKcoryPrwY/9Ghxl1EIwRoAAKCMys3K1E9to4q7DKeotTuhuEu4DEtBAAAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGgAAADCAYA0AAAAYwO32DHh9xSvKzMou7jIAAABQjAjWBmRmZatnh7J58/X/7vQt7hIAAABKBZaCAAAAAAYQrAEAAAADCNYAAACAAQRrAAAAwACCNQAAAGAAwRoAAAAwgGANAAAAGECwBgAAAAwgWAMAAAAGEKwBAAAAAwjWAAAAgAEEawAAAMAAgjUAAABgAMEaAAAAMIBgDQAAABhAsAYAAAAMIFgDAAAABhCsAQAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGgAAADCAYA0AAAAYQLAGAAAADCBYAwAAAAYQrAEAAAADCNYAAACAAQRrAAAAwACXBuuEhAR1795dXbt21apVq4ps9/HHH+u2225zYWUAAADA9fFwVUepqamaO3eu1q1bJ09PT/Xr10/t27dXgwYNCrX79ddfFRsb66qyAAAAACNcNmO9Y8cOhYSEqFKlSvL29lZkZKQSExMvaxcTE6MnnnjCVWUBAAAARrhsxjotLU2BgYH27aCgIKWkpBRq8/rrr+vmm29Wy5Ytr6mPKlV8r6tGoKwJDKxY3CWgFODnxBzeSziCnxNzStp76bJgbbVaZbFY7Ns2m63Q9sGDB7Vp0yYtX75cJ0+evKY+Tp3KlNVqu+5agbIiPf18cZeAEi4wsCI/JwbxXuKvMObMKo730s3NUuRkrsuWglSvXl3p6en27fT0dAUFBdm3ExMTlZ6ern/+85969NFHlZaWpv79+7uqPAAAAOC6uCxYh4aGaufOncrIyFBOTo42bdqkiIgI+/Enn3xSGzduVHx8vJYsWaKgoCCtXr3aVeUBAAAA18VlwbpatWqKjo7WwIED1bt3b/Xs2VMtWrTQ0KFDtXfvXleVAQAAADiFy9ZYS1JUVJSioqIK7YuLi7usXa1atbR161ZXlQUAAABcN568CAAAABhAsAYAAAAMIFgDAAAABhCsAQAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGgAAADCAYA0AAAAYQLAGAAAADCBYAwAAAAYQrAEAAAADCNYAAACAAQRrAAAAwACCNQAAAGAAwRoAAAAwgGANAAAAGECwBgAAAAwgWAMAAAAGEKwBAAAAAwjWAAAAgAEEawAAAMAAgjUAAABgAMEaAAAAMIBgDQAAABhAsAYAAAAMIFgDAAAABhCsAQAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGgAAADCAYA0AAAAYQLAGAAAADCBYAwAAAAZ4FHcBAIDfLVu2RDk5mcVdBgDgGhCsAaAEycnJlOXcLcVdhtPY/PYUdwkA4DQsBQEAAAAMIFgDAAAABhCsAQAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGgAAADCAYA0AAAAYQLAGAAAADCBYAwAAAAYQrAEAAAADCNYAAACAAQRrAAAAwACCNQAAAGAAwRoAAAAwwKO4CwCAq/X6ileUmZVd3GUAAFAIwRpAqZOZla2eHTKLuwyn+O9O3+IuAQBwjVgKAgAAABhQ5Ix1s2bN9MknnyggIEBNmzaVxWIp8iT79u1zSnEAAABAaVFksJ48ebJ8fX3tX/9ZsAYAAAD+7ooM1n369LF/3a1bN1WoUOGK7ZKSksxXBQAAAJQyDq2xfvTRR5Wbm1to37lz5zRmzBgNHTrUKYUBAAAApYlDwTozM1NDhw61h+sPP/xQ3bt31/bt2zV37lynFggAAACUBg7dbm/FihUaMmSIhg4dqoCAAG3atEn33XefnnnmGfs6bAAAAODvzKEZaz8/Py1btkzSpdnq1157TRMmTCBUAwAAAP+nyBnrV1555bJ9rVu31tdff6358+crJSXFvn/YsGHOqQ4AAAAoJYoM1mvXrr3i/qpVqyotLc1+3GKxEKwBAADwt1dksN66datDJ7DZbMaKAQAAAEorh9ZYd+nSRWfOnLlsf1pamkJDQ03XBAAAAJQ6Rc5Yb9u2TXv37pUk/fzzz1qyZIm8vb0LtTl+/LgKCgqcWyEAAABQChQZrGvVqqVp06bZl3ps3LhR7u7u9uMWi0U+Pj6KiYlxfpUAAABACVdksK5fv742btwoSRowYIAWLFggf39/lxUGAAAAlCYOrbFeuXKl/P399euvv2rXrl3Kzc3VqVOnnF0bAAAAUGo4FKzz8vI0duxYhYeHa9CgQUpPT9cLL7yghx56SOfPn3d2jQAAAECJ51CwXrBggfbu3avVq1fLy8tLkjRkyBCdPHlSs2bNcmqBAAAAQGngULD+4IMPFBMTo9atW9v3BQcHa/LkyQ7f7xoAAAAoyxwK1mlpaapZs+Zl+6tWrcpSEAAAAEAOBusmTZpoy5Ytl+1fu3atGjdu7HBnCQkJ6t69u7p27apVq1ZddvzDDz9UVFSUevTooTFjxigvL8/hcwMAAADFqcjb7f3RM888oyFDhuirr75Sfn6+4uLidOTIEX399ddasmSJQx2lpqZq7ty5WrdunTw9PdWvXz+1b99eDRo0kCRlZ2dr0qRJ+s9//qOqVasqOjpa//nPf3Tfffdd+9UBAAAALuLQjHWbNm20Zs0alStXTrVr19bevXtVs2ZNrVu3zuFHmu/YsUMhISGqVKmSvL29FRkZqcTERPtxb29vbd26VVWrVlVOTo5OnTolPz+/a7sqAAAAwMUcmrHesmWLwsLCrusOIGlpaQoMDLRvBwUFKSUlpVCbcuXKadu2bRo9erSCgoIUHh5+VX1UqeJ7zfUBZVFgYMXiLgH4WymrY27unNk6dz6ruMtwGr+KPooe+YzL+iurPyfFoaS9lw4F6zFjxujixYsKCQlRly5ddNttt6lKlSpX1ZHVapXFYrFv22y2Qtu/6dSpk3bt2qU5c+ZowoQJevHFFx3u49SpTFmttquqCyjL0tP5cDHgSmV1zJ07n6WeHTKLuwyn+e9O133vAgMrltmfk+JQHO+lm5ulyMlch5aCfPbZZ4qLi1PDhg31xhtvqGPHjrr33nv1yiuv6ODBgw4VUb16daWnp9u309PTFRQUZN8+c+aMkpKS7NtRUVH67rvvHDo3AAAAUNwcCtbu7u5q27atRo4cqfj4eH344YeqX7++5s+fr7vuusuhjkJDQ7Vz505lZGQoJydHmzZtUkREhP24zWbTqFGjdOLECUlSYmJioftmAwAAACWZQ0tBCgoKlJKSot27d2vXrl1KTk6WzWZTaGioOnTo4FBH1apVU3R0tAYOHKiLFy/q7rvvVosWLTR06FA9+eSTat68uSZPnqzHHntMFotFDRo00MSJE6/r4gAAAABXcShYt2nTRhcuXFDbtm3Vtm1bPf7442rZsqXKlSt3VZ1FRUUpKiqq0L64uDj717fffrtuv/32qzonAAAAUBI4FKzvuOMO7dq1S9988428vb1VsWJF+fn5qWHDhs6uDwAAACgVHArWM2fOlCQdOXJEn332mXbu3KmFCxfKzc1N7du310svveTMGgEAAIASz6Fg/Zv69eurUqVKqlixory9vZWYmKhPP/3UWbUBAAAApYZDwfrTTz/Vjh07tH37dh06dEi1atVSp06dtHDhQrVv397ZNQIAAAAlnkPBetiwYWrVqpWioqJ06623qkGDBs6uCwAAAChVHArWO3bskL+/v7NrAQAAAEqtIoP14MGDHT7J0qVLjRQDAAAAlFZFButq1aq5sg4AAACgVCsyWE+fPt3+9enTp1W5cmWXFAQAAACURm6ONOrYsaP+9a9/aevWrSooKHB2TQAAAECp49CHF+Pi4rR+/XqNGjVKXl5e6tmzp/r06aMmTZo4uz4AAADnslm0cOGc4q4CZYBDwbpDhw7q0KGDJkyYoA8//FAJCQnq16+f6tSpoz59+qhXr14KCAhwdq0AAADmWWyynLuluKtwCpvfnuIu4W/FoaUgv/lttjomJkZDhgzR999/r5kzZyoiIkKjR49WRkaGs+oEAAAASjSHg/Xp06e1atUq3Xffferatau2bt2qp59+WklJSVq3bp1++uknDR8+3Jm1AgAAACWWQ0tBHnvsMW3fvl0VK1ZUz549NWHChELrqwMCAjRw4ECNHTvWaYUCAAAAJZlDwdrd3V0vvfSSOnfuLA+PK7+kZcuWWrFihdHiAAAAgNLCoWC9cOHCQtsXL17UgQMHVLduXfn6+kqSatSooRo1apivEAAAACgFHFpj/fPPP+vhhx9WSkqKLly4oPvuu0/33HOPunTpon379jm7RgAAAKDEcyhYT5s2TRcvXlTVqlWVkJCgH374QWvXrlW3bt0UGxvr7BoBAACAEs+hpSC7du3S6tWrVbNmTX388cfq1KmTWrRoIX9/f/Xu3dvJJQIAAAAln0Mz1jabTRUqVFBBQYE+++wzhYaGSpJyc3Pl6enp1AIBAACA0sChGetWrVopLi5OlStXVm5urm699ValpqZq7ty5Cg4OdnaNAAAAQInn0Ix1TEyM9u3bp1WrVmnMmDEKCAhQXFycjh49qjFjxji7RgAAAKDEc2jGum7dulq3bl2hfU888YTGjRsni8XilMIAAACA0sShYH0llSpVMlgGAAAAULo5tBQEAAAAwJ8jWAMAAAAGXHOwvnDhgsk6AAAAgFLNoWCdnZ2tUaNGaeHChfZ9d955p5577jnl5uY6rTgAAACgtCgyWH/99df2r6dNm6Zvv/3W/mAYSZo0aZJSUlI0e/Zs51YIAAAAlAJFBusHHnhAq1evliRt2bJF06dPV6tWrezHO3bsqClTpigxMdHpRQIAAAAlXZHBesqUKVqzZo0yMzOVl5en8uXLX9bG19dXWVlZTi0QAAAAKA2KDNa9e/dWQkKCfH191bZtW82bN0/Z2dn24zk5OVqwYIFat27tkkIBAACAksyhB8Q899xzevDBBxUREaF69epJko4dOyYfHx+99tprTi0QAAAAKA0cCta1a9fWhg0b9P777+vQoUPy8PDQ3XffraioKFWoUMHZNQIAAAAlnsOPNK9YsaL69etn387IyCBUAwAAAP/HoftYnz17VuPGjdN3330nq9WqYcOGKSwsTJGRkfr++++dXSMAAABQ4hUZrN9++23711OnTlVycrLKlSunDz74QDt37tScOXPUsGFDTZ8+3SWFAgAAACVZkcH6+eef1/PPPy+r1apt27ZpxowZqlevnrZu3arw8HB169ZNTz/9tHbv3u3KegEAAIASqchgvW7dOp09e1bZ2dnKy8tTYGCgJGnHjh0KCwuTJFksFrm5ObSaBAAAACjTivzw4s0336z58+dLkho3bqx3331XVapU0enTp9W5c2fl5eXp1VdfVePGjV1WLAAAAFBSOXRXkGeffVbDhw/X6dOn9cgjj6hmzZqaMGGCtmzZori4OGfXCAAAAJR4DgXrVq1aKSkpSefPn5e/v78k6ZFHHtEzzzwjX19fpxYIAAAAlAYO38f65MmTWrVqlf0BMTfddJPuvfdegjUAAAAgB+9jvX//fkVFRWnDhg2qUKGC3N3dFR8fr169eum7775zdo0AAABAiefQjHVsbKwiIiI0c+ZMlStXTpJ08eJFjRkzRjNnztRrr73m1CIBAACAks6hGeuvvvpKw4cPt4dqSSpXrpwee+wxJScnO604AAAAoLRwKFj7+fkpKyvrsv2ZmZny8HB4mTYAAABQZjkUrDt37qxJkybphx9+sO87fvy4pk6dqk6dOjmtOAAAAKC0cGi6eeTIkRo0aJAiIyNVuXJlSdLp06fVsmVLjRkzxqkFAgAAAKWBQ8G6UqVKevfdd/Xpp5/q0KFD8vLyUoMGDdShQwdn1wcAAACUCg4tBRk4cKAyMzPVqVMnDRkyRAMGDFCHDh2UkZGhvn37OrtGAAAAoMQrcsb6yy+/tK+p3r17t9avX3/Zw2AOHz6s48ePO7VAAAAAoDQoMli7ubkpJiZGNptNNptN06dPL3TcYrHIx8dHw4cPd3qRAAAAQElXZLBu1aqV9u3bJ0nq2LGj1q9fb//gIgAAAIDCHFpjXbFiRZ08edLZtQAAAACllkPB+syZMypfvryzawEAAABKLYdut/fQQw/pqaee0oABA1SrVi15eXkVOt66dWunFAcAAACUFg4F67lz50qSnn/++cuOWSwW7d+/32xVAAAAQCnjULDesmWLs+sAAAAASjWHgvUNN9xQ5DE+1AgAAAA4GKx//PFHxcbG6uDBgyooKJAk2Ww25eXlKSMjQ99++61TiwQAAABKOofuCjJhwgQdPnxYUVFRSk1NVa9evdSqVSudOnVKEydOdHaNAAAAQInn0Ix1cnKylixZojZt2uijjz5Sp06d1KpVK9WrV09btmzRPffc4+w6AQAAgBLNoRnr/Px8+zrrunXr6sCBA5KkqKgo7d2713nVAQAAAKWEQ8G6du3a+vrrryVdCta/Peo8JydH2dnZzqsOAAAAKCUcWgrSv39/jRkzRlarVZGRkerTp48qVKigPXv2qGXLls6uEQAAACjxHArW999/vypXrqwqVaropptu0tSpU7Vy5UpVrVr1ig+NAQAAAP5uigzW3bp1U1hYmEJDQ9WuXTvdeeed9mN33XWX7rrrLpcUCAAAAJQGRQbrjh07as+ePVqzZo0sFouaNWum0NBQhYaGqlWrVvLwcGiyGwAAAPhbKDIdjx07VpKUnZ2tL7/8Unv27NHu3bu1dOlSubm5qW3bturQoYNCQ0PVsGFDlxUMAAAAlER/Oe3s7e2t8PBwhYeHS5IuXryor7/+Wu+++67mzZun2NhY7d+/3+mFAgAAACWZw+s59u7dq6SkJH3++ef66quvVFBQoFtuuUWhoaHOrA8AAAAoFYoM1mlpadq+fbuSkpK0fft2nT17Vo0aNVJoaKiGDBmiNm3ayMvL66o6S0hI0KJFi5Sfn6+HHnpIDzzwQKHjmzdv1ssvvyybzaZatWpp+vTp8vf3v7YrAwAAAFyoyGDdqVMnVa1aVR07dlRMTIxCQ0MVEBBwzR2lpqZq7ty5WrdunTw9PdWvXz+1b99eDRo0kCRlZmZqwoQJevfdd1WtWjXNmzdPL7/8smJiYq65TwAAAMBVinzyYlBQkDIyMnT48GEdPnxYR48eVX5+/jV3tGPHDoWEhKhSpUry9vZWZGSkEhMT7ccvXryo8ePHq1q1apKkRo0a6Zdffrnm/gAAAABXKnLGetu2bTpy5Ii2b9+u7du3a8WKFbJYLGrXrp3CwsIUFhamevXqOdxRWlqaAgMD7dtBQUFKSUmxb1euXFl33HGHJCk3N1dLlizRgAEDruWaAAAAAJf70w8v1q9fX/Xr19fAgQN18eJF7dmzRzt27FB8fLxiY2MVGBiosLAwTZky5S87slqtslgs9m2bzVZo+zfnz5/XiBEj1LhxY/Xp0+eqLqZKFd+rag+UdYGBFYu7BOBvhTEHuFZJG3MO3xWkXLlyCgkJUZ06ddSkSRPt2rVL69ev17vvvutQsK5evbq++OIL+3Z6erqCgoIKtUlLS9MjjzyikJAQ+320r8apU5myWm1X/TqgrEpPP1/cJQB/K4w5wLWKY8y5uVmKnMz902BdUFCg/fv3Kzk52f7v5MmTuuGGG9SuXTtNmDBBISEhDhURGhqql19+WRkZGapQoYI2bdqkyZMnF+pr2LBh6tatm4YPH34VlwcAAAAUvyKD9YABA7Rv3z7l5uaqSpUqat++vYYPH66QkBDdeOONV91RtWrVFB0dbV9Wcvfdd6tFixYaOnSonnzySZ08eVLffvutCgoKtHHjRklSs2bNNHXq1Gu/OgAAAMBFigzW/v7++ve//62QkBD7LfGuV1RUlKKiogrti4uLkyQ1b95cBw4cMNIPAAAA4GpFBusFCxa4sg4AAACgVCvyPtYAAAAAHEewBgAAAAwgWAMAAAAGEKwBAAAAAwjWAAAAgAEEawAAAMAAgjUAAABgAMEaAAAAMIBgDQAAABhAsAYAAAAMIFgDAAAABhCsAQAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGgAAADCAYA0AAAAYQLAGAAAADCBYAwAAAAYQrAEAAAADCNYAAACAAQRrAAAAwACCNQAAAGAAwRoAAAAwgGANAAAAGECwBgAAAAwgWAMAAAAGEKwBAAAAAwjWAAAAgAEEawAAAMAAgjUAAABgAMEaAAAAMIBgDQAAABhAsAYAAAAMIFgDAAAABhCsAQAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGgAAADCAYA0AAAAYQLAGAAAADCBYAwAAAAYQrAEAAAADCNYAAACAAQRrAAAAwACCNQAAAGAAwRoAAAAwgGANAAAAGECwBgAAAAwgWAMAAAAGEKwBAAAAAwjWAAAAgAEEawAAAMAAgjUAAABgAMEaAAAAMIBgDQAAABhAsAYAAAAMIFgDAAAABhCsAQAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGgAAADCAYA0AAAAYQLAGAAAADCBYAwAAAAYQrAEAAAADCNYAAACAAQRrAAAAwACCNQAAAGAAwRoAAAAwgGANAAAAGODSYJ2QkKDu3bura9euWrVqVZHtRo8erXXr1rmwMgAAAOD6uCxYp6amau7cuVq9erXee+89vfXWWzp8+PBlbYYNG6aNGze6qiwAAADACJcF6x07digkJESVKlWSt7e3IiMjlZiYWKhNQkKCunTpom7durmqLAAAAMAID1d1lJaWpsDAQPt2UFCQUlJSCrUZMmSIJGnPnj3X1EeVKr7XXiBQBgUGVizuEoC/FcYc4Folbcy5LFhbrVZZLBb7ts1mK7RtwqlTmbJabUbPCZRm6enni7sE4G+FMQe4VnGMOTc3S5GTuS5bClK9enWlp6fbt9PT0xUUFOSq7gEAAACnclmwDg0N1c6dO5WRkaGcnBxt2rRJERERruoeAAAAcCqXBetq1aopOjpaAwcOVO/evdWzZ0+1aNFCQ4cO1d69e11VBgAAAOAULltjLUlRUVGKiooqtC8uLu6ydjNmzHBVSQAAAIARPHkRAAAAMIBgDQAAABhAsAYAAAAMIFgDAAAABhCsAQAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGgAAADCAYA0AAAAYQLAGAAAADCBYAwAAAAYQrAEAAAADCNYAAACAAQRrAAAAwACCNQAAAGAAwRoAAAAwgGANAAAAGECwBgAAAAwgWAMAAAAGEKwBAAAAAwjWAAAAgAEEawAAAMAAgjUAAABgAMEaAAAAMIBgDQAAABhAsAYAAAAMIFgDAAAABhCsAQAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGgAAADCAYA0AAAAYQLAGAAAADCBYAwAAAAYQrAEAAAADCNYAAACAAQRrAAAAwACCNQAAAGAAwRoAAAAwgGANAAAAGECwBgAAAAwgWAMAAAAGEKwBAAAAAwjWAAAAgAEEawAAAMAAgjUAAABgAMEaAAAAMIBgDQAAABhAsAYAAAAMIFgDAAAABhCsAQAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGgAAADCAYA0AAAAYQLAGAAAADCBYAwAAAAYQrAEAAAADCNYAAACAAQRrAAAAwACCNQAAAGAAwRoAAAAwgGANAAAAGECwBgAAAAwgWAMAAAAGEKwBAAAAAwjWAAAAgAEEawAAAMAAgjUAAABgAMEaAAAAMIBgDQAAABjg0mCdkJCg7t27q2vXrlq1atVlx/fv36++ffsqMjJS48aNU35+vivLAwAAAK6Zy4J1amqq5s6dq9WrV+u9997TW2+9pcOHDxdqM2rUKL3wwgvauHGjbDab1q5d66ryAAAAgOvi4aqOduzYoZCQEFWqVEmSFBkZqcTERD3xxBOSpJ9//lm5ublq1aqVJKlv376aP3+++vfv73Afbm4W02U7xN/fX57lyxVL387m7+8ti3uF4i7DKWy+/sqp4FncZTiNv79/sY0JZ2PMlV5ledwx5kqvsjzuGHPm/VmfLgvWaWlpCgwMtG8HBQUpJSWlyOOBgYFKTU29qj4qV/a5/kKvwdNPP10s/bpC84jirsCZuhR3Ac51a7PirsBpGHOlWRked4y5UqtsjzvGnCu5bCmI1WqVxfJ7wrfZbIW2/+o4AAAAUJK5LFhXr15d6enp9u309HQFBQUVefzXX38tdBwAAAAoyVwWrENDQ7Vz505lZGQoJydHmzZtUkTE7397ueGGG+Tl5aU9e/ZIkuLj4wsdBwAAAEoyi81ms7mqs4SEBC1evFgXL17U3XffraFDh2ro0KF68skn1bx5cx04cEAxMTHKzMxU06ZNNX36dHl6ls0F9wAAAChbXBqsAQAAgLKKJy8CAAAABhCsAQAAAAMI1gAAAIABBGsAAADAAII1AAAAYADBGi7XqFGjK+5fs2aN1qxZ4+JqgLIjPz9fixYtUrdu3dS9e3dFRkbqlVdekc1m05gxY7Ru3briLhEocwYNGqTNmzfbt2NjYxUcHKy8vDz7vvDwcA0dOlSpqanFUSJcyKO4CwB+c//99xd3CUCpNnHiRP36669666235Ofnp8zMTI0YMUIVK1Ys7tKAMiskJER79uzR7bffLknasWOHWrVqpT179qhDhw76/vvv5e3trbi4uGKuFK5AsEax2bVrl2bNmiWr1aqbbrpJtWrVkiQNGzZMY8eO1aFDhyRJ/fv317333lucpQIl3smTJ7V+/Xp98skn8vPzkyT5+vrqhRde0OHDhwu1nTt3rnbu3KmzZ88qKChIc+fOlb+//xXHXUJCgl599VW5u7urVq1amjVrlry8vFx+fUBJ1aFDB02bNk2SlJqaKk9PT0VGRiopKUkdOnTQF198obCwMN122216/fXX9fnnn+vTTz/V2bNn9eOPPyosLEwTJkyQJC1ZskQffPCBCgoKFB4erlGjRslisRTj1eFqsRQExer48eNasWKFYmNj7fuSk5N19uxZvffee1q8eLG++OKLYqwQKB1SUlJUv359+fv7F9pfv359RUZG2re///57HT16VG+++aY2btyoGjVqaP369UWOu5deeklLly7VunXrdMMNN+jo0aMuvS6gpGvatKl++OEHXbhwQUlJSQoLC1NYWJiSkpIkyR6s/yg5OVnz58/X+vXr9dFHH+m7777TJ598on379umdd97Re++9p9TUVK1fv744LgnXgRlrFKu6dete9mfqm266SceOHdMjjzyiiIgIjR49upiqA0qXP85sJSYmatGiRbJarfL09NRNN90kSapdu7aeffZZvf322zp27Ji++uor/eMf/yhy3N166626//77dfvttysyMlJNmjQplmsDSip3d3e1bNlSe/fuVVJSkh544AHdeOONys3N1dmzZ5WcnKxx48YVek1wcLB8fX0lSTfeeKPOnj2rnTt3KiUlRX379pUk5ebmqmbNmi6/HlwfZqxRrMqXL3/ZvsqVK+v999/Xgw8+qGPHjqlPnz46d+5cMVQHlB7NmjXTkSNHlJmZKUm68847FR8fr0WLFun06dP2dvv27dMjjzwiq9WqyMhI3X777bLZbEWOu5iYGM2fP1/+/v4aNWqU4uPji+sSgRIrJCREX375pVJSUtSqVStJl5aIbNmyRZUrV7aH6N/8cTmVxWKRzWZTQUGBHnroIcXHxys+Pl5vv/22hg0b5srLgAEEa5Q4W7Zs0ahRo9S5c2fFxMTI29tbv/zyS3GXBZRoNWvWVK9evfTss8/afxHNz8/Xxx9/LDe33/+r3717t9q1a6f7779fderU0ccff6yCgoIix13Xrl1VuXJlPfbYY7rrrru0f//+4rpEoMTq0KGD4uPj1bBhQ3l4XFoMEBYWpmXLll22DKQoISEhio+PV1ZWlvLz8zVixAht3LjRmWXDCVgKghInIiJCmzZtUo8ePeTl5aVevXoVeYs+AL+bMGGCli1bpoEDB6qgoEBZWVlq37694uLitHjxYklS9+7d9cQTTygqKkrSpZnun376SSNGjLjiuHvyySc1ePBgeXl5qUqVKpoxY0ZxXiJQIjVs2FBnzpxR//797ftCQkL09NNPKzQ01KFz3HbbbTpw4IDuvfdeFRQUqGPHjurTp4+zSoaTWGw2m624iwAAAABKO5aCAAAAAAYQrAEAAAADCNYAAACAAQRrAAAAwACCNQAAAGAAwRoADPvpp5/UqFGjIv+NGTNG0qXbay1cuLDI87z88su64447LtufmZmptm3baurUqUbqveOOO/Tyyy8bOdf1GjBgwGVPqQOA0oL7WAOAYTVq1FBSUtJl+1etWqVFixapS5cuDp1n8ODBeuCBBy7b/+abb6p+/fr2x44DAEoGgjUAGObu7q7AwMBC+z7//HPFxcXp4YcfvuIs9JX4+PjIx8fnsv39+/fXwIEDVa5cOSP1AgDMYCkIADjZqVOnNHLkSDVr1kzPPPNMoWOpqakaNGiQmjdvrsjISH300Uf2Y/+7FOTEiROKjo5Wly5d1L59ew0fPlw//vij/fhtt92m2NhYRUZGKiQkRN98881ltVy4cEGTJk1S+/bt1a5dOy1ZsuSyNmvWrFHPnj3VvHlzBQcHa/Dgwfr+++8l/b7MZePGjerTp49atmypu+66S5s3b5Ykffjhh7r55puVnp5uP5/NZtOtt96qFStWSJKOHz+uYcOGqXXr1goJCdG4ceOUlZVlb5+ZmanRo0crODhY7du319SpU1VQUHBV7zkAFAeCNQA4kdVq1TPPPKOLFy/qpZdeumyWee3aterYsaPWr1+v3r176/HHH1dKSspl58nMzNT999+vs2fP6tVXX9XKlSt1/vx5Pfjggzp//ry93Zo1azR58mQtXrxYTZo0uew8EydO1JYtWzRnzhytXLlSn3/+uX744Qf78cTERE2fPl3Dhw9XYmKiFi9erJ9//lmxsbGFzjNz5kxFR0fr7bffVo0aNfTss88qOztbnTt3lp+fn95//3172927dys9PV1RUVE6d+6cHnzwQUnS6tWrtXjxYiUnJ+uFF14oVEPt2rW1fv16jRkzRitXrlRCQsJVvvMA4HoEawBwooULF2rnzp2aOXOmatSocdnxO++8U4MHD1bdunX1+OOPq23btnr99dcvaxcfH69z585pzpw5atq0qZo1a6Z58+bp7NmzWr9+vb3dbbfdpnbt2qlly5Zycyv8X3xmZqbWr1+v6OhohYWFqVGjRpo1a5bKly9vbxMQEKBp06ape/fuuuGGG9SuXTv16NFDBw8eLHSuRx55RBEREWrYsKGeeuopZWZm6vDhwypXrpx69uxZqKb4+HhFREQoICBAGzZsUHZ2tmbPnq3GjRurZcuWmjJliurWrWtvHxwcrBEjRujGG29Unz591LBhQ+3bt+/q33wAcDHWWAOAk+zatUsLFy7Uo48+qk6dOl2xTXBwcKHt5s2ba/v27Ze1O3TokOrVq6dKlSrZ9wUEBKh+/fqFQu+NN95YZD1Hjx7VxYsX1axZM/u+ypUr6x//+Id9u127djp48KAWLFigo0eP6tixYzp48KCqVatW6Fx/DMIVK1aUJF28eFGS1LdvX61cuVJHjhxRrVq1tHHjRk2fPl2SdPDgQdWrV0++vr7217du3VqtW7e+4rklyd/fX7m5uUVeFwCUFMxYA4ATnDp1Sv/+9791yy236Kmnniqynbu7e6Ftm80mT0/Py9p5eXld8fVWq7XQ8pKi2kmSxWKx9/FHf3x9fHy8+vbtqxMnTqhNmzZ6/vnnNXTo0MvOdaUPTv523ptvvlmNGzdWQkKCtm7dKnd3d3Xu3FmS5OHx1/M5/zvTfqWaAaAkIlgDgGG/rau22Wx68cUXLwvPf/Ttt98W2k5OTlaDBg0ua9egQQMdPXpUZ86cse/LyMjQsWPHVL9+fYfqqlevnjw9PZWcnGzfl5mZqePHj9u3X3/9dfXr10/Tpk1T//791bp1a/3www9XHWz79OmjzZs3a/PmzYqKirIH8fr16+vYsWOFPqz46aefqnPnzsrJybmqPgCgpCFYA4Bhixcv1s6dOzVu3DhZLBalp6cX+vfHcBwfH6833nhDR48e1Ysvvqi9e/dqyJAhl52zV69eCggI0MiRI/Xtt9/qm2++0ciRI+Xn56cePXo4VJePj4/69eunl156SVu3btXhw4c1duzYQsssAgICtGfPHh04cEDHjx/XggULtGHDBuXl5V3Ve9CrVy8dP35cmzdvVp8+fez7o6Ki5OPjo+eee04HDx5UcnKypk+frnbt2qlChQpX1QcAlDSssQYAw3bs2CGbzabo6OgrHm/Xrp1Wrlwp6dKHADds2KAZM2aobt26euWVV644A+3l5aXXXntNM2bM0AMPPCB3d3d16NBBq1atkp+fn8O1PfvssypfvrzGjRunCxcu6J577lGLFi3sx59//nnFxMSoX79+qlChglq0aKFJkybphRde0IkTJxzuJyAgQOHh4fr555/VtGlT+35vb2+99tprmj59uu655x75+PgoMjJSo0aNcvjcAFBSWWwsXAMAOEHfvn0VFRWlQYMGFXcpAOASzFgDAIzavHmzvv76ax0/frzQMhAAKOsI1gAAoxYtWqQTJ05o+vTphW4PCABlHUtBAAAAAAO4KwgAAABgAMEaAAAAMIBgDQAAABhAsAYAAAAMIFgDAAAABvx/C+0Us+Wm2boAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "barWidth = 0.25\n", "fig = plt.subplots(figsize =(12, 8))\n", "\n", "iris = [silhouette, silhouette2, silhouette3]\n", "glass = [silhouette4, silhouette5, silhouette6]\n", "wine = [silhouette7, silhouette8, silhouette9]\n", "\n", "br1 = np.arange(len(iris))\n", "br2 = [x + barWidth for x in br1]\n", "br3 = [x + barWidth for x in br2]\n", "\n", "plt.bar(br1, iris, color ='y', width = barWidth, edgecolor ='grey', label ='k-średnich')\n", "plt.bar(br2, glass, color ='m', width = barWidth, edgecolor ='grey', label ='k-medoid')\n", "plt.bar(br3, wine, color ='c', width = barWidth, edgecolor ='grey', label ='k-medoid + PCA')\n", "\n", "plt.xlabel('Zbiór danych', fontsize = 15)\n", "plt.ylabel('Wartość sylwetki', fontsize = 15)\n", "plt.xticks([r + barWidth for r in range(len(iris))], ['Iris', 'Glass', 'Wine'])\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 135, "id": "74fc7277", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
IrisGlassWine
k-średnich0.440.330.30
k-medoid0.480.350.28
k-medoid + PCA0.500.500.45
\n", "
" ], "text/plain": [ " Iris \\\n", "k-średnich 0.44 \n", "k-medoid 0.48 \n", "k-medoid + PCA 0.50 \n", "\n", " Glass \\\n", "k-średnich 0.33 \n", "k-medoid 0.35 \n", "k-medoid + PCA 0.50 \n", "\n", " Wine \n", "k-średnich 0.30 \n", "k-medoid 0.28 \n", "k-medoid + PCA 0.45 " ] }, "execution_count": 135, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_shoulette" ] }, { "cell_type": "markdown", "id": "cf18c7b0", "metadata": {}, "source": [ " W wyniku tego porównania można dojść do wniosku, że najlepszą z metod jest metoda k-medoid wraz z redukcją wymiaru zbiorów danych przy pomocy PCA. " ] }, { "cell_type": "markdown", "id": "f5a71343", "metadata": {}, "source": [ "### K-medoids na innych zbiorach danych" ] }, { "cell_type": "code", "execution_count": 106, "id": "963d94ab", "metadata": {}, "outputs": [], "source": [ "# Load datasets\n", "\n", "dataset = np.array([[5, 6], [4, 7], [4, 8], [4, 6], [5, 7], [5, 8], [7, 6], [8, 8], [7, 7], [7, 8]])\n", "dataset3 = np.array(\n", " [[4.5, 6], [4, 7], [4, 8], [4, 6], [4.5, 7], [4.5, 8], [7, 6], [5.5, 7], [5.5, 8], [5.5, 6], [8, 8], [7, 7],\n", " [7, 8]])\n", "\n", "X1, Y1 = make_blobs(n_features=2, centers=4)\n", "X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, n_repeated=0, n_classes=2,\n", " n_clusters_per_class=2, class_sep=2, flip_y=0, weights=[0.5, 0.5], random_state=17)" ] }, { "cell_type": "code", "execution_count": 107, "id": "03fdd9f0", "metadata": {}, "outputs": [], "source": [ "def print_sns_plot(data):\n", " column_values = ['x', 'y']\n", " df = pd.DataFrame(data=data, columns=column_values, index=None)\n", " sns.set_theme(style='darkgrid')\n", " plt.figure(figsize=(10,8))\n", " plt.title(\"Dataset for clustering\")\n", " sns.scatterplot(data=df, x='x', y='y')\n", " plt.show()\n", " time.sleep(4)" ] }, { "cell_type": "code", "execution_count": 108, "id": "c5740cd9", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHwCAYAAAD98PjEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAwlklEQVR4nO3de3hV1YH+8feQHBIOCdSEQCy2xUdbYAAJiDNNccKlREgCpAZDNYiXlCg0TiQdMkZAEqiIRW5yyQwVZ3weUCkXQxyHweKgPARsBVslUaRqvQSCJAQkgRBycrJ+f/DzSERu1k1Ws7+ff3Tvtc/Z62WxfV733gGPMcYIAAAAVmnX2hMAAADAuShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAH4mx04cEC9e/dWamqqUlNTNWbMGN1+++3avHnzJX1++fLleuWVVxyZW2Zmpo4ePXrO/hMnTuj2229XSkqKfv/733+r5zxw4IAGDBjwjT//2muv6cknn7zszz355JPatGnTNz4vALuEtvYEALQN4eHhKikpCW4fPHhQ99xzj0JCQjRy5MgLfvaPf/yjrr/+ekfmtXPnzq/dv2/fPtXU1Gjr1q2OnPdvUVZWpuPHj1/25x588EEHZgOgtVDSADiie/fuysnJ0dNPP62RI0fqo48+0pw5c3Ty5ElVV1erV69eWrJkiTZs2KDy8nLNnz9fISEhuv7667/2uLCwMC1dulRbt26V1+vVVVddpXnz5qlr16768MMPNXfuXH3++ecKBAKaOHGibrvtNj388MOSpLvvvlu//e1vdfXVV0uS/vrXv2r69Ok6fPiwUlNT9bvf/U6lpaVavny5mpub1bFjRz388MO64YYbtGzZMr311luqqqpSz549tWDBghY5X331VS1ZskTNzc3y+XyaPXu2IiIiguPLli3TsWPHNGvWrHO2f//73+vf//3f5fF4FBISon/7t39T+/bttXbtWgUCAUVGRio3N1fr16/X888/r+bmZn3nO9/RI488ouuuu075+fn6/PPPVVFRoaFDh6qmpkY//OEP9Ytf/EL9+vXTfffdp507d6qqqkqTJk1SRkaGAoGA5s+fr23btikyMlI33HCDPvzwQ61evfoK/c4AcMkMAPyNKioqTFxc3Dn7//KXv5j+/fsbY4x5/PHHzaZNm4wxxjQ2NprRo0ebLVu2GGOMufPOO83//u//XvC4yspKM3DgQHP69GljjDFPP/202bp1q/H7/SY5OdmUl5cbY4ypra01SUlJ5s9//rMxxpgf/ehHpqam5py5/eEPfzApKSnGGGM++OAD85Of/MR8+umnxhhjdu3aZQYPHmzq6urM0qVLzciRI43f7z/nO6qrq82NN95o3nnnHWOMMS+//LL5xS9+0eLXY+nSpWb27NnBz5y9/dOf/jQ4zx07dphly5adc8wf//hHk5GRYerr64PHjRo1yhhjzEMPPWTuvvvu4Hc/9NBDZtWqVcHcq1evNsYYU1ZWZvr27WsaGhrM888/byZMmGAaGhrM6dOnTWZmprnzzjvPyQag9XEnDYBjPB6PwsPDJUl5eXnauXOnnnrqKX388ceqqqpSfX39OZ8533HdunVTr169dOuttyohIUEJCQmKj4/XBx98oE8//VTTp08PfkdDQ4PeffddxcXFXdI8//CHP+jHP/6xvve970mS4uPjFRUVpfLycklSXFycQkPP/c/ln/70J/3whz/UP/zDP0iSbrnlFt1yyy06cODAJZ03JSVFDzzwgIYMGaLBgwcrKyvrnGNee+01ffLJJ7r99tuD+2pra/X5559Lkm688cbzfv9Pf/pTSVKfPn3U2Nio+vp6bd++XampqQoLC5Mk/fznP+cuGmApShoAx5SVlelHP/qRJOlXv/qVAoGAkpKSNHToUB06dEjma/7q4PMd165dO61Zs0ZlZWV6/fXX9dhjj+mf//mflZqaqsjIyBbvwx05ckSRkZGXPM/m5mZ5PJ4W+4wxampqkiT5fL6v/VxISEiLzxljtH///haPOz0eT4ucfr8/+O+5ubkaN26cdu7cqRdeeEH/+Z//qQ0bNpwzt9TUVOXl5QW3q6qq1Llz5wvOTVKwiH0xR2PMOWWzXTt+fgywFVcnAEd89NFHKioqUmZmpiSptLRU2dnZSk5OliS9/fbbCgQCks6UnS8K0fmOe++99zR69Ghdd911uv/++3XPPfeorKxM1157bYsfWjh06JBGjx4dvAt29nefT3x8vEpLS1VRUSFJev3113Xo0CH179//gp/r37+/PvzwQ73//vuSpP/7v/8LlqkvXHXVVXrnnXdkjNGJEyf06quvSpKampo0fPhwnTp1SnfccYcKCgq0f/9+NTY2tpjzzTffrP/5n/9RVVWVJOn555/X3XfffcF5XciQIUP04osvqrGxUU1NTSouLv7G3wXAWdxJA/CtaGhoUGpqqqQzd2fCwsL0q1/9SkOHDpV05q5Rdna2fD6fIiIidNNNN+nTTz+VJA0fPlyLFi2S3+8/73Hp6elKSkrSuHHj5PP5FB4erpkzZ6p9+/YqKirS3LlztWrVKjU1NenBBx8MPgYcNWqUJk6cqGXLlgXv6n3V9ddfr4KCAj3wwAMKBAIKDw/Xf/zHf1z0blyXLl20YMECPfTQQwoEAoqIiNDixYtbHDN27Fjt2LFDt9xyi7p166Z//Md/DN7Rmj59uqZNm6bQ0FB5PB499thjat++vX784x9r2rRp+vWvf61HHnlEWVlZyszMlMfjUUREhJYvX37Onb9LlZaWpo8++kg/+9nP5PP5dM0116hDhw7f6LsAOMtjvu55AwCgTSotLVVNTU2wUD/66KMKCws75w4ggNZHSQMAFzl8+LDy8/N15MgRNTc3q1evXiosLLysd/gAXBmUNAAAAAvxgwMAAAAWoqQBAABYiJIGAABgoTb5R3AcO3ZSzc3OvmoXHR2hmpoTjp7DVmR3Z3bJ3fndnF1yd36yuzO75Hz+du08uuqqjucdb5MlrbnZOF7SvjiPW5Hdvdyc383ZJXfnJ7t7tWZ+HncCAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUdLWklJiVJSUpSSkqLf/OY354zv27dPaWlpGjlypGbMmKGmpiZJUmVlpSZMmKBRo0ZpypQpOnnypJPTvDweqfaUX2UfVKu2oUnytPaEcEWw7oD7cN27lyVrH+rUF586dUpz587Vli1b1KlTJ91xxx3atWuXfvKTnwSPycvL06OPPqq4uDhNnz5d69atU0ZGhmbPnq2MjAylpKRoxYoVKioqUl5enlNTvXQead+nx7V03Vs67Q8ozBuinPFx6v39zpJp7cnBMaw74D5c9+5l0do7dictEAioublZp06dUlNTk5qamhQWFhYcP3jwoBoaGhQXFydJSktL05YtW+T3+7V7926NHDmyxX4b1Nb7g4smSaf9AS1d95Zq6/2tPDM4iXUH3Ifr3r1sWnvH7qRFRETowQcfVFJSkjp06KCbbrpJAwcODI5XVVUpJiYmuB0TE6PDhw/r2LFjioiIUGhoaIv9lyM6OuLbCfEVn31QHVy0L5z2B1TvD+i670c5ck5bxcREtvYUrhjWvSU3rf1XuTm75K78XPdfctO6S3atvWMl7b333tPGjRv16quvKjIyUtOmTdPTTz+tSZMmSZKam5vl8Xz5kNcYI4/HE/zn2b66fTE1NSfU3Pzt35P0hYUqzBvSYvHCvCHyeUNUXV33rZ/PVjExka7Ky7p/yW1rfzY3Z5fcl5/r/gy3rbt0Zde+XTvPBW8sOfa4s7S0VPHx8YqOjlb79u2VlpamN954IzgeGxur6urq4PaRI0fUtWtXRUVFqa6uToHAmV+c6upqde3a1alpXpZOHUKVMz5OYd4QSQo+p+7k87byzOAk1h1wH65797Jp7R27k9arVy898cQTqq+vV4cOHbRt2zb169cvON69e3eFhYXpzTff1I033qiSkhIlJCTI6/Vq0KBB2rx5s8aMGaNNmzYpISHBqWleHiP1/n5n/eaXP1G9PyCfN+TMovESadvGugPuw3XvXhatvWN30m6++WalpKQoLS1NY8eOVVNTk+677z5lZWWprKxMkrRgwQLNmzdPo0aNUn19ve666y5JUkFBgdatW6fk5GTt2bNHU6dOdWqal89InTp41e+6GHXqwAXrGqw74D5c9+5lydp7jDFt7redU++knc2Nz+m/QHZ3Zpfcnd/N2SV35ye7O7NLzudvtXfSAAAA8M1R0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBCoU598fr167VmzZrg9oEDB5SamqpZs2ZJkvbt26f8/Pzg+NGjR9W5c2e99NJLKi4u1sKFCxUdHS1JGjp0qHJzc52aKgAAgHUcK2np6elKT0+XJL3//vvKzs7WAw88EBzv3bu3SkpKJEmnTp1Senq6CgsLJUnl5eXKz8/X6NGjnZoeAACA1a7I487CwkLl5uYqKirqa8dXrlypm266SYMGDZIklZWVqbi4WGPGjNG0adN0/PjxKzFNAAAAazhe0nbt2qWGhgYlJSV97XhdXZ3WrVvX4i5bTEyMfvnLX+rFF1/U1VdfrTlz5jg9TQAAAKt4jDHGyRPk5OTolltuOe+jy2effVb79+8/bxE7fvy4EhMT9cYbbzg5TQAAAKs49k6aJDU2Nmr37t16/PHHz3vMK6+8ovvvvz+4XVdXp40bN+qee+6RJBljFBISclnnrak5oeZmR7unYmIiVV1d5+g5bEV2d2aX3J3fzdkld+cnuzuzS87nb9fOo+joiPOPO3ZmSfv371ePHj3k8/m+dtwYo3feeUcDBgwI7vP5fFq1apXefvttSdKaNWuUmJjo5DQBAACs42hJq6ioUGxsbIt9WVlZKisrk3Tmj93wer0KCwsLjoeEhGjJkiUqLCxUUlKS3nnnHeXl5Tk5TQAAAOs4/k5aa+Bxp7PI7s7skrvzuzm75O78ZHdndqmNP+4EAADAN0NJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACwU6tQXr1+/XmvWrAluHzhwQKmpqZo1a1Zw3/Lly7Vx40Z16tRJkjR+/HhNmDBBlZWVysvLU01Nja699lotWLBAHTt2dGqqAAAA1nGspKWnpys9PV2S9P777ys7O1sPPPBAi2PKy8u1aNEiDRgwoMX+2bNnKyMjQykpKVqxYoWKioqUl5fn1FQBAACsc0UedxYWFio3N1dRUVEt9peXl2vlypUaM2aM5syZo9OnT8vv92v37t0aOXKkJCktLU1btmy5EtMEAACwhmN30r6wa9cuNTQ0KCkpqcX+kydPqnfv3srLy9MPfvAD5efnq6ioSBMmTFBERIRCQ89MLSYmRocPH76sc0ZHR3xr87+QmJjIK3IeG5Hdvdyc383ZJXfnJ7t7tWZ+x0va2rVrde+9956zv2PHjnrqqaeC25mZmZo+fboyMjLk8XhaHPvV7YupqTmh5mbzzSZ8iWJiIlVdXefoOWxFdndml9yd383ZJXfnJ7s7s0vO52/XznPBG0uOPu5sbGzU7t27NXz48HPGKisrtWHDhuC2MUahoaGKiopSXV2dAoGAJKm6ulpdu3Z1cpoAAADWcbSk7d+/Xz169JDP5ztnLDw8XE888YQqKipkjNGzzz6rxMREeb1eDRo0SJs3b5Ykbdq0SQkJCU5OEwAAwDqOlrSKigrFxsa22JeVlaWysjJFRUVpzpw5mjJlikaNGiVjTPCxaEFBgdatW6fk5GTt2bNHU6dOdXKaAAAA1vEYY5x9easV8E6as8juzuySu/O7Obvk7vxkd2d2qY2/kwYAAIBvhpIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFgp16ovXr1+vNWvWBLcPHDig1NRUzZo1K7jvlVde0bJly2SM0TXXXKN58+apc+fOKi4u1sKFCxUdHS1JGjp0qHJzc52aKgAAgHUcK2np6elKT0+XJL3//vvKzs7WAw88EBw/ceKECgsLtXHjRnXr1k1PPvmkli1bppkzZ6q8vFz5+fkaPXq0U9MDAACw2hV53FlYWKjc3FxFRUUF9/n9fhUUFKhbt26SpJ49e+rQoUOSpLKyMhUXF2vMmDGaNm2ajh8/fiWmCQAAYA2PMcY4eYJdu3Zp4cKF2rhx43mPaWhoUEZGhiZOnKhbb71V2dnZyszM1MCBA7Vo0SJVVlZq4cKFTk4TAADAKo6XtJycHN1yyy3nfXRZV1en7OxsXXPNNXrsscfOGT9+/LgSExP1xhtvXPI5a2pOqLnZ0ViKiYlUdXWdo+ewFdndmV1yd343Z5fcnZ/s7swuOZ+/XTuPoqMjzj/u2JklNTY2avfu3Ro+fPjXjldVVSkjI0M9e/bU3LlzJZ0pbc8880zwGGOMQkJCnJwmAACAdRwtafv371ePHj3k8/nOGQsEApo8ebKSkpI0Y8YMeTweSZLP59OqVav09ttvS5LWrFmjxMREJ6cJAABgHcd+ulOSKioqFBsb22JfVlaWcnJy9Nlnn+ndd99VIBDQyy+/LEnq27ev5s6dqyVLlqiwsFANDQ3q0aOH5s+f7+Q0AQAArOP4O2mtgXfSnEV2d2aX3J3fzdkld+cnuzuzS238nTQAAAB8M5Q0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKhTn3x+vXrtWbNmuD2gQMHlJqaqlmzZgX37du3TzNmzNDJkyc1aNAgzZ49W6GhoaqsrFReXp5qamp07bXXasGCBerYsaNTU708Hqm23q/PPqiWLyxUnTqESqa1JwXHse6A+3Ddo5V5jDGO/5Z7//33lZ2drbVr1yoqKiq4f/To0Xr00UcVFxen6dOnq2/fvsrIyND999+vsWPHKiUlRStWrFB9fb3y8vIu+Xw1NSfU3OxALI+079PjWrruLZ32BxTmDVHO+Dj1/n5nV124MTGRqq6ua+1pXDmse5Dr1v4sbs4uuTA/170kF677Vzidv107j6KjI84/frEv+Jd/+Rft2rXrb5pEYWGhcnNzWxS0gwcPqqGhQXFxcZKktLQ0bdmyRX6/X7t379bIkSNb7LdBbb0/eMFK0ml/QEvXvaXaen8rzwxOYt0B9+G6hw0u+rgzMTFRRUVFmj17tsaPH69x48bpO9/5ziWfYNeuXWpoaFBSUlKL/VVVVYqJiQlux8TE6PDhwzp27JgiIiIUGhraYv/luFAr/Vt89kF18IL9wml/QPX+gK77ftR5PtU2xcREtvYUrhjWvSU3rf1XuTm75K78XPdfctO6f53WzH/RkjZ27FiNHTtWH374oTZu3KjbbrtNAwYM0MSJE3XDDTdc9ARr167Vvffee87+5uZmeTye4LYxRh6PJ/jPs311+2KcetzpCwtVmDekxYUb5g2RzxviqtvBbrv9zbp/yW1rfzY3Z5fcl5/r/gy3rftXWf+4UzpTqD755BN9/PHHCgQCio6OVmFhoZYuXXrBzzU2Nmr37t0aPnz4OWOxsbGqrq4Obh85ckRdu3ZVVFSU6urqFAicuTCqq6vVtWvXS5mm4zp1CFXO+DiFeUMkKfiOQieft5VnBiex7oD7cN3DBhe9k7Z48WK98MIL+t73vqeMjAw9+eST8nq9qq+v17Bhw5STk3Pez+7fv189evSQz+c7Z6x79+4KCwvTm2++qRtvvFElJSVKSEiQ1+vVoEGDtHnzZo0ZM0abNm1SQkLC35by22Kk3t/vrN/88ieq9wfk84acuWBd9BKpK7HugPtw3cMCF72TdvToUT311FN67rnnNHr0aHm9Z/4vwufzaeHChRf8bEVFhWJjY1vsy8rKUllZmSRpwYIFmjdvnkaNGqX6+nrdddddkqSCggKtW7dOycnJ2rNnj6ZOnfpNsjnDSJ06eNXvuhh16sAF6xqsO+A+XPdoZVfkj+C40hz7IzjO4ubn9GR3Z3bJ3fndnF1yd36yuzO79HfyThoAAACuLEoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWCjUyS/ftm2bli9frlOnTmnw4MGaOXNmcGzfvn3Kz88Pbh89elSdO3fWSy+9pOLiYi1cuFDR0dGSpKFDhyo3N9fJqQIAAFjFsZJWUVGhgoICrV+/XtHR0br77ru1fft2DRkyRJLUu3dvlZSUSJJOnTql9PR0FRYWSpLKy8uVn5+v0aNHOzU9AAAAqzlW0rZu3ark5GTFxsZKkhYvXqywsLCvPXblypW66aabNGjQIElSWVmZPv74Y61cuVI9e/bUI488os6dOzs1VQAAAOt4jDHGiS8uKCiQ1+vVgQMHdOjQIQ0dOlRTp06Vx+NpcVxdXZ1Gjhyp//7v/w4+3szOzlZmZqYGDhyoRYsWqbKyUgsXLnRimgAAAFZy7E5aIBDQnj17tHr1avl8Pk2ZMkXFxcVKS0trcdyLL76oESNGBAuaJK1YsSL475MmTVJiYuJlnbum5oSamx3pnkExMZGqrq5z9By2Irs7s0vuzu/m7JK785Pdndkl5/O3a+dRdHTE+cedOnGXLl0UHx+vqKgohYeHa8SIEdq7d+85x73yyitKTk4ObtfV1emZZ54JbhtjFBIS4tQ0AQAArORYSRs2bJhKS0tVW1urQCCgHTt2qE+fPi2OMcbonXfe0YABA4L7fD6fVq1apbfffluStGbNmsu+kwYAAPD3zrHHnf3799ekSZOUkZEhv9+vwYMHa9y4ccrKylJOTo769euno0ePyuv1tviBgpCQEC1ZskSFhYVqaGhQjx49NH/+fKemCQAAYCXHfnCgNfFOmrPI7s7skrvzuzm75O78ZHdndqkNv5MGAACAb46SBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFgo1Mkv37Ztm5YvX65Tp05p8ODBmjlzZovx5cuXa+PGjerUqZMkafz48ZowYYIqKyuVl5enmpoaXXvttVqwYIE6duzo5FQBAACs4tidtIqKChUUFKioqEgvvvii3n33XW3fvr3FMeXl5Vq0aJFKSkpUUlKiCRMmSJJmz56tjIwMbdmyRX379lVRUZFT0wQAALCSYyVt69atSk5OVmxsrLxerxYvXqz+/fu3OKa8vFwrV67UmDFjNGfOHJ0+fVp+v1+7d+/WyJEjJUlpaWnasmWLU9MEAACwkmOPOz/55BN5vV5NnjxZhw4d0tChQzV16tTg+MmTJ9W7d2/l5eXpBz/4gfLz81VUVKQJEyYoIiJCoaFnphYTE6PDhw9f1rmjoyO+zSjnFRMTeUXOYyOyu5eb87s5u+Tu/GR3r9bM71hJCwQC2rNnj1avXi2fz6cpU6aouLhYaWlpkqSOHTvqqaeeCh6fmZmp6dOnKyMjQx6Pp8V3fXX7YmpqTqi52fztIS4gJiZS1dV1jp7DVmR3Z3bJ3fndnF1yd36yuzO75Hz+du08F7yx5Njjzi5duig+Pl5RUVEKDw/XiBEjtHfv3uB4ZWWlNmzYENw2xig0NFRRUVGqq6tTIBCQJFVXV6tr165OTRMAAMBKjpW0YcOGqbS0VLW1tQoEAtqxY4f69OkTHA8PD9cTTzyhiooKGWP07LPPKjExUV6vV4MGDdLmzZslSZs2bVJCQoJT0wQAALCSYyWtf//+mjRpkjIyMpScnKzvfve7GjdunLKyslRWVqaoqCjNmTNHU6ZM0ahRo2SM0b333itJKigo0Lp165ScnKw9e/a0eJcNAADADTzGGGdf3moFvJPmLLK7M7vk7vxuzi65Oz/Z3ZldasPvpAEAAOCbo6QBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhUKd/PJt27Zp+fLlOnXqlAYPHqyZM2e2GH/llVe0bNkyGWN0zTXXaN68eercubOKi4u1cOFCRUdHS5KGDh2q3NxcJ6cKAABgFcdKWkVFhQoKCrR+/XpFR0fr7rvv1vbt2zVkyBBJ0okTJ1RYWKiNGzeqW7duevLJJ7Vs2TLNnDlT5eXlys/P1+jRo52aHgAAgNUce9y5detWJScnKzY2Vl6vV4sXL1b//v2D436/XwUFBerWrZskqWfPnjp06JAkqaysTMXFxRozZoymTZum48ePOzVNAAAAK3mMMcaJLy4oKJDX69WBAwd06NAhDR06VFOnTpXH4znn2IaGBmVkZGjixIm69dZblZ2drczMTA0cOFCLFi1SZWWlFi5c6MQ0AQAArOTY485AIKA9e/Zo9erV8vl8mjJlioqLi5WWltbiuLq6OmVnZ6tXr1669dZbJUkrVqwIjk+aNEmJiYmXde6amhNqbnakewbFxESqurrO0XPYiuzuzC65O7+bs0vuzk92d2aXnM/frp1H0dER5x936sRdunRRfHy8oqKiFB4erhEjRmjv3r0tjqmqqlJGRoZ69uypuXPnSjpT2p555pngMcYYhYSEODVNAAAAKzlW0oYNG6bS0lLV1tYqEAhox44d6tOnT3A8EAho8uTJSkpK0owZM4KPQX0+n1atWqW3335bkrRmzZrLvpMGAADw986xx539+/fXpEmTlJGRIb/fr8GDB2vcuHHKyspSTk6OPvvsM7377rsKBAJ6+eWXJUl9+/bV3LlztWTJEhUWFqqhoUE9evTQ/PnznZomAACAlRz7wYHWxDtpziK7O7NL7s7v5uySu/OT3Z3ZpTb8ThoAAAC+OUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWMjRkrZt2zalpaUpKSlJjz766Dnj+/btU1pamkaOHKkZM2aoqalJklRZWakJEyZo1KhRmjJlik6ePOnkNAEAAKzjWEmrqKhQQUGBioqK9OKLL+rdd9/V9u3bWxyTl5enWbNm6eWXX5YxRuvWrZMkzZ49WxkZGdqyZYv69u2roqIip6Z5+TxS7Sm/yj6oVm1Dk+Rp7QnhimDdAffhukcrC3Xqi7du3ark5GTFxsZKkhYvXqywsLDg+MGDB9XQ0KC4uDhJUlpampYuXar09HTt3r1bK1asCO6/8847lZeX59RUL51H2vfpcS1d95ZO+wMK84YoZ3ycen+/s2Rae3JwDOsOuA/XPSzg2J20Tz75RIFAQJMnT1Zqaqqee+45de7cOTheVVWlmJiY4HZMTIwOHz6sY8eOKSIiQqGhoS3226C23h+8YCXptD+gpeveUm29v5VnBiex7oD7cN3DBo7dSQsEAtqzZ49Wr14tn8+nKVOmqLi4WGlpaZKk5uZmeTxf3js2xsjj8QT/ebavbl9MdHTE3x7ga3z2QXXwgv3CaX9A9f6Arvt+lCPntFVMTGRrT+GKYd1bctPaf5Wbs0vuys91/yU3rfvXac38jpW0Ll26KD4+XlFRZ34zjxgxQnv37g2WtNjYWFVXVwePP3LkiLp27aqoqCjV1dUpEAgoJCRE1dXV6tq162Wdu6bmhJqbv/370b6wUIV5Q1pcuGHeEPm8IaqurvvWz2ermJhIV+Vl3b/ktrU/m5uzS+7Lz3V/htvW/auczt+uneeCN5Yce9w5bNgwlZaWqra2VoFAQDt27FCfPn2C4927d1dYWJjefPNNSVJJSYkSEhLk9Xo1aNAgbd68WZK0adMmJSQkODXNy9KpQ6hyxscpzBsiScF3FDr5vK08MziJdQfch+seNvAYYxx7BXLDhg165pln5Pf7NXjwYM2cOVP333+/cnJy1K9fP7333nuaOXOmTpw4oT59+mjevHlq3769Dh48qPz8fNXU1Ojqq6/WokWLWrzPdjFO3UmTdOanfer9qvcH5POGnLlgXfYSqSv/z4p1l+TStf//3Jxdcml+rnt3rvtZWvtOmqMlrbU4WtL+Pzf/xiW7O7NL7s7v5uySu/OT3Z3ZpdYvafyNAwAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABYKbe0JOKFdO0+bOo+NyO5ebs7v5uySu/OT3b2czH+x7/YYY4xjZwcAAMA3wuNOAAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAs1Cb/7s5v229+8xsdO3ZMjz/+eIv9+/bt04wZM3Ty5EkNGjRIs2fPVmho2/olPV/25cuXa+PGjerUqZMkafz48ZowYUJrTNEREydO1NGjR4PrOWfOHPXv3z843tbX/mL52/L6b9u2TcuXL9epU6c0ePBgzZw5s8V4W177i2Vvy+u+fv16rVmzJrh94MABpaamatasWcF9bXXtLyV7W157SSopKdFvf/tbSVJCQoIeeuihFuOttvYGF7Rr1y7zT//0T+ahhx46ZywlJcX8+c9/NsYY8/DDD5tnn332Cs/OWRfKfv/995s//elPrTAr5zU3N5ubb77Z+P3+8x7Tltf+UvK31fX/9NNPzc0332wOHTpkGhsbzR133GFee+21Fse01bW/lOxtdd2/6i9/+YtJTEw0NTU1Lfa31bU/2/myt+W1r6+vNzfddJOpqakxfr/f3HbbbWbnzp0tjmmttedx5wV8/vnnWrx4sSZPnnzO2MGDB9XQ0KC4uDhJUlpamrZs2XKFZ+icC2WXpPLycq1cuVJjxozRnDlzdPr06Ss8Q+f89a9/lSRlZmZq7NixLf4PU2r7a3+x/FLbXf+tW7cqOTlZsbGx8nq9Wrx4cYs7iG157S+WXWq76/5VhYWFys3NVVRUVHBfW177s31ddqltr30gEFBzc7NOnTqlpqYmNTU1KSwsLDjemmtPSbuAWbNmKTc3N3h792xVVVWKiYkJbsfExOjw4cNXcnqOulD2kydPqnfv3srLy1NxcbFqa2tVVFTUCrN0Rm1treLj47VixQo988wzWrt2rXbu3Bkcb+trf7H8bXn9P/nkEwUCAU2ePFmpqal67rnn1Llz5+B4W177i2Vvy+t+tl27dqmhoUFJSUkt9rfltf/C+bK39bWPiIjQgw8+qKSkJA0ZMkTdu3fXwIEDg+OtufaUtPNYv369rr76asXHx3/teHNzszweT3DbGNNi++/ZxbJ37NhRTz31lK677jqFhoYqMzNT27dvv8KzdM6AAQM0f/58RUZGKioqSrfddluLfG157aWL52/L6x8IBPT666/rscce0+9+9zvt3btXxcXFwfG2vPYXy96W1/1sa9eu1b333nvO/ra89l84X/a2vvbvvfeeNm7cqFdffVU7duxQu3bt9PTTTwfHW3PtKWnnsXnzZu3cuVOpqalaunSptm3bpsceeyw4Hhsbq+rq6uD2kSNH1LVr19aY6rfuYtkrKyu1YcOG4LYxpk28PPuFPXv26PXXXw9ufzVfW1576eL52/L6d+nSRfHx8YqKilJ4eLhGjBihvXv3Bsfb8tpfLHtbXvcvNDY2avfu3Ro+fPg5Y2157aULZ2/ra19aWqr4+HhFR0erffv2SktL0xtvvBEcb821p6Sdx3/913/ppZdeUklJiXJycjR8+HBNnz49ON69e3eFhYXpzTfflHTmJ0MSEhJaa7rfqotlDw8P1xNPPKGKigoZY/Tss88qMTGxFWf87aqrq9P8+fN1+vRpnThxQsXFxS3yteW1ly6evy2v/7Bhw1RaWqra2loFAgHt2LFDffr0CY635bW/WPa2vO5f2L9/v3r06CGfz3fOWFtee+nC2dv62vfq1Uu7du1SfX29jDHatm2b+vXrFxxvzbWnpF2mrKwslZWVSZIWLFigefPmadSoUaqvr9ddd93VyrNz1hfZo6KiNGfOHE2ZMkWjRo2SMeZrb5H/vRo2bJiGDBmin/3sZxo3bpzGjRunAQMGuGbtL5a/La9///79NWnSJGVkZCg5OVnf/e53NW7cOFes/cWyt+V1/0JFRYViY2Nb7HPD2ksXzt7W1/7mm29WSkqK0tLSNHbsWDU1Nem+++6zYu09xhhzRc4EAACAS8adNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAM6juLhYI0aM0MmTJ1VfX6+kpCRt2rSptacFwCX4w2wB4AL+9V//VZGRkWpsbFRISIh+/etft/aUALgEJQ0ALuDEiRNKTU1VeHi4XnjhBYWFhbX2lAC4BI87AeACampqdPr0adXW1qqqqqq1pwPARbiTBgDn4ff7dfvtt+v2229Xc3Oz1q9fr+eff15er7e1pwbABbiTBgDnsWjRInXp0kXp6en6+c9/rquuukqLFy9u7WkBcAnupAEAAFiIO2kAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYKH/B1ZTvLFpw2xEAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHwCAYAAADq0mgNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqW0lEQVR4nO3de3TU9Z3/8deEcDEYfwGcJK4Iq1ChRiKIW0mUWKkm3ERue0QoWLEBiyyKLXJJJC2Vaymo1Mth9Vdv5AgtIFDXgOLRs5oAu6IFI/yQ2wKWJEPCLZjEJPP5/dEyS+SSgHzzHpnn45z+8Z3vZOadeZ80z35nQn3OOScAAACYiLIeAAAAIJIRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYA75HDhw4oG7dutW57T/+4z906623qqCgoFFmmDFjhhYtWnTO+2zdulUTJkw447mxY8dqxYoVF/TcBw4cUKdOnfSnP/2pzu0vv/yypkyZckGPeSa9evXS1q1bL9rjnUt5ebmGDRumfv36ad26dQ36mpEjRyovL++Cnu/48eMaNWrUBX3t+QoGg5o3b5769eune+65R+PHj1dZWVmjPDfwfUKMAd9jb775pubMmaNXXnlFKSkp1uOEdOnSRc8++6wnjx0VFaW5c+dq9+7dnjx+Y9u2bZtKS0v19ttvKz093fPnO3r0aKOF5vLly1VYWKiVK1dqzZo1ateunebMmdMozw18n0RbDwDgwixevFgrVqxQbm6u2rZte8b7bNy4UQsWLNBVV12lPXv26LLLLtOYMWP0+uuva8+ePUpPT9e0adMkSe+//75eeOEFVVdXq0WLFpo8ebK6deum8vJyZWVlafv27YqPj1eTJk3UvXt3SdKXX36pGTNm6MiRI/L5fBo9erQGDhyojRs36re//a3+8pe/qLi4WFOmTFFJSYn+6Z/+SaWlpaH5nn32Wb377rtq2rSpWrVqpdmzZys+Pv6c33eLFi304IMP6le/+pXefPNNNWvWrM75KVOm6Ac/+IEeeuih04579eql/v37a8OGDTp69Kh+/vOfa/PmzSosLFR0dLReeOEFJSQkSJJyc3O1fft2ffPNN3rwwQc1dOjQc75OixYt0meffaaSkhJ16tRJ8+fPrzPXe++9pz/84Q8KBoNq2bKlpk6dqssvv1zTpk1TcXGx7r33Xi1dulQtWrQIfU0gEFBOTo52796tqKgoDRs2rM5VrQMHDuiee+7Rp59+etpxIBDQ5MmTdfjwYUnSHXfcoccee0xTp05VZWWl7r33Xq1YsUJ79+7VzJkzdeTIEdXW1mrkyJEaOnSoNm7cqJkzZyomJkYnTpxQbm6usrKy9D//8z+KiopSUlKSZsyYoaioKGVmZmrYsGH6yU9+Uud77tixo5544onQjm688Ubl5uaec79ARHIAvjf279/vunbt6ubOneuuv/5698Ybb5zz/hs2bHA//OEPXWFhoXPOuYceesjdd999rqqqypWWlrqkpCRXVFTk9uzZ4/r37+/Kysqcc87t2LHD3Xbbbe7EiRNu5syZ7oknnnDBYNCVlpa6tLQ09+yzz7rq6mr3k5/8xK1du9Y551xRUZHr2bOn27x5s9uwYYPr16+fc865cePGuYULFzrnnNu7d6/r2rWrW758ufvb3/7mbr75ZldVVeWcc+7ll1927777boO+/9raWjdixAg3Z84c55xzL730kps8ebJzzrnJkye7l156KfQ1px7feeedbtasWc45595++23XuXNnt23bttCcL7zwQuh+OTk5oe8rJSXF7dix45yv07PPPusyMjJcdXX1aXPv3LnTpaamun379jnnnMvPz3e33XabO378eJ3X6tseeeQRN3fuXOecc8eOHXP9+vVze/fudT/96U/dO++8E3o9vv36OOfcH/7wB/fkk08655w7ceKEe+yxx9yxY8fq3Ke6utr17dvXff7556Hn6NOnj/v000/dhg0bXOfOnd2BAwecc86tXLnSjR492jnnXE1NjcvKynJ79+49575OdeTIEdevXz/3+uuvN/hrgEjBlTHge+brr7/Wjh07tHjxYk2cOFHdunXTDTfccNb7t23bNnS+Xbt2io2NVbNmzdS6dWu1bNlSR48e1X/913+ppKREP/vZz0Jf5/P5tG/fPhUUFGjatGny+Xxq3bq17r77bknS3r17VVVVFXprLSEhQenp6frP//xP3XrrraHHyc/P1+TJkyVJ7du3D51LSEhQ586dNWjQIKWlpSktLa3Bb7VGRUXpd7/7nQYOHKjbb7+94S+eFJr3mmuu0ZVXXqnOnTuHXpujR4+G7jds2LDQnLfddpsKCgrUpEmTs75OktS1a1dFR5/+X6sbNmxQjx49dM0110iSUlJS1Lp1a33++efy+XxnnTU/P1+TJk2SJMXGxuovf/lLg7/Pnj17asyYMTp48KBSU1P1y1/+UrGxsXW+x71792rfvn2hq6OSVFlZqS+++EIdOnTQVVddpauvvlqS1L17dy1cuFAjR45UamqqHnjgAbVv375Bs+zbt0+PPPKIbr75Zo0YMaLB3wMQKYgx4HumRYsWeuGFF9S0aVONHTtW48eP14oVKxQXF6dnnnlG77//vqS/fwi9R48ep72Nd6ZYCAaDSklJ0dNPPx267eDBg6G3DN0p/xe2TZo0kSTV1taeFhLOOdXU1NS5zefz1fn6k88fFRWlN954Q1u3blVBQYFmzZqlnj176oknnmjQ63DVVVfpN7/5jSZPnqyBAwee9fmqq6vrfN2pr0fTpk3P+vhRUf/7kdpgMKjo6GjV1tae9XV69913FRMTc8bHCgaDZ32tzjVDdHR0na/bv3+/WrVqFTo+1/eanJys9evXq6CgQBs2bNC//uu/6t///d8VFxcXuk9tba1iY2O1atWq0G2HDh1SbGysPvvsszrfzzXXXKN3331XGzdu1IYNG/Tggw9qxowZ6tWr11nnl/4eohMnTtTPf/7z0FvHAOriA/zA90xUVFToF/iYMWPUsWNH/fKXv1QwGNSjjz6qVatWadWqVXr00Ucb/JgpKSn6+OOPtWvXLknShx9+qAEDBqiyslI9e/bUn//8ZwWDQR09elTr16+XJF133XWKjo4O/QVgcXGx1q5dq9TU1DqP3bNnTy1dulSS9Le//U0bN26UJG3fvl39+/dXhw4dNHbsWP3sZz877w+W9+7dW2lpaXr11VdDt7Vq1Uqff/55aKZNmzad12OetHLlytDMBQUFSklJOefrdC4pKSn66KOPtH//fklSQUGBDh48qJtuuqner1u+fLmkv/8V5AMPPKC9e/eGzl9xxRWqrq7Wzp07JUlvv/126Nz8+fP1/PPP66677lJWVpY6duyoL7/8MhSVzjlde+21atGiRSjGDh48qP79+4dev1Pl5uZq6tSpuv322zVp0iTdfvvt+uKLL845f2FhocaPH6+5c+cSYsA5cGUM+B7z+XyaO3euBg0apKefflqPP/74BT1Ox44dNWPGDD3++ONyzoU+zN6yZUv927/9m3JyctSnTx+1bt1a119/vaS/X1V6/vnn9dRTT2nRokWqra3VI488oh49eoSCS5JycnI0depU9enTR4mJiaG3BTt37qw+ffpoyJAhiomJUYsWLZSdnS1JeuaZZySpQUGZnZ2tTz75JHQ8cuRI/epXv1JGRobatm2rHj16XNBrUlVVpUGDBqm6ulrZ2dm69tprJemsr9O5dOzYUTk5ORo/frxqa2vVokULvfjii4qNjT3n102fPl2//vWvdc8998g5p7Fjx+rGG28MnY+NjdWkSZOUmZmp1q1bq3fv3qFzDzzwgKZMmaL+/furWbNm6tSpk/r166cmTZooOTlZ/fr105IlS/T8889r5syZeumll1RTU6NHH31U3bt3r7NDSRo4cKA2bdqkvn376rLLLtNVV12lkSNHStJZP8C/YMECOef0+9//Xr///e8l/f1t8+eee66eVx+ILD536jVuAAAANCrepgQAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPf63/a4vDhEwoGvftj0DZtLldpablnj48Lw17CDzsJT+wl/LCT8OT1XqKifGrV6uz/BM73OsaCQedpjJ18DoQf9hJ+2El4Yi/hh52EJ8u98DYlAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAxFe/ng5eXlGjZsmF588UW1bdu2zrlt27YpKytLJ06c0C233KLf/OY3io72dJwGKygs0ooPd6nsWJVaX9Fcg+/ooJSkROux0AhO7r70WJXasHsgImwq2qzVu/J0uOqIWjWP04AOvfWjxJutx0IjOLn7I1VHFGe4e8+ujP31r3/V/fffr717957x/KRJkzR9+nStXbtWzjktW7bMq1HOS0FhkV59Z7tKj1XJSSo9VqVX39mugsIi69HgsVN3L7F7IBJsKtqs3O3LdbjqiCTpcNUR5W5frk1Fm20Hg+dO3b2T7e49i7Fly5YpJydH8fHxp5376quvVFlZqa5du0qSBg8erLy8PK9GOS8rPtylb2qCdW77piaoFR/uMpoIjYXdA5Fn9a48VQer69xWHazW6l3h8TsJ3gmn3Xv2vuDMmTPPeq6kpER+vz907Pf7VVxcfN7P0abN5Rc027mU/eOqyJlu9/tjL/rz4cJ4sQt2/93wGoUn9nJuR/5xRexMt3v12rGT8GCx+7Mx+ZBWMBiUz+cLHTvn6hw3VGlpuYJBdzFHU+srmofepvr27YHA8Yv6XLgwfn+sJ7tg9xfOq53gu2Ev9YtrHhd6i/Lbt3vx2rGT8NGYu4+K8p3zApLJX1MmJiYqEAiEjg8dOnTGtzMtDL6jg5pF131ZmkVHafAdHYwmQmNh90DkGdCht5pGNa1zW9OophrQobfRRGgs4bR7kytjV199tZo3b65PPvlE3bt316pVq5SWlmYxymlO/uUcf00ZeU7dPX9NCUSGk385x19TRp5Td2/915Q+59zFfZ/vW3r16qXXXntNbdu2VWZmpiZMmKAuXbpo+/btys7OVnl5uZKSkjR79mw1a9bsvB7bi7cpT8Xl5PDEXsIPOwlP7CX8sJPw5PVe6nub0vMY8xIxFpnYS/hhJ+GJvYQfdhKerGOMf4EfAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhjyNsTVr1qhv375KT0/XkiVLTjtfWFioIUOGaMCAARo7dqyOHTvm5TgAAABhx7MYKy4u1sKFC5Wbm6u33npLS5cu1c6dO+vcZ+bMmZowYYJWr16ta6+9Vi+//LJX4wAAAIQlz2IsPz9fPXr0UFxcnGJiYpSRkaG8vLw69wkGgzpx4oQkqaKiQi1atPBqHAAAgLAU7dUDl5SUyO/3h47j4+O1ZcuWOveZMmWKRo8erVmzZumyyy7TsmXLzus52rS5/KLMei5+f6znz4Hzx17CDzsJT+wl/LCT8GS5F89iLBgMyufzhY6dc3WOKysrlZWVpVdeeUXJycn64x//qMmTJ2vx4sUNfo7S0nIFg+6izn0qvz9WgcBxzx4fF4a9hB92Ep7YS/hhJ+HJ671ERfnOeQHJs7cpExMTFQgEQseBQEDx8fGh4x07dqh58+ZKTk6WJN13333atGmTV+MAAACEJc9iLDU1VQUFBSorK1NFRYXWrVuntLS00Pn27durqKhIu3fvliStX79eXbp08WocAACAsOTZ25QJCQmaOHGiRo0aperqag0dOlTJycnKzMzUhAkT1KVLF82ePVuPPfaYnHNq06aNZs2a5dU4AAAAYcnnnPPuQ1ce4zNjkYm9hB92Ep7YS/hhJ+Hpkv3MGAAAAOpHjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhT2NszZo16tu3r9LT07VkyZLTzu/evVsjR47UgAED9NBDD+no0aNejgMAABB2PIux4uJiLVy4ULm5uXrrrbe0dOlS7dy5M3TeOadf/OIXyszM1OrVq/XDH/5Qixcv9mocAACAsORZjOXn56tHjx6Ki4tTTEyMMjIylJeXFzpfWFiomJgYpaWlSZIefvhhjRgxwqtxAAAAwlK0Vw9cUlIiv98fOo6Pj9eWLVtCx/v27dOVV16padOmadu2bbruuuv05JNPntdztGlz+UWb92z8/ljPnwPnj72EH3YSnthL+GEn4clyL57FWDAYlM/nCx075+oc19TUaNOmTXrjjTfUpUsXPf3005ozZ47mzJnT4OcoLS1XMOgu6tyn8vtjFQgc9+zxcWHYS/hhJ+GJvYQfdhKevN5LVJTvnBeQPHubMjExUYFAIHQcCAQUHx8fOvb7/Wrfvr26dOkiSerfv3+dK2cAAACRwLMYS01NVUFBgcrKylRRUaF169aFPh8mSd26dVNZWZm2b98uSXr//feVlJTk1TgAAABhybO3KRMSEjRx4kSNGjVK1dXVGjp0qJKTk5WZmakJEyaoS5cueu6555Sdna2KigolJiZq3rx5Xo0DAAAQlnzOOe8+dOUxPjMWmdhL+GEn4Ym9hB92Ep4u2c+MAQAAoH7EGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjZ1BQWKTpL6/TvqJ2mv7yOhUUFlmPhEZSUFikSc9/rNFz3tek5z9m90AE2FS0WU9tnK7KZu311Mbp2lS02XokRJizxtgzzzwj51xjzhIWCgqL9Oo729Wh7cdql7hf17XN16vvbOeXcgQ4ufvSY1WSpNJjVeweuMRtKtqs3O3LdV2brbrm/xzWdW22Knf7coIMjcrnzlJc999/v6Kjo7VgwQL5/f7GnqtBSkvLFQxe3GDcWTRA3a4vUHR0jaKb1KqmtolqaqL16Y4UdUxcfVGfCxfG749VIHD8oj/upOc/DoXYqdpc0Vy/G3fbRX++S4lXO8F3w17qt6fyViVf9aWio2oVHeVUE/SpJthEWw7+QNe22HjRn4+dhCev9xIV5VObNpef/fzZTixZskQpKSkaMmSIPvroI0+GC0d/XHOfSg77VVPbRJJUU9tEJYfj9X/X3Gc8Gbx2phA71+0Avv9e39JVh05crtrg338d1gajFDgRq9f/2tV2MESU6LOdiIqK0rhx4/TjH/9Y2dnZWr9+vdq1axc6/+CDDzbKgI3tm+p/1pK1wzXpp79XRVULNY2u1pK196u6+p+tR4PH2lzR/KxXxgBcmr6pbq+ln/+LHk15TxXV0WrapFbLPr9F39S0tx4NEaTeD/BHRUXJ5/Np586d2rFjR+g/l6rBd3TQHV0/VtU3zZW7dpiqvmmutK75GnxHB+vR4LHBd3RQs+i6PxLNoqPYPXAJG9Cht25rt0dVNU31p8J/UVVNU6W226MBHXpbj4YIctYrY845vfjii3r55Zc1ceJEjRgxojHnMpOSlKht+yZq6nPfaO/BGP11R7qG3NlcKUmJ1qPBYyd3vOLDXSo9VqU2VzTX4Ds6sHvgEvajxJv1/47+SjnrC7XvWLW2HLxFA3+QpB8l3mw9GiLIWT/Af99996miokLz58/X9ddf39hzNYgXH+A/FR+0DE/sJfywk/DEXsIPOwlPYfsB/qSkJP35z38O2xADAAC4FJz1bcrp06c35hwAAAARiX+BHwAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADHkaY2vWrFHfvn2Vnp6uJUuWnPV+H3zwgXr16uXlKAAAAGEp2qsHLi4u1sKFC7VixQo1a9ZMw4YN06233qqOHTvWud+hQ4c0d+5cr8YAAAAIa55dGcvPz1ePHj0UFxenmJgYZWRkKC8v77T7ZWdna/z48V6NAQAAENY8uzJWUlIiv98fOo6Pj9eWLVvq3Oe1117TDTfcoJtuuumCnqNNm8u/04wN4ffHev4cOH/sJfywk/DEXsIPOwlPlnvxLMaCwaB8Pl/o2DlX53jHjh1at26dXnnlFRUVFV3Qc5SWlisYdN951rPx+2MVCBz37PFxYdhL+GEn4Ym9hB92Ep683ktUlO+cF5A8e5syMTFRgUAgdBwIBBQfHx86zsvLUyAQ0JAhQzRmzBiVlJRo+PDhXo0DAAAQljyLsdTUVBUUFKisrEwVFRVat26d0tLSQucnTJigtWvXatWqVVq8eLHi4+OVm5vr1TgAAABhybMYS0hI0MSJEzVq1CgNHDhQ/fv3V3JysjIzM7V161avnhYAAOB7xeec8+5DVx7jM2ORib2EH3YSnthL+GEn4emS/cwYAAAA6keMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFPY2zNmjXq27ev0tPTtWTJktPOv/fee7r33ns1YMAAjRs3TkePHvVyHAAAgLDjWYwVFxdr4cKFys3N1VtvvaWlS5dq586dofPl5eX69a9/rcWLF2v16tXq1KmTFi1a5NU4AAAAYcmzGMvPz1ePHj0UFxenmJgYZWRkKC8vL3S+urpaOTk5SkhIkCR16tRJBw8e9GocAACAsBTt1QOXlJTI7/eHjuPj47Vly5bQcatWrXT33XdLkiorK7V48WKNHDnyvJ6jTZvLL86w5+D3x3r+HDh/7CX8sJPwxF7CDzsJT5Z78SzGgsGgfD5f6Ng5V+f4pOPHj+uRRx5R586dNWjQoPN6jtLScgWD7jvPejZ+f6wCgeOePT4uDHsJP+wkPLGX8MNOwpPXe4mK8p3zApJnb1MmJiYqEAiEjgOBgOLj4+vcp6SkRMOHD1enTp00c+ZMr0YBAAAIW57FWGpqqgoKClRWVqaKigqtW7dOaWlpofO1tbV6+OGH1adPH2VlZZ3xqhkAAMClzrO3KRMSEjRx4kSNGjVK1dXVGjp0qJKTk5WZmakJEyaoqKhIX3zxhWpra7V27VpJ0o033sgVMgAAEFF8zjnvPnTlMT4zFpnYS/hhJ+GJvYQfdhKeLtnPjAEAAKB+xBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAY8jTG1qxZo759+yo9PV1Lliw57fy2bds0ePBgZWRkKCsrSzU1NV6OAwAAEHaivXrg4uJiLVy4UCtWrFCzZs00bNgw3XrrrerYsWPoPpMmTdJTTz2lrl27atq0aVq2bJmGDx/u1UgNVlBYpBUf7lLZsSq1vqK5Bt/RQSlJidZjoRGc3H3psSq1YfdARNhUtFmrd+XpcNURtWoepwEdeutHiTdbj4UI4tmVsfz8fPXo0UNxcXGKiYlRRkaG8vLyQue/+uorVVZWqmvXrpKkwYMH1zlvpaCwSK++s12lx6rkJJUeq9Kr72xXQWGR9Wjw2Km7l9g9EAk2FW1W7vblOlx1RJJ0uOqIcrcv16aizbaDIaJ4FmMlJSXy+/2h4/j4eBUXF5/1vN/vr3PeyooPd+mbmmCd276pCWrFh7uMJkJjYfdA5Fm9K0/Vweo6t1UHq7V6l/3FAUQOz96mDAaD8vl8oWPnXJ3j+s43RJs2l3/3Qb+l7B9XRc50u98fe9GfDxfGi12w+++G1yg8sZdzO/KPK2Jnut2r146dhCfLvXgWY4mJifrv//7v0HEgEFB8fHyd84FAIHR86NChOucborS0XMGg++7DnqL1Fc1Db1N9+/ZA4PhFfS5cGL8/1pNdsPsL59VO8N2wl/rFNY8LvUX57du9eO3YSXjyei9RUb5zXkDy7G3K1NRUFRQUqKysTBUVFVq3bp3S0tJC56+++mo1b95cn3zyiSRp1apVdc5bGXxHBzWLrvuyNIuO0uA7OhhNhMbC7oHIM6BDbzWNalrntqZRTTWgQ2+jiRCJPLsylpCQoIkTJ2rUqFGqrq7W0KFDlZycrMzMTE2YMEFdunTR/PnzlZ2drfLyciUlJWnUqFFejdNgJ/9yjr+mjDyn7p6/pgQiw8m/muSvKWHJ55y7uO/zNSIv3qY8FZeTwxN7CT/sJDyxl/DDTsLTJfs2JQAAAOpHjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ9HWA3wXUVG+S+I5cP7YS/hhJ+GJvYQfdhKevNxLfY/tc845z54dAAAA58TblAAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8SYpDVr1qhv375KT0/XkiVLTju/bds2DR48WBkZGcrKylJNTY3BlJGnvr289957uvfeezVgwACNGzdOR48eNZgystS3k5M++OAD9erVqxEni2z17WX37t0aOXKkBgwYoIceeoiflUZQ304KCws1ZMgQDRgwQGPHjtWxY8cMpow85eXl6t+/vw4cOHDaOdPf9S7CFRUVuTvvvNMdPnzYnThxwt1zzz3uyy+/rHOffv36uU8//dQ559zUqVPdkiVLDCaNLPXt5fjx4+62225zRUVFzjnnnn76affb3/7WatyI0JCfFeecCwQCrnfv3u7OO+80mDLy1LeXYDDo0tPT3Ycffuicc+53v/udmzdvntW4EaEhPyv333+/++CDD5xzzs2ePdstWLDAYtSI8tlnn7n+/fu7pKQkt3///tPOW/6uj/grY/n5+erRo4fi4uIUExOjjIwM5eXlhc5/9dVXqqysVNeuXSVJgwcPrnMe3qhvL9XV1crJyVFCQoIkqVOnTjp48KDVuBGhvp2clJ2drfHjxxtMGJnq20thYaFiYmKUlpYmSXr44Yc1YsQIq3EjQkN+VoLBoE6cOCFJqqioUIsWLSxGjSjLli1TTk6O4uPjTztn/bs+4mOspKREfr8/dBwfH6/i4uKznvf7/XXOwxv17aVVq1a6++67JUmVlZVavHix7rrrrkafM5LUtxNJeu2113TDDTfopptuauzxIlZ9e9m3b5+uvPJKTZs2TYMGDVJOTo5iYmIsRo0YDflZmTJlirKzs3X77bcrPz9fw4YNa+wxI87MmTN1yy23nPGc9e/6iI+xYDAon88XOnbO1Tmu7zy80dDX/fjx4xozZow6d+6sQYMGNeaIEae+nezYsUPr1q3TuHHjLMaLWPXtpaamRps2bdL999+vlStX6pprrtGcOXMsRo0Y9e2ksrJSWVlZeuWVV/TRRx9p+PDhmjx5ssWo+Afr3/URH2OJiYkKBAKh40AgUOcS5rfPHzp06IyXOHFx1bcX6e//S2b48OHq1KmTZs6c2dgjRpz6dpKXl6dAIKAhQ4ZozJgxof3AW/Xtxe/3q3379urSpYskqX///tqyZUujzxlJ6tvJjh071Lx5cyUnJ0uS7rvvPm3atKnR58T/sv5dH/ExlpqaqoKCApWVlamiokLr1q0LfbZCkq6++mo1b95cn3zyiSRp1apVdc7DG/Xtpba2Vg8//LD69OmjrKwsrlY2gvp2MmHCBK1du1arVq3S4sWLFR8fr9zcXMOJI0N9e+nWrZvKysq0fft2SdL777+vpKQkq3EjQn07ad++vYqKirR7925J0vr160OxDBvWv+ujG+2ZwlRCQoImTpyoUaNGqbq6WkOHDlVycrIyMzM1YcIEdenSRfPnz1d2drbKy8uVlJSkUaNGWY99yatvL0VFRfriiy9UW1urtWvXSpJuvPFGrpB5qCE/K2h8DdnLc889p+zsbFVUVCgxMVHz5s2zHvuS1pCdzJ49W4899picc2rTpo1mzZplPXZECpff9T7nnGu0ZwMAAEAdEf82JQAAgCViDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAES0wsJCde/eXVu3bg3dVlZWprvuuksffPCB3WAAIgb/tAWAiPfmm29q8eLFWrlypVq2bKnRo0crJSVFv/jFL6xHAxABiDEAkDRp0iR9/fXXateunfbv369Fixbx/+wAoFEQYwAg6euvv9bAgQNVU1OjNWvWqGXLltYjAYgQfGYMACTt2bNHJ06c0LFjx1RYWGg9DoAIwpUxABGvrKxMQ4cO1eOPP66qqiotXLhQK1eulN/vtx4NQAQgxgBEtNraWo0ePVodO3bUk08+KUmaOnWq9u/fr1dffVVNmjQxnhDApY63KQFEtHnz5qmiokKTJ08O3TZ9+nQdPXpUCxYsMJwMQKTgyhgAAIAhrowBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGDo/wO73BoeITCw5wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 2 0.3\n" ] } ], "source": [ "# 2 clusters\n", "print_sns_plot(dataset)\n", "model9 = TrainModel_medoids(dataset, 2)" ] }, { "cell_type": "code", "execution_count": 109, "id": "7e39c874", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHwCAYAAAD98PjEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAw4klEQVR4nO3de3hV1YH+8feQHBIPCdSEQCy2xUdbYAAJiDNNccKlREi4pAZDNUjVFAo0TDQdMkZAEqiIRW5yyQyKMz4PqJSLIY7DYHFQHgK2gq2SKFK1XgJBEgKShBBycrJ+f/DjSEBu6iar2d/PP3bvtc/Z63Xt9Hndewc8xhgjAAAAWKVNS08AAAAA56OkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgbgGztw4IB69OihlJQUpaSkaNSoUbrrrru0efPmy/r88uXL9eqrrzoyt4yMDB09evS8/bW1tbrrrrs0YsQI/eEPf/hWz3ngwAH17dv3a3/+9ddf15NPPnnFn3vyySe1adOmr31eAHYJbekJAGgdwsPDVVRUFNw+ePCg7rvvPoWEhGjYsGEX/eyf/vQn3XTTTY7Ma+fOnV+5f9++faqqqtLWrVsdOe83UVJSouPHj1/x5x544AEHZgOgpVDSADiiS5cuysrK0jPPPKNhw4bp448/1pw5c3TixAlVVlaqe/fuWrJkiTZs2KDS0lLNnz9fISEhuummm77yuLCwMC1dulRbt26V1+vVtddeq3nz5qlTp0766KOPNHfuXH3xxRcKBAIaP3687rzzTj388MOSpHvvvVdPPfWUrrvuOknS3/72N02fPl2HDx9WSkqKfv/736u4uFjLly9XU1OT2rVrp4cfflg333yzli1bprffflsVFRXq1q2bFixY0Czna6+9piVLlqipqUk+n0+zZ89WREREcHzZsmU6duyYZs2add72H/7wB/37v/+7PB6PQkJC9G//9m9q27at1q5dq0AgoMjISGVnZ2v9+vV64YUX1NTUpO985zt65JFHdOONNyo3N1dffPGFysrKNGjQIFVVVemHP/yhfvnLX6p379761a9+pZ07d6qiokITJkxQenq6AoGA5s+fr23btikyMlI333yzPvroI61evfoqXRkALpsBgG+orKzMxMXFnbf/r3/9q+nTp48xxpjHH3/cbNq0yRhjTENDgxk5cqTZsmWLMcaYe+65x/zv//7vRY8rLy83/fr1M6dOnTLGGPPMM8+YrVu3Gr/fb5KTk01paakxxpjq6mqTlJRk/vKXvxhjjPnRj35kqqqqzpvbH//4RzNixAhjjDEffvih+clPfmI+++wzY4wxu3btMgMGDDA1NTVm6dKlZtiwYcbv95/3HZWVleaWW24x7777rjHGmFdeecX88pe/bPbvY+nSpWb27NnBz5y9/dOf/jQ4zx07dphly5add8yf/vQnk56eburq6oLHDR8+3BhjzEMPPWTuvffe4Hc/9NBDZtWqVcHcq1evNsYYU1JSYnr16mXq6+vNCy+8YMaNG2fq6+vNqVOnTEZGhrnnnnvOywag5XEnDYBjPB6PwsPDJUk5OTnauXOnnn76aX3yySeqqKhQXV3deZ+50HGdO3dW9+7ddccddyghIUEJCQmKj4/Xhx9+qM8++0zTp08Pfkd9fb3ee+89xcXFXdY8//jHP+rHP/6xvve970mS4uPjFRUVpdLSUklSXFycQkPP/7/LP//5z/rhD3+of/iHf5Ak3X777br99tt14MCByzrviBEjNHXqVA0cOFADBgzQxIkTzzvm9ddf16effqq77roruK+6ulpffPGFJOmWW2654Pf/9Kc/lST17NlTDQ0Nqqur0/bt25WSkqKwsDBJ0s9//nPuogGWoqQBcExJSYl+9KMfSZJ+85vfKBAIKCkpSYMGDdKhQ4dkvuKvDr7QcW3atNGaNWtUUlKiN954Q4899pj++Z//WSkpKYqMjGz2PtyRI0cUGRl52fNsamqSx+Npts8Yo8bGRkmSz+f7ys+FhIQ0+5wxRvv372/2uNPj8TTL6ff7g/87OztbY8aM0c6dO/Xiiy/qP//zP7Vhw4bz5paSkqKcnJzgdkVFhTp06HDRuUkKFrEzczTGnFc227Th98cAW/HTCcARH3/8sQoKCpSRkSFJKi4uVmZmppKTkyVJ77zzjgKBgKTTZedMIbrQce+//75GjhypG2+8UZMmTdJ9992nkpIS3XDDDc1+aeHQoUMaOXJk8C7Y2d99IfHx8SouLlZZWZkk6Y033tChQ4fUp0+fi36uT58++uijj/TBBx9Ikv7v//4vWKbOuPbaa/Xuu+/KGKPa2lq99tprkqTGxkYNGTJEJ0+e1N133628vDzt379fDQ0NzeZ822236X/+539UUVEhSXrhhRd07733XnReFzNw4EC99NJLamhoUGNjowoLC7/2dwFwFnfSAHwr6uvrlZKSIun03ZmwsDD95je/0aBBgySdvmuUmZkpn8+niIgI3Xrrrfrss88kSUOGDNGiRYvk9/sveFxaWpqSkpI0ZswY+Xw+hYeHa+bMmWrbtq0KCgo0d+5crVq1So2NjXrggQeCjwGHDx+u8ePHa9myZcG7eue66aablJeXp6lTpyoQCCg8PFz/8R//ccm7cR07dtSCBQv00EMPKRAIKCIiQosXL252zOjRo7Vjxw7dfvvt6ty5s/7xH/8xeEdr+vTpmjZtmkJDQ+XxePTYY4+pbdu2+vGPf6xp06bpt7/9rR555BFNnDhRGRkZ8ng8ioiI0PLly8+783e5UlNT9fHHH+tnP/uZfD6frr/+el1zzTVf67sAOMtjvup5AwCgVSouLlZVVVWwUD/66KMKCws77w4ggJZHSQMAFzl8+LByc3N15MgRNTU1qXv37srPz7+id/gAXB2UNAAAAAvxiwMAAAAWoqQBAABYiJIGAABgoVb5R3AcO3ZCTU3OvmoXHR2hqqpaR89hK7K7M7vk7vxuzi65Oz/Z3Zldcj5/mzYeXXttuwuOt8qS1tRkHC9pZ87jVmR3Lzfnd3N2yd35ye5eLZmfx50AAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYyNGSVlRUpBEjRmjEiBH63e9+d974vn37lJqaqmHDhmnGjBlqbGyUJJWXl2vcuHEaPny4pkyZohMnTjg5zSvjkapP+lXyYaWq6xslT0tP6Cpyc3a3Y+3hRlz37mXJ2nuMMcaJLz558qQGDhyoLVu2qH379rr77ruVnZ2tn/zkJ8FjRo4cqUcffVRxcXGaPn26evXqpfT0dE2aNEmjR4/WiBEjtGLFCtXV1SknJ+eyz11VVaumJgdieaR9nx3X0nVv65Q/oDBviLLGxqnH9ztIjvxbtIibs58lJiZSlZU1LT2Nq4u1l+TStT+L6/Jz3Uty4bpLV3Xt27TxKDo64sLj3+7pvhQIBNTU1KSTJ0+qsbFRjY2NCgsLC44fPHhQ9fX1iouLkySlpqZqy5Yt8vv92r17t4YNG9Zsvw2q6/zBRZOkU/6Alq57W9V1/haemfPcnN3tWHu4Ede9e9m09qFOfXFERIQeeOABJSUl6ZprrtGtt96qfv36BccrKioUExMT3I6JidHhw4d17NgxRUREKDQ0tNn+K3GxVvpNfP5hZXDRzjjlD6jOH9CN349y5Jy2cHP2c8XERLb0FK4q1v5Lblv7c7kpP9f9l9y07pJda+9YSXv//fe1ceNGvfbaa4qMjNS0adP0zDPPaMKECZKkpqYmeTxfPuQ1xsjj8QT/ebZzty/FqcedvrBQhXlDmi1emDdEPm9Iq78d7ObsZ3PjrX/W/jQ3rv3Z3Jaf6/40t627dHXXvsUedxYXFys+Pl7R0dFq27atUlNT9eabbwbHY2NjVVlZGdw+cuSIOnXqpKioKNXU1CgQOP0vp7KyUp06dXJqmlek/TWhyhobpzBviCQFn1O393lbeGbOc3N2t2Pt4UZc9+5l09o7diete/fueuKJJ1RXV6drrrlG27ZtU+/evYPjXbp0UVhYmN566y3dcsstKioqUkJCgrxer/r376/Nmzdr1KhR2rRpkxISEpya5pUxUo/vd9Dvfv0T1fkD8nlDTi+aG14idXN2t2Pt4UZc9+5l0do79tudkvTUU0/pxRdflNfrVe/evZWXl6epU6cqKytLvXv31vvvv6+ZM2eqtrZWPXv21Lx589S2bVsdPHhQubm5qqqq0nXXXadFixapQ4cOl31ex3678yxuvAV8BtndmV1yd343Z5fcnZ/s7swuOZ//Uo87HS1pLYWS5iyyuzO75O78bs4uuTs/2d2ZXWr5ksbfOAAAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYKNSpL16/fr3WrFkT3D5w4IBSUlI0a9YsSdK+ffuUm5sbHD969Kg6dOigl19+WYWFhVq4cKGio6MlSYMGDVJ2drZTUwUAALCOYyUtLS1NaWlpkqQPPvhAmZmZmjp1anC8R48eKioqkiSdPHlSaWlpys/PlySVlpYqNzdXI0eOdGp6AAAAVrsqjzvz8/OVnZ2tqKiorxxfuXKlbr31VvXv31+SVFJSosLCQo0aNUrTpk3T8ePHr8Y0AQAArOF4Sdu1a5fq6+uVlJT0leM1NTVat25ds7tsMTEx+vWvf62XXnpJ1113nebMmeP0NAEAAKziMcYYJ0+QlZWl22+//YKPLp977jnt37//gkXs+PHjSkxM1JtvvunkNAEAAKzi2DtpktTQ0KDdu3fr8ccfv+Axr776qiZNmhTcrqmp0caNG3XfffdJkowxCgkJuaLzVlXVqqnJ0e6pmJhIVVbWOHoOW5Hdndkld+d3c3bJ3fnJ7s7skvP527TxKDo64sLjjp1Z0v79+9W1a1f5fL6vHDfG6N1331Xfvn2D+3w+n1atWqV33nlHkrRmzRolJiY6OU0AAADrOFrSysrKFBsb22zfxIkTVVJSIun0H7vh9XoVFhYWHA8JCdGSJUuUn5+vpKQkvfvuu8rJyXFymgAAANZx/J20lsDjTmeR3Z3ZJXfnd3N2yd35ye7O7FIrf9wJAACAr4eSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFgo1KkvXr9+vdasWRPcPnDggFJSUjRr1qzgvuXLl2vjxo1q3769JGns2LEaN26cysvLlZOTo6qqKt1www1asGCB2rVr59RUAQAArONYSUtLS1NaWpok6YMPPlBmZqamTp3a7JjS0lItWrRIffv2bbZ/9uzZSk9P14gRI7RixQoVFBQoJyfHqakCAABY56o87szPz1d2draioqKa7S8tLdXKlSs1atQozZkzR6dOnZLf79fu3bs1bNgwSVJqaqq2bNlyNaYJAABgDcfupJ2xa9cu1dfXKykpqdn+EydOqEePHsrJydEPfvAD5ebmqqCgQOPGjVNERIRCQ09PLSYmRocPH76ic0ZHR3xr87+YmJjIq3IeG5Hdvdyc383ZJXfnJ7t7tWR+x0va2rVrdf/995+3v127dnr66aeD2xkZGZo+fbrS09Pl8XiaHXvu9qVUVdWqqcl8vQlfppiYSFVW1jh6DluR3Z3ZJXfnd3N2yd35ye7O7JLz+du08Vz0xpKjjzsbGhq0e/duDRky5Lyx8vJybdiwIbhtjFFoaKiioqJUU1OjQCAgSaqsrFSnTp2cnCYAAIB1HC1p+/fvV9euXeXz+c4bCw8P1xNPPKGysjIZY/Tcc88pMTFRXq9X/fv31+bNmyVJmzZtUkJCgpPTBAAAsI6jJa2srEyxsbHN9k2cOFElJSWKiorSnDlzNGXKFA0fPlzGmOBj0by8PK1bt07Jycnas2ePHnzwQSenCQAAYB2PMcbZl7daAO+kOYvs7swuuTu/m7NL7s5Pdndml1r5O2kAAAD4eihpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYKFQp754/fr1WrNmTXD7wIEDSklJ0axZs4L7Xn31VS1btkzGGF1//fWaN2+eOnTooMLCQi1cuFDR0dGSpEGDBik7O9upqQIAAFjHsZKWlpamtLQ0SdIHH3ygzMxMTZ06NTheW1ur/Px8bdy4UZ07d9aTTz6pZcuWaebMmSotLVVubq5Gjhzp1PQAAACsdlUed+bn5ys7O1tRUVHBfX6/X3l5eercubMkqVu3bjp06JAkqaSkRIWFhRo1apSmTZum48ePX41pAgAAWMNjjDFOnmDXrl1auHChNm7ceMFj6uvrlZ6ervHjx+uOO+5QZmamMjIy1K9fPy1atEjl5eVauHChk9MEAACwiuMlLSsrS7fffvsFH13W1NQoMzNT119/vR577LHzxo8fP67ExES9+eabl33OqqpaNTU5GksxMZGqrKxx9By2Irs7s0vuzu/m7JK785Pdndkl5/O3aeNRdHTEhccdO7OkhoYG7d69W0OGDPnK8YqKCqWnp6tbt26aO3eupNOl7dlnnw0eY4xRSEiIk9MEAACwjqMlbf/+/eratat8Pt95Y4FAQJMnT1ZSUpJmzJghj8cjSfL5fFq1apXeeecdSdKaNWuUmJjo5DQBAACs49hvd0pSWVmZYmNjm+2bOHGisrKy9Pnnn+u9995TIBDQK6+8Iknq1auX5s6dqyVLlig/P1/19fXq2rWr5s+f7+Q0AQAArOP4O2ktgXfSnEV2d2aX3J3fzdkld+cnuzuzS638nTQAAAB8PZQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKhTn3x+vXrtWbNmuD2gQMHlJKSolmzZgX37du3TzNmzNCJEyfUv39/zZ49W6GhoSovL1dOTo6qqqp0ww03aMGCBWrXrp1TU70yHqm6zq/PP6yULyxU7a8JlUxLT+oqcXN2t2Pt4UZc92hhHmOM45fcBx98oMzMTK1du1ZRUVHB/SNHjtSjjz6quLg4TZ8+Xb169VJ6eromTZqk0aNHa8SIEVqxYoXq6uqUk5Nz2eerqqpVU5MDsTzSvs+Oa+m6t3XKH1CYN0RZY+PU4/sdWv8PrpuznyUmJlKVlTUtPY2ri7WX5NK1P4vr8nPdS3Lhup/D6fxt2ngUHR1x4fFLfcG//Mu/aNeuXd9oEvn5+crOzm5W0A4ePKj6+nrFxcVJklJTU7Vlyxb5/X7t3r1bw4YNa7bfBtV1/uAPrCSd8ge0dN3bqq7zt/DMnOfm7G7H2sONuO5hg0s+7kxMTFRBQYFmz56tsWPHasyYMfrOd75z2SfYtWuX6uvrlZSU1Gx/RUWFYmJigtsxMTE6fPiwjh07poiICIWGhjbbfyUu1kq/ic8/rAz+wJ5xyh9QnT+gG78fdYFPtQ5uzn6umJjIlp7CVcXaf8lta38uN+Xnuv+Sm9b9q7Rk/kuWtNGjR2v06NH66KOPtHHjRt15553q27evxo8fr5tvvvmSJ1i7dq3uv//+8/Y3NTXJ4/EEt40x8ng8wX+e7dztS3HqcacvLFRh3pBmP7hh3hD5vCGt/nawm7OfzY23/ln709y49mdzW36u+9Pctu7nsv5xp3S6UH366af65JNPFAgEFB0drfz8fC1duvSin2toaNDu3bs1ZMiQ88ZiY2NVWVkZ3D5y5Ig6deqkqKgo1dTUKBA4/YNRWVmpTp06Xc40Hdf+mlBljY1TmDdEkoLvKLT3eVt4Zs5zc3a3Y+3hRlz3sMEl76QtXrxYL774or73ve8pPT1dTz75pLxer+rq6jR48GBlZWVd8LP79+9X165d5fP5zhvr0qWLwsLC9NZbb+mWW25RUVGREhIS5PV61b9/f23evFmjRo3Spk2blJCQ8M1SfluM1OP7HfS7X/9Edf6AfN6Q0z+wbniJ1M3Z3Y61hxtx3cMCl7yTdvToUT399NN6/vnnNXLkSHm9p/8rwufzaeHChRf9bFlZmWJjY5vtmzhxokpKSiRJCxYs0Lx58zR8+HDV1dXpF7/4hSQpLy9P69atU3Jysvbs2aMHH3zw62RzhpHaX+NV7xtj1P4al/3Aujm727H2cCOue7Swq/JHcFxtjv0RHGdx83N6srszu+Tu/G7OLrk7P9ndmV36O3knDQAAAFcXJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsFOrkl2/btk3Lly/XyZMnNWDAAM2cOTM4tm/fPuXm5ga3jx49qg4dOujll19WYWGhFi5cqOjoaEnSoEGDlJ2d7eRUAQAArOJYSSsrK1NeXp7Wr1+v6Oho3Xvvvdq+fbsGDhwoSerRo4eKiookSSdPnlRaWpry8/MlSaWlpcrNzdXIkSOdmh4AAIDVHCtpW7duVXJysmJjYyVJixcvVlhY2Fceu3LlSt16663q37+/JKmkpESffPKJVq5cqW7duumRRx5Rhw4dnJoqAACAdTzGGOPEF+fl5cnr9erAgQM6dOiQBg0apAcffFAej6fZcTU1NRo2bJj++7//O/h4MzMzUxkZGerXr58WLVqk8vJyLVy40IlpAgAAWMmxO2mBQEB79uzR6tWr5fP5NGXKFBUWFio1NbXZcS+99JKGDh0aLGiStGLFiuD/njBhghITE6/o3FVVtWpqcqR7BsXERKqyssbRc9iK7O7MLrk7v5uzS+7OT3Z3Zpecz9+mjUfR0REXHnfqxB07dlR8fLyioqIUHh6uoUOHau/evecd9+qrryo5OTm4XVNTo2effTa4bYxRSEiIU9MEAACwkmMlbfDgwSouLlZ1dbUCgYB27Nihnj17NjvGGKN3331Xffv2De7z+XxatWqV3nnnHUnSmjVrrvhOGgAAwN87xx539unTRxMmTFB6err8fr8GDBigMWPGaOLEicrKylLv3r119OhReb3eZr9QEBISoiVLlig/P1/19fXq2rWr5s+f79Q0AQAArOTYLw60JN5JcxbZ3Zldcnd+N2eX3J2f7O7MLrXid9IAAADw9VHSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAuFOvnl27Zt0/Lly3Xy5EkNGDBAM2fObDa+fPlybdy4Ue3bt5ckjR07VuPGjVN5eblycnJUVVWlG264QQsWLFC7du2cnCoAAIBVHLuTVlZWpry8PBUUFOill17Se++9p+3btzc7prS0VIsWLVJRUZGKioo0btw4SdLs2bOVnp6uLVu2qFevXiooKHBqmgAAAFZyrKRt3bpVycnJio2Nldfr1eLFi9WnT59mx5SWlmrlypUaNWqU5syZo1OnTsnv92v37t0aNmyYJCk1NVVbtmxxapoAAABWcuxx56effiqv16vJkyfr0KFDGjRokB588MHg+IkTJ9SjRw/l5OToBz/4gXJzc1VQUKBx48YpIiJCoaGnpxYTE6PDhw9f0bmjoyO+zSgXFBMTeVXOYyOyu5eb87s5u+Tu/GR3r5bM71hJCwQC2rNnj1avXi2fz6cpU6aosLBQqampkqR27drp6aefDh6fkZGh6dOnKz09XR6Pp9l3nbt9KVVVtWpqMt88xEXExESqsrLG0XPYiuzuzC65O7+bs0vuzk92d2aXnM/fpo3nojeWHHvc2bFjR8XHxysqKkrh4eEaOnSo9u7dGxwvLy/Xhg0bgtvGGIWGhioqKko1NTUKBAKSpMrKSnXq1MmpaQIAAFjJsZI2ePBgFRcXq7q6WoFAQDt27FDPnj2D4+Hh4XriiSdUVlYmY4yee+45JSYmyuv1qn///tq8ebMkadOmTUpISHBqmgAAAFZyrKT16dNHEyZMUHp6upKTk/Xd735XY8aM0cSJE1VSUqKoqCjNmTNHU6ZM0fDhw2WM0f333y9JysvL07p165ScnKw9e/Y0e5cNAADADTzGGGdf3moBvJPmLLK7M7vk7vxuzi65Oz/Z3ZldasXvpAEAAODro6QBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhUKd/PJt27Zp+fLlOnnypAYMGKCZM2c2G3/11Ve1bNkyGWN0/fXXa968eerQoYMKCwu1cOFCRUdHS5IGDRqk7OxsJ6cKAABgFcdKWllZmfLy8rR+/XpFR0fr3nvv1fbt2zVw4EBJUm1trfLz87Vx40Z17txZTz75pJYtW6aZM2eqtLRUubm5GjlypFPTAwAAsJpjjzu3bt2q5ORkxcbGyuv1avHixerTp09w3O/3Ky8vT507d5YkdevWTYcOHZIklZSUqLCwUKNGjdK0adN0/Phxp6YJAABgJY8xxjjxxXl5efJ6vTpw4IAOHTqkQYMG6cEHH5TH4znv2Pr6eqWnp2v8+PG64447lJmZqYyMDPXr10+LFi1SeXm5Fi5c6MQ0AQAArOTY485AIKA9e/Zo9erV8vl8mjJligoLC5WamtrsuJqaGmVmZqp79+664447JEkrVqwIjk+YMEGJiYlXdO6qqlo1NTnSPYNiYiJVWVnj6DlsRXZ3Zpfcnd/N2SV35ye7O7NLzudv08aj6OiIC487deKOHTsqPj5eUVFRCg8P19ChQ7V3795mx1RUVCg9PV3dunXT3LlzJZ0ubc8++2zwGGOMQkJCnJomAACAlRwraYMHD1ZxcbGqq6sVCAS0Y8cO9ezZMzgeCAQ0efJkJSUlacaMGcHHoD6fT6tWrdI777wjSVqzZs0V30kDAAD4e+fY484+ffpowoQJSk9Pl9/v14ABAzRmzBhNnDhRWVlZ+vzzz/Xee+8pEAjolVdekST16tVLc+fO1ZIlS5Sfn6/6+np17dpV8+fPd2qaAAAAVnLsFwdaEu+kOYvs7swuuTu/m7NL7s5Pdndml1rxO2kAAAD4+ihpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFHS9q2bduUmpqqpKQkPfroo+eN79u3T6mpqRo2bJhmzJihxsZGSVJ5ebnGjRun4cOHa8qUKTpx4oST0wQAALCOYyWtrKxMeXl5Kigo0EsvvaT33ntP27dvb3ZMTk6OZs2apVdeeUXGGK1bt06SNHv2bKWnp2vLli3q1auXCgoKnJrmlfNI1Sf9KvmwUtX1jZKnpSd0Fbk5u9ux9nAjrnu0sFCnvnjr1q1KTk5WbGysJGnx4sUKCwsLjh88eFD19fWKi4uTJKWmpmrp0qVKS0vT7t27tWLFiuD+e+65Rzk5OU5N9fJ5pH2fHdfSdW/rlD+gMG+IssbGqcf3O0impSfnMDdndzvWHm7EdQ8LOHYn7dNPP1UgENDkyZOVkpKi559/Xh06dAiOV1RUKCYmJrgdExOjw4cP69ixY4qIiFBoaGiz/TaorvMHf2Al6ZQ/oKXr3lZ1nb+FZ+Y8N2d3O9YebsR1Dxs4dictEAhoz549Wr16tXw+n6ZMmaLCwkKlpqZKkpqamuTxfHnv2Bgjj8cT/OfZzt2+lOjoiG8e4Ct8/mFl8Af2jFP+gOr8Ad34/ShHzmkLN2c/V0xMZEtP4api7b/ktrU/l5vyc91/yU3r/lVaMr9jJa1jx46Kj49XVNTpi3no0KHau3dvsKTFxsaqsrIyePyRI0fUqVMnRUVFqaamRoFAQCEhIaqsrFSnTp2u6NxVVbVqavr270f7wkIV5g1p9oMb5g2Rzxuiysqab/18NnFz9rPFxES6Kq/E2p/hxrU/m9vyc92f5rZ1P5fT+du08Vz0xpJjjzsHDx6s4uJiVVdXKxAIaMeOHerZs2dwvEuXLgoLC9Nbb70lSSoqKlJCQoK8Xq/69++vzZs3S5I2bdqkhIQEp6Z5RdpfE6qssXEK84ZIUvAdhfY+bwvPzHluzu52rD3ciOseNvAYYxx7BXLDhg169tln5ff7NWDAAM2cOVOTJk1SVlaWevfurffff18zZ85UbW2tevbsqXnz5qlt27Y6ePCgcnNzVVVVpeuuu06LFi1q9j7bpTh1J03S6d/2qfOrzh+Qzxty+gfWLS+Rujn7/+fa/6pk7d279v+fK/Nz3btz3c/S0nfSHC1pLcXRkvb/ufnCJbs7s0vuzu/m7JK785Pdndmlli9p/I0DAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFgpt6Qk4oU0bT6s6j43I7l5uzu/m7JK785PdvZzMf6nv9hhjjGNnBwAAwNfC404AAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACzUKv/uzm/b7373Ox07dkyPP/54s/379u3TjBkzdOLECfXv31+zZ89WaGjr+ld6oezLly/Xxo0b1b59e0nS2LFjNW7cuJaYoiPGjx+vo0ePBtdzzpw56tOnT3C8ta/9pfK35vXftm2bli9frpMnT2rAgAGaOXNms/HWvPaXyt6a1339+vVas2ZNcPvAgQNKSUnRrFmzgvta69pfTvbWvPaSVFRUpKeeekqSlJCQoIceeqjZeIutvcFF7dq1y/zTP/2Teeihh84bGzFihPnLX/5ijDHm4YcfNs8999xVnp2zLpZ90qRJ5s9//nMLzMp5TU1N5rbbbjN+v/+Cx7Tmtb+c/K11/T/77DNz2223mUOHDpmGhgZz9913m9dff73ZMa117S8ne2td93P99a9/NYmJiaaqqqrZ/ta69me7UPbWvPZ1dXXm1ltvNVVVVcbv95s777zT7Ny5s9kxLbX2PO68iC+++EKLFy/W5MmTzxs7ePCg6uvrFRcXJ0lKTU3Vli1brvIMnXOx7JJUWlqqlStXatSoUZozZ45OnTp1lWfonL/97W+SpIyMDI0ePbrZf2FKrX/tL5Vfar3rv3XrViUnJys2NlZer1eLFy9udgexNa/9pbJLrXfdz5Wfn6/s7GxFRUUF97XmtT/bV2WXWvfaBwIBNTU16eTJk2psbFRjY6PCwsKC4y259pS0i5g1a5ays7ODt3fPVlFRoZiYmOB2TEyMDh8+fDWn56iLZT9x4oR69OihnJwcFRYWqrq6WgUFBS0wS2dUV1crPj5eK1as0LPPPqu1a9dq586dwfHWvvaXyt+a1//TTz9VIBDQ5MmTlZKSoueff14dOnQIjrfmtb9U9ta87mfbtWuX6uvrlZSU1Gx/a177My6UvbWvfUREhB544AElJSVp4MCB6tKli/r16xccb8m1p6RdwPr163XdddcpPj7+K8ebmprk8XiC28aYZtt/zy6VvV27dnr66ad14403KjQ0VBkZGdq+fftVnqVz+vbtq/nz5ysyMlJRUVG68847m+VrzWsvXTp/a17/QCCgN954Q4899ph+//vfa+/evSosLAyOt+a1v1T21rzuZ1u7dq3uv//+8/a35rU/40LZW/vav//++9q4caNee+017dixQ23atNEzzzwTHG/JtaekXcDmzZu1c+dOpaSkaOnSpdq2bZsee+yx4HhsbKwqKyuD20eOHFGnTp1aYqrfuktlLy8v14YNG4LbxphW8fLsGXv27NEbb7wR3D43X2tee+nS+Vvz+nfs2FHx8fGKiopSeHi4hg4dqr179wbHW/PaXyp7a173MxoaGrR7924NGTLkvLHWvPbSxbO39rUvLi5WfHy8oqOj1bZtW6WmpurNN98Mjrfk2lPSLuC//uu/9PLLL6uoqEhZWVkaMmSIpk+fHhzv0qWLwsLC9NZbb0k6/ZshCQkJLTXdb9WlsoeHh+uJJ55QWVmZjDF67rnnlJiY2IIz/nbV1NRo/vz5OnXqlGpra1VYWNgsX2tee+nS+Vvz+g8ePFjFxcWqrq5WIBDQjh071LNnz+B4a177S2Vvzet+xv79+9W1a1f5fL7zxlrz2ksXz97a17579+7atWuX6urqZIzRtm3b1Lt37+B4S649Je0KTZw4USUlJZKkBQsWaN68eRo+fLjq6ur0i1/8ooVn56wz2aOiojRnzhxNmTJFw4cPlzHmK2+R/70aPHiwBg4cqJ/97GcaM2aMxowZo759+7pm7S+VvzWvf58+fTRhwgSlp6crOTlZ3/3udzVmzBhXrP2lsrfmdT+jrKxMsbGxzfa5Ye2li2dv7Wt/2223acSIEUpNTdXo0aPV2NioX/3qV1asvccYY67KmQAAAHDZuJMGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAHABRQWFmro0KE6ceKE6urqlJSUpE2bNrX0tAC4BH+YLQBcxL/+678qMjJSDQ0NCgkJ0W9/+9uWnhIAl6CkAcBF1NbWKiUlReHh4XrxxRcVFhbW0lMC4BI87gSAi6iqqtKpU6dUXV2tioqKlp4OABfhThoAXIDf79ddd92lu+66S01NTVq/fr1eeOEFeb3elp4aABfgThoAXMCiRYvUsWNHpaWl6ec//7muvfZaLV68uKWnBcAluJMGAABgIe6kAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICF/h8YhJIAUruo/AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHwCAYAAADq0mgNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAArhElEQVR4nO3de3RU9b338c+EcDEYGwiTxCPKUaigSETxOYQo8Ug13CJy6xJRsOIJeDsoKuWSaCyVm/KIl1Zdqa6iNTlCCwjYY0Bx6To2iZx6KYjwICoFlSRDgkAwCUnm9/zRwxwjQgK6890w79da/WPPnsz+7fnm8u6eGQw455wAAABgIsZ6AQAAANGMGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGHAS+eKLL3TJJZc0ue0///M/1b9/f5WUlLTKGubMmaOnnnrqmPfZtGmTpk6d+r37pkyZohUrVpzQsb/44gv17NlTf/zjH5vc/vzzz2vmzJkn9JjfZ9CgQdq0adOP9njHUl1drXHjxmn48OFat25di75mwoQJKioqOqHjHThwQBMnTjyhrz1ehw4d0oMPPqhhw4Zp2LBhWrBggRobG1vl2MDJJNZ6AQBO3Msvv6ynn35aS5Ys0QUXXGC9nIg+ffroySef9OSxY2JitHDhQvXr10/nnXeeJ8doTVu2bFFlZaVef/31Vjnevn37Wi00CwoKVFVVpVdffVXhcFg33nijXnvtNWVlZbXK8YGTBTEGnKTy8/O1YsUKFRYWqmvXrt97n3fffVePPfaYzjzzTH3++ec67bTTNHnyZP3hD3/Q559/rszMTM2ePVuS9Oabb+qZZ55RfX29OnTooBkzZuiSSy5RdXW1cnJytHXrViUlJalNmzbq16+fJOmTTz7RnDlz9PXXXysQCGjSpEkaOXKk3n33Xf3617/Wq6++qvLycs2cOVMVFRX6p3/6J1VWVkbW9+STT+r1119X27Zt1alTJ82fP19JSUnHPO8OHTrolltu0f3336+XX35Z7dq1a7J/5syZ+ulPf6pbb731iO1BgwYpKytLpaWl2rdvn/7t3/5N77//vjZv3qzY2Fg988wzSk5OliQVFhZq69atOnTokG655RaNHTv2mM/TU089pQ8//FAVFRXq2bOnFi1a1GRdb7zxhn7zm98oHA6rY8eOmjVrlk4//XTNnj1b5eXluu6667R06VJ16NAh8jWhUEh5eXn67LPPFBMTo3HjxjW5qvXFF1/o2muv1QcffHDEdigU0owZM7R3715J0pVXXql77rlHs2bNUm1tra677jqtWLFCO3bs0Ny5c/X111+rsbFREyZM0NixY/Xuu+9q7ty5iouL08GDB1VYWKicnBz9/e9/V0xMjHr37q05c+YoJiZG2dnZGjdunH72s581OedbbrlFN910k2JiYlRVVaX9+/frJz/5yTHnC0QlB+CksWvXLte3b1+3cOFCd/7557uXXnrpmPcvLS11F1xwgdu8ebNzzrlbb73VXX/99a6urs5VVla63r17u7KyMvf555+7rKwsV1VV5Zxzbtu2be7yyy93Bw8edHPnznW//OUvXTgcdpWVlS4jI8M9+eSTrr6+3v3sZz9za9eudc45V1ZW5gYOHOjef/99V1pa6oYPH+6cc+6OO+5wixcvds45t2PHDte3b1+3fPly99VXX7lLL73U1dXVOeece/75593rr7/eovNvbGx0N954o1uwYIFzzrnnnnvOzZgxwznn3IwZM9xzzz0X+Zpvb1911VVu3rx5zjnn/vznP7tevXq5LVu2RNb5zDPPRO6Xl5cXOa8BAwa4bdu2HfN5evLJJ93gwYNdfX39Eevevn27S09Pdzt37nTOOVdcXOwuv/xyd+DAgSbP1XfdeeedbuHChc455/bv3++GDx/uduzY4W666Sb32muvRZ6P7z4/zjn3m9/8xj3wwAPOOecOHjzo7rnnHrd///4m96mvr3fDhg1zH330UeQYQ4cOdR988IErLS11vXr1cl988YVzzrmVK1e6SZMmOeeca2hocDk5OW7Hjh3HnNdhjz76qOvbt6+76aab3DfffNOirwGiCVfGgJPMN998o23btik/P1/Tpk3TJZdcogsvvPCo9+/atWtk/znnnKP4+Hi1a9dOnTt3VseOHbVv3z7993//tyoqKvSLX/wi8nWBQEA7d+5USUmJZs+erUAgoM6dO+uaa66RJO3YsUN1dXXKzMyUJCUnJyszM1P/9V//pf79+0cep7i4WDNmzJAkdevWLbIvOTlZvXr10qhRo5SRkaGMjAwNGDCgRc9BTEyMHn30UY0cOVJXXHFFy588KbLes88+W126dFGvXr0iz82+ffsi9xs3blxknZdffrlKSkrUpk2boz5PktS3b1/Fxh75a7W0tFRpaWk6++yzJUkDBgxQ586d9dFHHykQCBx1rcXFxZo+fbokKT4+Xq+++mqLz3PgwIGaPHmydu/erfT0dN13332Kj49vco47duzQzp07I1dHJam2tlYff/yxunfvrjPPPFNnnXWWJKlfv35avHixJkyYoPT0dN18883q1q1bi9Zy//336+6779YDDzyghx56SAsXLmzxeQDRgBgDTjIdOnTQM888o7Zt22rKlCm66667tGLFCiUkJOiJJ57Qm2++Kekfb0JPS0s74mW874uFcDisAQMG6PHHH4/ctnv37shLhu5b/wnbNm3aSJIaGxuPCAnnnBoaGprcFggEmnz94ePHxMTopZde0qZNm1RSUqJ58+Zp4MCB+uUvf9mi5+HMM8/Ur371K82YMUMjR4486vHq6+ubfN23n4+2bdse9fFjYv73803hcFixsbFqbGw86vP0+uuvKy4u7nsfKxwOH/W5OtYaYmNjm3zdrl271KlTp8j2sc41NTVV69evV0lJiUpLS/Xzn/9cv/vd75SQkBC5T2Njo+Lj47Vq1arIbXv27FF8fLw+/PDDJudz9tln6/XXX9e7776r0tJS3XLLLZozZ44GDRp01PW/99576ty5s84991y1bdtWo0aN0sMPP3zU+wPRik9TAieZmJiYyB/wyZMnq0ePHrrvvvsUDod19913a9WqVVq1apXuvvvuFj/mgAED9Je//EWffvqpJOntt9/WiBEjVFtbq4EDB+pPf/qTwuGw9u3bp/Xr10uSzjvvPMXGxkY+AVheXq61a9cqPT29yWMPHDhQS5culSR99dVXevfddyVJW7duVVZWlrp3764pU6boF7/4xXG/sXzIkCHKyMjQCy+8ELmtU6dO+uijjyJr2rBhw3E95mErV66MrLmkpEQDBgw45vN0LAMGDNA777yjXbt2SZJKSkq0e/duXXzxxc1+3fLlyyX941OQN998s3bs2BHZf8YZZ6i+vl7bt2+XJP35z3+O7Fu0aJGefvppXX311crJyVGPHj30ySefRKLSOadzzz1XHTp0iMTY7t27lZWVFXn+vq2wsFCzZs3SFVdcoenTp+uKK67Qxx9/fMz1l5aWav78+WpoaFA4HNaaNWuaXDUF8A9cGQNOYoFAQAsXLtSoUaP0+OOP69577z2hx+nRo4fmzJmje++9V865yJvZO3bsqH//939XXl6ehg4dqs6dO+v888+X9I+rSk8//bQefvhhPfXUU2psbNSdd96ptLS0SHBJUl5enmbNmqWhQ4cqJSUl8rJgr169NHToUI0ZM0ZxcXHq0KGDcnNzJUlPPPGEJLUoKHNzc/Xee+9FtidMmKD7779fgwcPVteuXZWWlnZCz0ldXZ1GjRql+vp65ebm6txzz5Wkoz5Px9KjRw/l5eXprrvuUmNjozp06KBnn31W8fHxx/y6Bx98UA899JCuvfZaOec0ZcoUXXTRRZH98fHxmj59urKzs9W5c2cNGTIksu/mm2/WzJkzlZWVpXbt2qlnz54aPny42rRpo9TUVA0fPlwFBQV6+umnNXfuXD333HNqaGjQ3XffrX79+jWZoSSNHDlSGzZs0LBhw3TaaafpzDPP1IQJEyTpqG/gz87O1rx583TdddcpJiZGl156qe67777mn3wgygTct69xAwAAoFXxMiUAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABg6qf9pi717Dyoc9u7DoImJp6uystqzx8eJYS7+w0z8ibn4DzPxJ6/nEhMTUKdOR/8ncE7qGAuHnacxdvgY8B/m4j/MxJ+Yi/8wE3+ynAsvUwIAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAUKyXD15dXa1x48bp2WefVdeuXZvs27Jli3JycnTw4EFddtll+tWvfqXYWE+X02L7S4u1Z8VybdtbpdhOndVl9BidkZZuvaxWc/j8G6oqFds5MerOP5ptKHtfqz8t0t66r9WpfYJGdB+if0m51HpZgKc2lL2vdX9/RfcPfEGL/utmZXYbyfd9lDj8O+/ruq+VYPg7z7MrY3/72990ww03aMeOHd+7f/r06XrwwQe1du1aOee0bNkyr5ZyXPaXFqv8xSVqqKqUnFNDVaXKX1yi/aXF1ktrFU3OX4q6849mG8reV+HW5dpb97UkaW/d1yrculwbyt63XRjgocPf9+clbtLZP9mr8xI38X0fJb79O8/J9neeZzG2bNky5eXlKSkp6Yh9X375pWpra9W3b19J0ujRo1VUVOTVUo7LnhXL5Q4danKbO3RIe1YsN1pR64r2849mqz8tUn24vslt9eF6rf7UHz+bgBeCCbfr+VHP6M7+b0qS7uz/pp4f9YyCCbcbrwxe89PvPM9eF5w7d+5R91VUVCgYDEa2g8GgysvLj/sYiYmnn9DajmXb3qrvvb1hb5WCwfgf/Xh+c7Kcv5/Wcqr4+n+uiH3f7S15vpmJPzGXY/v1n/vql2fsVrDjAcXGNKoxHKPQwXi99Le+ejLLm+eOmfjDD/2d92MyeZNWOBxWIBCIbDvnmmy3VGVltcJh92MuTbGdOkdeovvu7aHQgR/1WH50Mpx/MBjvm7WcShLaJ0Reovzu7c0938zEn5hL8+rqu2npR/9Hdw94QzX1sWrbplHLPrpMdQ3dPHnumIl//JDfeccrJiZwzAtIJp+mTElJUSgUimzv2bPne1/OtNBl9BgF2rVrclugXTt1GT3GaEWtK9rPP5qN6D5EbWPaNrmtbUxbjeg+xGhFgPdGdB+iy8/5XHUNbfXHzf9HdQ1tlX7O53zfRwE//c4zuTJ21llnqX379nrvvffUr18/rVq1ShkZGRZLOcLhTw3uWbFcDVH4acom58+nKaPK4U8Q8WlKRJN/SblU/2/f/cpbv1k799dr4+7LNPKnvfm+jwLf/p1n/WnKgHPux32d7zsGDRqkF198UV27dlV2dramTp2qPn36aOvWrcrNzVV1dbV69+6t+fPnq913rsg0x4uXKb+Ny8n+xFz8h5n4E3PxH2biT17PpbmXKT2PMS8RY9GJufgPM/En5uI/zMSfrGOMf4EfAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhjyNsTVr1mjYsGHKzMxUQUHBEfs3b96sMWPGaMSIEZoyZYr279/v5XIAAAB8x7MYKy8v1+LFi1VYWKhXXnlFS5cu1fbt25vcZ+7cuZo6dapWr16tc889V88//7xXywEAAPAlz2KsuLhYaWlpSkhIUFxcnAYPHqyioqIm9wmHwzp48KAkqaamRh06dPBqOQAAAL4U69UDV1RUKBgMRraTkpK0cePGJveZOXOmJk2apHnz5um0007TsmXLjusYiYmn/yhrPZZgMN7zY+D4MRf/YSb+xFz8h5n4k+VcPIuxcDisQCAQ2XbONdmura1VTk6OlixZotTUVP3+97/XjBkzlJ+f3+JjVFZWKxx2P+q6vy0YjFcodMCzx8eJYS7+w0z8ibn4DzPxJ6/nEhMTOOYFJM9epkxJSVEoFIpsh0IhJSUlRba3bdum9u3bKzU1VZJ0/fXXa8OGDV4tBwAAwJc8i7H09HSVlJSoqqpKNTU1WrdunTIyMiL7u3XrprKyMn322WeSpPXr16tPnz5eLQcAAMCXPHuZMjk5WdOmTdPEiRNVX1+vsWPHKjU1VdnZ2Zo6dar69Omj+fPn65577pFzTomJiZo3b55XywEAAPClgHPOuzddeYz3jEUn5uI/zMSfmIv/MBN/OmXfMwYAAIDmEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgyNMYW7NmjYYNG6bMzEwVFBQcsf+zzz7ThAkTNGLECN16663at2+fl8sBAADwHc9irLy8XIsXL1ZhYaFeeeUVLV26VNu3b4/sd87p9ttvV3Z2tlavXq0LLrhA+fn5Xi0HAADAlzyLseLiYqWlpSkhIUFxcXEaPHiwioqKIvs3b96suLg4ZWRkSJJuu+023XjjjV4tBwAAwJdivXrgiooKBYPByHZSUpI2btwY2d65c6e6dOmi2bNna8uWLTrvvPP0wAMPHNcxEhNP/9HWezTBYLznx8DxYy7+w0z8ibn4DzPxJ8u5eBZj4XBYgUAgsu2ca7Ld0NCgDRs26KWXXlKfPn30+OOPa8GCBVqwYEGLj1FZWa1w2P2o6/62YDBeodABzx4fJ4a5+A8z8Sfm4j/MxJ+8nktMTOCYF5A8e5kyJSVFoVAosh0KhZSUlBTZDgaD6tatm/r06SNJysrKanLlDAAAIBp4FmPp6ekqKSlRVVWVampqtG7dusj7wyTpkksuUVVVlbZu3SpJevPNN9W7d2+vlgMAAOBLnr1MmZycrGnTpmnixImqr6/X2LFjlZqaquzsbE2dOlV9+vTRb3/7W+Xm5qqmpkYpKSl65JFHvFoOAACALwWcc9696cpjvGcsOjEX/2Em/sRc/IeZ+NMp+54xAAAANI8YAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAoVjrBfjR/tJi7VmxXNv2Vim2U2d1GT1GZ6SlWy+r1ewvLdbe1/5DF85coY8XjFanoTdE1flHs8Pf+w1VlYrtnBh13/uIThvK3tfqT4u0t+5rdWqfoBHdh+hfUi61XhaiyFGvjD3xxBNyzrXmWnxhf2mxyl9cooaqSsk5NVRVqvzFJdpfWmy9tFZx+Pzju3+suHMOKP68j6Pq/KNZk+99Keq+9xGdNpS9r8Kty7W37mtJ0t66r1W4dbk2lL1vuzBElaPGWGlpqSZOnKhQKNSa6zG3Z8VyuUOHmtzmDh3SnhXLjVbUun7S5U71/8Mf9dO7/ypJ+uk9f1X/P/xRP+lyp/HK4LVo/95HdFr9aZHqw/VNbqsP12v1p0VGK0I0OmqMFRQUaMCAARozZozeeeed1lyTqcNXBVp6+6nm70u6qy4UJ9cQkCS5hoDqKuL09yXdjVcGr0X79z6i0+ErYi29HfDCUd8zFhMTozvuuEP/+q//qtzcXK1fv17nnHNOZP8tt9zSKgtsbbGdE7/3j09s50SD1bS+hkPdtLNwn86/b4Maa9oo0Dasnf9xoRoOdbNeGjwW7d/7iE6d2id8b3h1ap/Q6mtB9Gr205QxMTEKBALavn27tm3bFvnfqarL6DEKtGvX5LZAu3bqMnqM0YpaV5fRY9Rl4FcK17XRzv+4UOG6Nuoy8KuoOf9oFu3f+4hOI7oPUduYtk1uaxvTViO6DzFaEaLRUa+MOef07LPP6vnnn9e0adN04403tua6zBz+5NieFcvVEIWfpjwjLV21W+7X32ZvUO2OGlX9LVXJY/pHzflHsybf+3yaElHi8Kcm+TQlLAXcUT4yef3116umpkaLFi3S+eef39rrapHKymqFw9594jMYjFcodMCzx8eJYS7+w0z8ibn4DzPxJ6/nEhMTUGLi6Ufff7QdvXv31p/+9CffhhgAAMCp4KgvUz744IOtuQ4AAICoxH8OCQAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADHkaY2vWrNGwYcOUmZmpgoKCo97vrbfe0qBBg7xcCgAAgC/FevXA5eXlWrx4sVasWKF27dpp3Lhx6t+/v3r06NHkfnv27NHChQu9WgYAAICveXZlrLi4WGlpaUpISFBcXJwGDx6soqKiI+6Xm5uru+66y6tlAAAA+JpnV8YqKioUDAYj20lJSdq4cWOT+7z44ou68MILdfHFF5/QMRITT/9Ba2yJYDDe82Pg+DEX/2Em/sRc/IeZ+JPlXDyLsXA4rEAgENl2zjXZ3rZtm9atW6clS5aorKzshI5RWVmtcNj94LUeTTAYr1DogGePjxPDXPyHmfgTc/EfZuJPXs8lJiZwzAtInr1MmZKSolAoFNkOhUJKSkqKbBcVFSkUCmnMmDGaPHmyKioqNH78eK+WAwAA4EuexVh6erpKSkpUVVWlmpoarVu3ThkZGZH9U6dO1dq1a7Vq1Srl5+crKSlJhYWFXi0HAADAlzyLseTkZE2bNk0TJ07UyJEjlZWVpdTUVGVnZ2vTpk1eHRYAAOCkEnDOefemK4/xnrHoxFz8h5n4E3PxH2biT6fse8YAAADQPGIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADHkaY2vWrNGwYcOUmZmpgoKCI/a/8cYbuu666zRixAjdcccd2rdvn5fLAQAA8B3PYqy8vFyLFy9WYWGhXnnlFS1dulTbt2+P7K+urtZDDz2k/Px8rV69Wj179tRTTz3l1XIAAAB8ybMYKy4uVlpamhISEhQXF6fBgwerqKgosr++vl55eXlKTk6WJPXs2VO7d+/2ajkAAAC+FOvVA1dUVCgYDEa2k5KStHHjxsh2p06ddM0110iSamtrlZ+frwkTJhzXMRITT/9xFnsMwWC858fA8WMu/sNM/Im5+A8z8SfLuXgWY+FwWIFAILLtnGuyfdiBAwd05513qlevXho1atRxHaOyslrhsPvBaz2aYDBeodABzx4fJ4a5+A8z8Sfm4j/MxJ+8nktMTOCYF5A8e5kyJSVFoVAosh0KhZSUlNTkPhUVFRo/frx69uypuXPnerUUAAAA3/IsxtLT01VSUqKqqirV1NRo3bp1ysjIiOxvbGzUbbfdpqFDhyonJ+d7r5oBAACc6jx7mTI5OVnTpk3TxIkTVV9fr7Fjxyo1NVXZ2dmaOnWqysrK9PHHH6uxsVFr166VJF100UVcIQMAAFEl4Jzz7k1XHuM9Y9GJufgPM/En5uI/zMSfTtn3jAEAAKB5xBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADBEjAEAABgixgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAY8jTG1qxZo2HDhikzM1MFBQVH7N+yZYtGjx6twYMHKycnRw0NDV4uBwAAwHdivXrg8vJyLV68WCtWrFC7du00btw49e/fXz169IjcZ/r06Xr44YfVt29fzZ49W8uWLdP48eO9WlKLlWwu04q3P1XV/jp1PqO9Rl/ZXQN6p1gvq9UcPv/K/XVKjMLzj2Ylm8v0WulGzfrFNM1fslhD01KZPU55/M6DNc+ujBUXFystLU0JCQmKi4vT4MGDVVRUFNn/5Zdfqra2Vn379pUkjR49usl+KyWby/TCa1tVub9OTlLl/jq98NpWlWwus15aq/j2+UvRd/7R7PDsu3f9i85J2aXzuhYze5zy+J0HP/AsxioqKhQMBiPbSUlJKi8vP+r+YDDYZL+VFW9/qkMN4Sa3HWoIa8XbnxqtqHVF+/lHs2DiZBXM+bnuueFJSdK0G55QwZyfK5g42XhlgHf4nQc/8OxlynA4rEAgENl2zjXZbm5/SyQmnv7DF/odVf/z/46+7/ZgMP5HP57fnCzn76e1nCpyf3e9zpq0XUmdKxTbplENjW1UsTdJv19zvfJnN/98MxN/Yi7HZvE7j5n4k+VcPIuxlJQU/fWvf41sh0IhJSUlNdkfCoUi23v27GmyvyUqK6sVDrsfvthv6XxG+8jl6u/eHgod+FGP5Ucnw/kHg/G+WcuppK7+n1Wwdrym3/R/VVPXQW1j61Ww9gYdqv/nZp9vZuJPzKV5rf07j5n4k9dziYkJHPMCkmcvU6anp6ukpERVVVWqqanRunXrlJGREdl/1llnqX379nrvvfckSatWrWqy38roK7urXWzTp6VdbIxGX9ndaEWtK9rPP5qNvrK7ruz7F9Udaq/CteNUd6i9MvoWM3uc0vidBz/w7MpYcnKypk2bpokTJ6q+vl5jx45VamqqsrOzNXXqVPXp00eLFi1Sbm6uqqur1bt3b02cONGr5bTY4U/QROunKb99/nyyKLoM6J2iLTunadZvD+nz3XH627ZMjbmqPbPHKY3fefCDgHPux32drxV58TLlt3E52Z+Yi/8wE39iLv7DTPzplH2ZEgAAAM0jxgAAAAwRYwAAAIaIMQAAAEPEGAAAgCFiDAAAwBAxBgAAYIgYAwAAMESMAQAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAoVjrBfwQMTGBU+IYOH7MxX+YiT8xF/9hJv7k5Vyae+yAc855dnQAAAAcEy9TAgAAGCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMAADAEDEGAABgiBgDAAAwRIwBAAAYIsYAAAAMEWOS1qxZo2HDhikzM1MFBQVH7N+yZYtGjx6twYMHKycnRw0NDQarjD7NzeWNN97QddddpxEjRuiOO+7Qvn37DFYZXZqbyWFvvfWWBg0a1Iori27NzeWzzz7ThAkTNGLECN166638rLSC5mayefNmjRkzRiNGjNCUKVO0f/9+g1VGn+rqamVlZemLL744Yp/p33oX5crKytxVV13l9u7d6w4ePOiuvfZa98knnzS5z/Dhw90HH3zgnHNu1qxZrqCgwGCl0aW5uRw4cMBdfvnlrqyszDnn3OOPP+5+/etfWy03KrTkZ8U550KhkBsyZIi76qqrDFYZfZqbSzgcdpmZme7tt992zjn36KOPukceecRquVGhJT8rN9xwg3vrrbecc87Nnz/fPfbYYxZLjSoffvihy8rKcr1793a7du06Yr/l3/qovzJWXFystLQ0JSQkKC4uToMHD1ZRUVFk/5dffqna2lr17dtXkjR69Ogm++GN5uZSX1+vvLw8JScnS5J69uyp3bt3Wy03KjQ3k8Nyc3N11113GawwOjU3l82bNysuLk4ZGRmSpNtuu0033nij1XKjQkt+VsLhsA4ePChJqqmpUYcOHSyWGlWWLVumvLw8JSUlHbHP+m991MdYRUWFgsFgZDspKUnl5eVH3R8MBpvshzeam0unTp10zTXXSJJqa2uVn5+vq6++utXXGU2am4kkvfjii7rwwgt18cUXt/byolZzc9m5c6e6dOmi2bNna9SoUcrLy1NcXJzFUqNGS35WZs6cqdzcXF1xxRUqLi7WuHHjWnuZUWfu3Lm67LLLvnef9d/6qI+xcDisQCAQ2XbONdlubj+80dLn/cCBA5o8ebJ69eqlUaNGteYSo05zM9m2bZvWrVunO+64w2J5Uau5uTQ0NGjDhg264YYbtHLlSp199tlasGCBxVKjRnMzqa2tVU5OjpYsWaJ33nlH48eP14wZMyyWiv9h/bc+6mMsJSVFoVAosh0KhZpcwvzu/j179nzvJU78uJqbi/SP/yczfvx49ezZU3Pnzm3tJUad5mZSVFSkUCikMWPGaPLkyZH5wFvNzSUYDKpbt27q06ePJCkrK0sbN25s9XVGk+Zmsm3bNrVv316pqamSpOuvv14bNmxo9XXif1n/rY/6GEtPT1dJSYmqqqpUU1OjdevWRd5bIUlnnXWW2rdvr/fee0+StGrVqib74Y3m5tLY2KjbbrtNQ4cOVU5ODlcrW0FzM5k6darWrl2rVatWKT8/X0lJSSosLDRccXRobi6XXHKJqqqqtHXrVknSm2++qd69e1stNyo0N5Nu3bqprKxMn332mSRp/fr1kViGDeu/9bGtdiSfSk5O1rRp0zRx4kTV19dr7NixSk1NVXZ2tqZOnao+ffpo0aJFys3NVXV1tXr37q2JEydaL/uU19xcysrK9PHHH6uxsVFr166VJF100UVcIfNQS35W0PpaMpff/va3ys3NVU1NjVJSUvTII49YL/uU1pKZzJ8/X/fcc4+cc0pMTNS8efOslx2V/PK3PuCcc612NAAAADQR9S9TAgAAWCLGAAAADBFjAAAAhogxAAAAQ8QYAACAIWIMQFTbvHmz+vXrp02bNkVuq6qq0tVXX6233nrLbmEAogb/tAWAqPfyyy8rPz9fK1euVMeOHTVp0iQNGDBAt99+u/XSAEQBYgwAJE2fPl3ffPONzjnnHO3atUtPPfUU/2UHAK2CGAMASd98841GjhyphoYGrVmzRh07drReEoAowXvGAEDS559/roMHD2r//v3avHmz9XIARBGujAGIelVVVRo7dqzuvfde1dXVafHixVq5cqWCwaD10gBEAWIMQFRrbGzUpEmT1KNHDz3wwAOSpFmzZmnXrl164YUX1KZNG+MVAjjV8TIlgKj2yCOPqKamRjNmzIjc9uCDD2rfvn167LHHDFcGIFpwZQwAAMAQV8YAAAAMEWMAAACGiDEAAABDxBgAAIAhYgwAAMAQMQYAAGCIGAMAADD0/wGdvbkGwCBcfAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 3 0.36\n" ] } ], "source": [ "print_sns_plot(dataset3)\n", "model10 = TrainModel_medoids(dataset3, 3)" ] }, { "cell_type": "code", "execution_count": 110, "id": "c76108ff", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHwCAYAAAD98PjEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAw4klEQVR4nO3de3hV1YH+8feQHBIPCdSEQCy2xUdbYAAJiDNNccKlREi4pAZDNUjVFAo0TDQdMkZAEqiIRW5yyQyKMz4PqJSLIY7DYHFQHgK2gq2SKFK1XgJBEgKShBBycrJ+f/DjSEBu6iar2d/PP3bvtc/Z63Xt9Hndewc8xhgjAAAAWKVNS08AAAAA56OkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgbgGztw4IB69OihlJQUpaSkaNSoUbrrrru0efPmy/r88uXL9eqrrzoyt4yMDB09evS8/bW1tbrrrrs0YsQI/eEPf/hWz3ngwAH17dv3a3/+9ddf15NPPnnFn3vyySe1adOmr31eAHYJbekJAGgdwsPDVVRUFNw+ePCg7rvvPoWEhGjYsGEX/eyf/vQn3XTTTY7Ma+fOnV+5f9++faqqqtLWrVsdOe83UVJSouPHj1/x5x544AEHZgOgpVDSADiiS5cuysrK0jPPPKNhw4bp448/1pw5c3TixAlVVlaqe/fuWrJkiTZs2KDS0lLNnz9fISEhuummm77yuLCwMC1dulRbt26V1+vVtddeq3nz5qlTp0766KOPNHfuXH3xxRcKBAIaP3687rzzTj388MOSpHvvvVdPPfWUrrvuOknS3/72N02fPl2HDx9WSkqKfv/736u4uFjLly9XU1OT2rVrp4cfflg333yzli1bprffflsVFRXq1q2bFixY0Czna6+9piVLlqipqUk+n0+zZ89WREREcHzZsmU6duyYZs2add72H/7wB/37v/+7PB6PQkJC9G//9m9q27at1q5dq0AgoMjISGVnZ2v9+vV64YUX1NTUpO985zt65JFHdOONNyo3N1dffPGFysrKNGjQIFVVVemHP/yhfvnLX6p379761a9+pZ07d6qiokITJkxQenq6AoGA5s+fr23btikyMlI333yzPvroI61evfoqXRkALpsBgG+orKzMxMXFnbf/r3/9q+nTp48xxpjHH3/cbNq0yRhjTENDgxk5cqTZsmWLMcaYe+65x/zv//7vRY8rLy83/fr1M6dOnTLGGPPMM8+YrVu3Gr/fb5KTk01paakxxpjq6mqTlJRk/vKXvxhjjPnRj35kqqqqzpvbH//4RzNixAhjjDEffvih+clPfmI+++wzY4wxu3btMgMGDDA1NTVm6dKlZtiwYcbv95/3HZWVleaWW24x7777rjHGmFdeecX88pe/bPbvY+nSpWb27NnBz5y9/dOf/jQ4zx07dphly5add8yf/vQnk56eburq6oLHDR8+3BhjzEMPPWTuvffe4Hc/9NBDZtWqVcHcq1evNsYYU1JSYnr16mXq6+vNCy+8YMaNG2fq6+vNqVOnTEZGhrnnnnvOywag5XEnDYBjPB6PwsPDJUk5OTnauXOnnn76aX3yySeqqKhQXV3deZ+50HGdO3dW9+7ddccddyghIUEJCQmKj4/Xhx9+qM8++0zTp08Pfkd9fb3ee+89xcXFXdY8//jHP+rHP/6xvve970mS4uPjFRUVpdLSUklSXFycQkPP/7/LP//5z/rhD3+of/iHf5Ak3X777br99tt14MCByzrviBEjNHXqVA0cOFADBgzQxIkTzzvm9ddf16effqq77roruK+6ulpffPGFJOmWW2654Pf/9Kc/lST17NlTDQ0Nqqur0/bt25WSkqKwsDBJ0s9//nPuogGWoqQBcExJSYl+9KMfSZJ+85vfKBAIKCkpSYMGDdKhQ4dkvuKvDr7QcW3atNGaNWtUUlKiN954Q4899pj++Z//WSkpKYqMjGz2PtyRI0cUGRl52fNsamqSx+Npts8Yo8bGRkmSz+f7ys+FhIQ0+5wxRvv372/2uNPj8TTL6ff7g/87OztbY8aM0c6dO/Xiiy/qP//zP7Vhw4bz5paSkqKcnJzgdkVFhTp06HDRuUkKFrEzczTGnFc227Th98cAW/HTCcARH3/8sQoKCpSRkSFJKi4uVmZmppKTkyVJ77zzjgKBgKTTZedMIbrQce+//75GjhypG2+8UZMmTdJ9992nkpIS3XDDDc1+aeHQoUMaOXJk8C7Y2d99IfHx8SouLlZZWZkk6Y033tChQ4fUp0+fi36uT58++uijj/TBBx9Ikv7v//4vWKbOuPbaa/Xuu+/KGKPa2lq99tprkqTGxkYNGTJEJ0+e1N133628vDzt379fDQ0NzeZ822236X/+539UUVEhSXrhhRd07733XnReFzNw4EC99NJLamhoUGNjowoLC7/2dwFwFnfSAHwr6uvrlZKSIun03ZmwsDD95je/0aBBgySdvmuUmZkpn8+niIgI3Xrrrfrss88kSUOGDNGiRYvk9/sveFxaWpqSkpI0ZswY+Xw+hYeHa+bMmWrbtq0KCgo0d+5crVq1So2NjXrggQeCjwGHDx+u8ePHa9myZcG7eue66aablJeXp6lTpyoQCCg8PFz/8R//ccm7cR07dtSCBQv00EMPKRAIKCIiQosXL252zOjRo7Vjxw7dfvvt6ty5s/7xH/8xeEdr+vTpmjZtmkJDQ+XxePTYY4+pbdu2+vGPf6xp06bpt7/9rR555BFNnDhRGRkZ8ng8ioiI0PLly8+783e5UlNT9fHHH+tnP/uZfD6frr/+el1zzTVf67sAOMtjvup5AwCgVSouLlZVVVWwUD/66KMKCws77w4ggJZHSQMAFzl8+LByc3N15MgRNTU1qXv37srPz7+id/gAXB2UNAAAAAvxiwMAAAAWoqQBAABYiJIGAABgoVb5R3AcO3ZCTU3OvmoXHR2hqqpaR89hK7K7M7vk7vxuzi65Oz/Z3Zldcj5/mzYeXXttuwuOt8qS1tRkHC9pZ87jVmR3Lzfnd3N2yd35ye5eLZmfx50AAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYyNGSVlRUpBEjRmjEiBH63e9+d974vn37lJqaqmHDhmnGjBlqbGyUJJWXl2vcuHEaPny4pkyZohMnTjg5zSvjkapP+lXyYaWq6xslT0tP6Cpyc3a3Y+3hRlz37mXJ2nuMMcaJLz558qQGDhyoLVu2qH379rr77ruVnZ2tn/zkJ8FjRo4cqUcffVRxcXGaPn26evXqpfT0dE2aNEmjR4/WiBEjtGLFCtXV1SknJ+eyz11VVaumJgdieaR9nx3X0nVv65Q/oDBviLLGxqnH9ztIjvxbtIibs58lJiZSlZU1LT2Nq4u1l+TStT+L6/Jz3Uty4bpLV3Xt27TxKDo64sLj3+7pvhQIBNTU1KSTJ0+qsbFRjY2NCgsLC44fPHhQ9fX1iouLkySlpqZqy5Yt8vv92r17t4YNG9Zsvw2q6/zBRZOkU/6Alq57W9V1/haemfPcnN3tWHu4Ede9e9m09qFOfXFERIQeeOABJSUl6ZprrtGtt96qfv36BccrKioUExMT3I6JidHhw4d17NgxRUREKDQ0tNn+K3GxVvpNfP5hZXDRzjjlD6jOH9CN349y5Jy2cHP2c8XERLb0FK4q1v5Lblv7c7kpP9f9l9y07pJda+9YSXv//fe1ceNGvfbaa4qMjNS0adP0zDPPaMKECZKkpqYmeTxfPuQ1xsjj8QT/ebZzty/FqcedvrBQhXlDmi1emDdEPm9Iq78d7ObsZ3PjrX/W/jQ3rv3Z3Jaf6/40t627dHXXvsUedxYXFys+Pl7R0dFq27atUlNT9eabbwbHY2NjVVlZGdw+cuSIOnXqpKioKNXU1CgQOP0vp7KyUp06dXJqmlek/TWhyhobpzBviCQFn1O393lbeGbOc3N2t2Pt4UZc9+5l09o7diete/fueuKJJ1RXV6drrrlG27ZtU+/evYPjXbp0UVhYmN566y3dcsstKioqUkJCgrxer/r376/Nmzdr1KhR2rRpkxISEpya5pUxUo/vd9Dvfv0T1fkD8nlDTi+aG14idXN2t2Pt4UZc9+5l0do79tudkvTUU0/pxRdflNfrVe/evZWXl6epU6cqKytLvXv31vvvv6+ZM2eqtrZWPXv21Lx589S2bVsdPHhQubm5qqqq0nXXXadFixapQ4cOl31ex3678yxuvAV8BtndmV1yd343Z5fcnZ/s7swuOZ//Uo87HS1pLYWS5iyyuzO75O78bs4uuTs/2d2ZXWr5ksbfOAAAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYKNSpL16/fr3WrFkT3D5w4IBSUlI0a9YsSdK+ffuUm5sbHD969Kg6dOigl19+WYWFhVq4cKGio6MlSYMGDVJ2drZTUwUAALCOYyUtLS1NaWlpkqQPPvhAmZmZmjp1anC8R48eKioqkiSdPHlSaWlpys/PlySVlpYqNzdXI0eOdGp6AAAAVrsqjzvz8/OVnZ2tqKiorxxfuXKlbr31VvXv31+SVFJSosLCQo0aNUrTpk3T8ePHr8Y0AQAArOF4Sdu1a5fq6+uVlJT0leM1NTVat25ds7tsMTEx+vWvf62XXnpJ1113nebMmeP0NAEAAKziMcYYJ0+QlZWl22+//YKPLp977jnt37//gkXs+PHjSkxM1JtvvunkNAEAAKzi2DtpktTQ0KDdu3fr8ccfv+Axr776qiZNmhTcrqmp0caNG3XfffdJkowxCgkJuaLzVlXVqqnJ0e6pmJhIVVbWOHoOW5Hdndkld+d3c3bJ3fnJ7s7skvP527TxKDo64sLjjp1Z0v79+9W1a1f5fL6vHDfG6N1331Xfvn2D+3w+n1atWqV33nlHkrRmzRolJiY6OU0AAADrOFrSysrKFBsb22zfxIkTVVJSIun0H7vh9XoVFhYWHA8JCdGSJUuUn5+vpKQkvfvuu8rJyXFymgAAANZx/J20lsDjTmeR3Z3ZJXfnd3N2yd35ye7O7FIrf9wJAACAr4eSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFgo1KkvXr9+vdasWRPcPnDggFJSUjRr1qzgvuXLl2vjxo1q3769JGns2LEaN26cysvLlZOTo6qqKt1www1asGCB2rVr59RUAQAArONYSUtLS1NaWpok6YMPPlBmZqamTp3a7JjS0lItWrRIffv2bbZ/9uzZSk9P14gRI7RixQoVFBQoJyfHqakCAABY56o87szPz1d2draioqKa7S8tLdXKlSs1atQozZkzR6dOnZLf79fu3bs1bNgwSVJqaqq2bNlyNaYJAABgDcfupJ2xa9cu1dfXKykpqdn+EydOqEePHsrJydEPfvAD5ebmqqCgQOPGjVNERIRCQ09PLSYmRocPH76ic0ZHR3xr87+YmJjIq3IeG5Hdvdyc383ZJXfnJ7t7tWR+x0va2rVrdf/995+3v127dnr66aeD2xkZGZo+fbrS09Pl8XiaHXvu9qVUVdWqqcl8vQlfppiYSFVW1jh6DluR3Z3ZJXfnd3N2yd35ye7O7JLz+du08Vz0xpKjjzsbGhq0e/duDRky5Lyx8vJybdiwIbhtjFFoaKiioqJUU1OjQCAgSaqsrFSnTp2cnCYAAIB1HC1p+/fvV9euXeXz+c4bCw8P1xNPPKGysjIZY/Tcc88pMTFRXq9X/fv31+bNmyVJmzZtUkJCgpPTBAAAsI6jJa2srEyxsbHN9k2cOFElJSWKiorSnDlzNGXKFA0fPlzGmOBj0by8PK1bt07Jycnas2ePHnzwQSenCQAAYB2PMcbZl7daAO+kOYvs7swuuTu/m7NL7s5Pdndml1r5O2kAAAD4eihpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYKFQp754/fr1WrNmTXD7wIEDSklJ0axZs4L7Xn31VS1btkzGGF1//fWaN2+eOnTooMLCQi1cuFDR0dGSpEGDBik7O9upqQIAAFjHsZKWlpamtLQ0SdIHH3ygzMxMTZ06NTheW1ur/Px8bdy4UZ07d9aTTz6pZcuWaebMmSotLVVubq5Gjhzp1PQAAACsdlUed+bn5ys7O1tRUVHBfX6/X3l5eercubMkqVu3bjp06JAkqaSkRIWFhRo1apSmTZum48ePX41pAgAAWMNjjDFOnmDXrl1auHChNm7ceMFj6uvrlZ6ervHjx+uOO+5QZmamMjIy1K9fPy1atEjl5eVauHChk9MEAACwiuMlLSsrS7fffvsFH13W1NQoMzNT119/vR577LHzxo8fP67ExES9+eabl33OqqpaNTU5GksxMZGqrKxx9By2Irs7s0vuzu/m7JK785Pdndkl5/O3aeNRdHTEhccdO7OkhoYG7d69W0OGDPnK8YqKCqWnp6tbt26aO3eupNOl7dlnnw0eY4xRSEiIk9MEAACwjqMlbf/+/eratat8Pt95Y4FAQJMnT1ZSUpJmzJghj8cjSfL5fFq1apXeeecdSdKaNWuUmJjo5DQBAACs49hvd0pSWVmZYmNjm+2bOHGisrKy9Pnnn+u9995TIBDQK6+8Iknq1auX5s6dqyVLlig/P1/19fXq2rWr5s+f7+Q0AQAArOP4O2ktgXfSnEV2d2aX3J3fzdkld+cnuzuzS638nTQAAAB8PZQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKhTn3x+vXrtWbNmuD2gQMHlJKSolmzZgX37du3TzNmzNCJEyfUv39/zZ49W6GhoSovL1dOTo6qqqp0ww03aMGCBWrXrp1TU70yHqm6zq/PP6yULyxU7a8JlUxLT+oqcXN2t2Pt4UZc92hhHmOM45fcBx98oMzMTK1du1ZRUVHB/SNHjtSjjz6quLg4TZ8+Xb169VJ6eromTZqk0aNHa8SIEVqxYoXq6uqUk5Nz2eerqqpVU5MDsTzSvs+Oa+m6t3XKH1CYN0RZY+PU4/sdWv8PrpuznyUmJlKVlTUtPY2ri7WX5NK1P4vr8nPdS3Lhup/D6fxt2ngUHR1x4fFLfcG//Mu/aNeuXd9oEvn5+crOzm5W0A4ePKj6+nrFxcVJklJTU7Vlyxb5/X7t3r1bw4YNa7bfBtV1/uAPrCSd8ge0dN3bqq7zt/DMnOfm7G7H2sONuO5hg0s+7kxMTFRBQYFmz56tsWPHasyYMfrOd75z2SfYtWuX6uvrlZSU1Gx/RUWFYmJigtsxMTE6fPiwjh07poiICIWGhjbbfyUu1kq/ic8/rAz+wJ5xyh9QnT+gG78fdYFPtQ5uzn6umJjIlp7CVcXaf8lta38uN+Xnuv+Sm9b9q7Rk/kuWtNGjR2v06NH66KOPtHHjRt15553q27evxo8fr5tvvvmSJ1i7dq3uv//+8/Y3NTXJ4/EEt40x8ng8wX+e7dztS3HqcacvLFRh3pBmP7hh3hD5vCGt/nawm7OfzY23/ln709y49mdzW36u+9Pctu7nsv5xp3S6UH366af65JNPFAgEFB0drfz8fC1duvSin2toaNDu3bs1ZMiQ88ZiY2NVWVkZ3D5y5Ig6deqkqKgo1dTUKBA4/YNRWVmpTp06Xc40Hdf+mlBljY1TmDdEkoLvKLT3eVt4Zs5zc3a3Y+3hRlz3sMEl76QtXrxYL774or73ve8pPT1dTz75pLxer+rq6jR48GBlZWVd8LP79+9X165d5fP5zhvr0qWLwsLC9NZbb+mWW25RUVGREhIS5PV61b9/f23evFmjRo3Spk2blJCQ8M1SfluM1OP7HfS7X/9Edf6AfN6Q0z+wbniJ1M3Z3Y61hxtx3cMCl7yTdvToUT399NN6/vnnNXLkSHm9p/8rwufzaeHChRf9bFlZmWJjY5vtmzhxokpKSiRJCxYs0Lx58zR8+HDV1dXpF7/4hSQpLy9P69atU3Jysvbs2aMHH3zw62RzhpHaX+NV7xtj1P4al/3Aujm727H2cCOue7Swq/JHcFxtjv0RHGdx83N6srszu+Tu/G7OLrk7P9ndmV36O3knDQAAAFcXJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsFOrkl2/btk3Lly/XyZMnNWDAAM2cOTM4tm/fPuXm5ga3jx49qg4dOujll19WYWGhFi5cqOjoaEnSoEGDlJ2d7eRUAQAArOJYSSsrK1NeXp7Wr1+v6Oho3Xvvvdq+fbsGDhwoSerRo4eKiookSSdPnlRaWpry8/MlSaWlpcrNzdXIkSOdmh4AAIDVHCtpW7duVXJysmJjYyVJixcvVlhY2Fceu3LlSt16663q37+/JKmkpESffPKJVq5cqW7duumRRx5Rhw4dnJoqAACAdTzGGOPEF+fl5cnr9erAgQM6dOiQBg0apAcffFAej6fZcTU1NRo2bJj++7//O/h4MzMzUxkZGerXr58WLVqk8vJyLVy40IlpAgAAWMmxO2mBQEB79uzR6tWr5fP5NGXKFBUWFio1NbXZcS+99JKGDh0aLGiStGLFiuD/njBhghITE6/o3FVVtWpqcqR7BsXERKqyssbRc9iK7O7MLrk7v5uzS+7OT3Z3Zpecz9+mjUfR0REXHnfqxB07dlR8fLyioqIUHh6uoUOHau/evecd9+qrryo5OTm4XVNTo2effTa4bYxRSEiIU9MEAACwkmMlbfDgwSouLlZ1dbUCgYB27Nihnj17NjvGGKN3331Xffv2De7z+XxatWqV3nnnHUnSmjVrrvhOGgAAwN87xx539unTRxMmTFB6err8fr8GDBigMWPGaOLEicrKylLv3r119OhReb3eZr9QEBISoiVLlig/P1/19fXq2rWr5s+f79Q0AQAArOTYLw60JN5JcxbZ3Zldcnd+N2eX3J2f7O7MLrXid9IAAADw9VHSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACxESQMAALAQJQ0AAMBClDQAAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAuFOvnl27Zt0/Lly3Xy5EkNGDBAM2fObDa+fPlybdy4Ue3bt5ckjR07VuPGjVN5eblycnJUVVWlG264QQsWLFC7du2cnCoAAIBVHLuTVlZWpry8PBUUFOill17Se++9p+3btzc7prS0VIsWLVJRUZGKioo0btw4SdLs2bOVnp6uLVu2qFevXiooKHBqmgAAAFZyrKRt3bpVycnJio2Nldfr1eLFi9WnT59mx5SWlmrlypUaNWqU5syZo1OnTsnv92v37t0aNmyYJCk1NVVbtmxxapoAAABWcuxx56effiqv16vJkyfr0KFDGjRokB588MHg+IkTJ9SjRw/l5OToBz/4gXJzc1VQUKBx48YpIiJCoaGnpxYTE6PDhw9f0bmjoyO+zSgXFBMTeVXOYyOyu5eb87s5u+Tu/GR3r5bM71hJCwQC2rNnj1avXi2fz6cpU6aosLBQqampkqR27drp6aefDh6fkZGh6dOnKz09XR6Pp9l3nbt9KVVVtWpqMt88xEXExESqsrLG0XPYiuzuzC65O7+bs0vuzk92d2aXnM/fpo3nojeWHHvc2bFjR8XHxysqKkrh4eEaOnSo9u7dGxwvLy/Xhg0bgtvGGIWGhioqKko1NTUKBAKSpMrKSnXq1MmpaQIAAFjJsZI2ePBgFRcXq7q6WoFAQDt27FDPnj2D4+Hh4XriiSdUVlYmY4yee+45JSYmyuv1qn///tq8ebMkadOmTUpISHBqmgAAAFZyrKT16dNHEyZMUHp6upKTk/Xd735XY8aM0cSJE1VSUqKoqCjNmTNHU6ZM0fDhw2WM0f333y9JysvL07p165ScnKw9e/Y0e5cNAADADTzGGGdf3moBvJPmLLK7M7vk7vxuzi65Oz/Z3ZldasXvpAEAAODro6QBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhUKd/PJt27Zp+fLlOnnypAYMGKCZM2c2G3/11Ve1bNkyGWN0/fXXa968eerQoYMKCwu1cOFCRUdHS5IGDRqk7OxsJ6cKAABgFcdKWllZmfLy8rR+/XpFR0fr3nvv1fbt2zVw4EBJUm1trfLz87Vx40Z17txZTz75pJYtW6aZM2eqtLRUubm5GjlypFPTAwAAsJpjjzu3bt2q5ORkxcbGyuv1avHixerTp09w3O/3Ky8vT507d5YkdevWTYcOHZIklZSUqLCwUKNGjdK0adN0/Phxp6YJAABgJY8xxjjxxXl5efJ6vTpw4IAOHTqkQYMG6cEHH5TH4znv2Pr6eqWnp2v8+PG64447lJmZqYyMDPXr10+LFi1SeXm5Fi5c6MQ0AQAArOTY485AIKA9e/Zo9erV8vl8mjJligoLC5WamtrsuJqaGmVmZqp79+664447JEkrVqwIjk+YMEGJiYlXdO6qqlo1NTnSPYNiYiJVWVnj6DlsRXZ3Zpfcnd/N2SV35ye7O7NLzudv08aj6OiIC487deKOHTsqPj5eUVFRCg8P19ChQ7V3795mx1RUVCg9PV3dunXT3LlzJZ0ubc8++2zwGGOMQkJCnJomAACAlRwraYMHD1ZxcbGqq6sVCAS0Y8cO9ezZMzgeCAQ0efJkJSUlacaMGcHHoD6fT6tWrdI777wjSVqzZs0V30kDAAD4e+fY484+ffpowoQJSk9Pl9/v14ABAzRmzBhNnDhRWVlZ+vzzz/Xee+8pEAjolVdekST16tVLc+fO1ZIlS5Sfn6/6+np17dpV8+fPd2qaAAAAVnLsFwdaEu+kOYvs7swuuTu/m7NL7s5Pdndml1rxO2kAAAD4+ihpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFHS9q2bduUmpqqpKQkPfroo+eN79u3T6mpqRo2bJhmzJihxsZGSVJ5ebnGjRun4cOHa8qUKTpx4oST0wQAALCOYyWtrKxMeXl5Kigo0EsvvaT33ntP27dvb3ZMTk6OZs2apVdeeUXGGK1bt06SNHv2bKWnp2vLli3q1auXCgoKnJrmlfNI1Sf9KvmwUtX1jZKnpSd0Fbk5u9ux9nAjrnu0sFCnvnjr1q1KTk5WbGysJGnx4sUKCwsLjh88eFD19fWKi4uTJKWmpmrp0qVKS0vT7t27tWLFiuD+e+65Rzk5OU5N9fJ5pH2fHdfSdW/rlD+gMG+IssbGqcf3O0impSfnMDdndzvWHm7EdQ8LOHYn7dNPP1UgENDkyZOVkpKi559/Xh06dAiOV1RUKCYmJrgdExOjw4cP69ixY4qIiFBoaGiz/TaorvMHf2Al6ZQ/oKXr3lZ1nb+FZ+Y8N2d3O9YebsR1Dxs4dictEAhoz549Wr16tXw+n6ZMmaLCwkKlpqZKkpqamuTxfHnv2Bgjj8cT/OfZzt2+lOjoiG8e4Ct8/mFl8Af2jFP+gOr8Ad34/ShHzmkLN2c/V0xMZEtP4api7b/ktrU/l5vyc91/yU3r/lVaMr9jJa1jx46Kj49XVNTpi3no0KHau3dvsKTFxsaqsrIyePyRI0fUqVMnRUVFqaamRoFAQCEhIaqsrFSnTp2u6NxVVbVqavr270f7wkIV5g1p9oMb5g2Rzxuiysqab/18NnFz9rPFxES6Kq/E2p/hxrU/m9vyc92f5rZ1P5fT+du08Vz0xpJjjzsHDx6s4uJiVVdXKxAIaMeOHerZs2dwvEuXLgoLC9Nbb70lSSoqKlJCQoK8Xq/69++vzZs3S5I2bdqkhIQEp6Z5RdpfE6qssXEK84ZIUvAdhfY+bwvPzHluzu52rD3ciOseNvAYYxx7BXLDhg169tln5ff7NWDAAM2cOVOTJk1SVlaWevfurffff18zZ85UbW2tevbsqXnz5qlt27Y6ePCgcnNzVVVVpeuuu06LFi1q9j7bpTh1J03S6d/2qfOrzh+Qzxty+gfWLS+Rujn7/+fa/6pk7d279v+fK/Nz3btz3c/S0nfSHC1pLcXRkvb/ufnCJbs7s0vuzu/m7JK785Pdndmlli9p/I0DAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICFKGkAAAAWoqQBAABYiJIGAABgIUoaAACAhShpAAAAFgpt6Qk4oU0bT6s6j43I7l5uzu/m7JK785PdvZzMf6nv9hhjjGNnBwAAwNfC404AAAALUdIAAAAsREkDAACwECUNAADAQpQ0AAAAC1HSAAAALERJAwAAsBAlDQAAwEKUNAAAAAtR0gAAACzUKv/uzm/b7373Ox07dkyPP/54s/379u3TjBkzdOLECfXv31+zZ89WaGjr+ld6oezLly/Xxo0b1b59e0nS2LFjNW7cuJaYoiPGjx+vo0ePBtdzzpw56tOnT3C8ta/9pfK35vXftm2bli9frpMnT2rAgAGaOXNms/HWvPaXyt6a1339+vVas2ZNcPvAgQNKSUnRrFmzgvta69pfTvbWvPaSVFRUpKeeekqSlJCQoIceeqjZeIutvcFF7dq1y/zTP/2Teeihh84bGzFihPnLX/5ijDHm4YcfNs8999xVnp2zLpZ90qRJ5s9//nMLzMp5TU1N5rbbbjN+v/+Cx7Tmtb+c/K11/T/77DNz2223mUOHDpmGhgZz9913m9dff73ZMa117S8ne2td93P99a9/NYmJiaaqqqrZ/ta69me7UPbWvPZ1dXXm1ltvNVVVVcbv95s777zT7Ny5s9kxLbX2PO68iC+++EKLFy/W5MmTzxs7ePCg6uvrFRcXJ0lKTU3Vli1brvIMnXOx7JJUWlqqlStXatSoUZozZ45OnTp1lWfonL/97W+SpIyMDI0ePbrZf2FKrX/tL5Vfar3rv3XrViUnJys2NlZer1eLFy9udgexNa/9pbJLrXfdz5Wfn6/s7GxFRUUF97XmtT/bV2WXWvfaBwIBNTU16eTJk2psbFRjY6PCwsKC4y259pS0i5g1a5ays7ODt3fPVlFRoZiYmOB2TEyMDh8+fDWn56iLZT9x4oR69OihnJwcFRYWqrq6WgUFBS0wS2dUV1crPj5eK1as0LPPPqu1a9dq586dwfHWvvaXyt+a1//TTz9VIBDQ5MmTlZKSoueff14dOnQIjrfmtb9U9ta87mfbtWuX6uvrlZSU1Gx/a177My6UvbWvfUREhB544AElJSVp4MCB6tKli/r16xccb8m1p6RdwPr163XdddcpPj7+K8ebmprk8XiC28aYZtt/zy6VvV27dnr66ad14403KjQ0VBkZGdq+fftVnqVz+vbtq/nz5ysyMlJRUVG68847m+VrzWsvXTp/a17/QCCgN954Q4899ph+//vfa+/evSosLAyOt+a1v1T21rzuZ1u7dq3uv//+8/a35rU/40LZW/vav//++9q4caNee+017dixQ23atNEzzzwTHG/JtaekXcDmzZu1c+dOpaSkaOnSpdq2bZsee+yx4HhsbKwqKyuD20eOHFGnTp1aYqrfuktlLy8v14YNG4LbxphW8fLsGXv27NEbb7wR3D43X2tee+nS+Vvz+nfs2FHx8fGKiopSeHi4hg4dqr179wbHW/PaXyp7a173MxoaGrR7924NGTLkvLHWvPbSxbO39rUvLi5WfHy8oqOj1bZtW6WmpurNN98Mjrfk2lPSLuC//uu/9PLLL6uoqEhZWVkaMmSIpk+fHhzv0qWLwsLC9NZbb0k6/ZshCQkJLTXdb9WlsoeHh+uJJ55QWVmZjDF67rnnlJiY2IIz/nbV1NRo/vz5OnXqlGpra1VYWNgsX2tee+nS+Vvz+g8ePFjFxcWqrq5WIBDQjh071LNnz+B4a177S2Vvzet+xv79+9W1a1f5fL7zxlrz2ksXz97a17579+7atWuX6urqZIzRtm3b1Lt37+B4S649Je0KTZw4USUlJZKkBQsWaN68eRo+fLjq6ur0i1/8ooVn56wz2aOiojRnzhxNmTJFw4cPlzHmK2+R/70aPHiwBg4cqJ/97GcaM2aMxowZo759+7pm7S+VvzWvf58+fTRhwgSlp6crOTlZ3/3udzVmzBhXrP2lsrfmdT+jrKxMsbGxzfa5Ye2li2dv7Wt/2223acSIEUpNTdXo0aPV2NioX/3qV1asvccYY67KmQAAAHDZuJMGAABgIUoaAACAhShpAAAAFqKkAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAHABRQWFmro0KE6ceKE6urqlJSUpE2bNrX0tAC4BH+YLQBcxL/+678qMjJSDQ0NCgkJ0W9/+9uWnhIAl6CkAcBF1NbWKiUlReHh4XrxxRcVFhbW0lMC4BI87gSAi6iqqtKpU6dUXV2tioqKlp4OABfhThoAXIDf79ddd92lu+66S01NTVq/fr1eeOEFeb3elp4aABfgThoAXMCiRYvUsWNHpaWl6ec//7muvfZaLV68uKWnBcAluJMGAABgIe6kAQAAWIiSBgAAYCFKGgAAgIUoaQAAABaipAEAAFiIkgYAAGAhShoAAICF/h8YhJIAUruo/AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHwCAYAAADq0mgNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAArwklEQVR4nO3de3RU5b3/8c+EcDEYGwiTxAPCUaigmAjFU5Io8Ug14RKRW5eIBSs2gOCJYKVcEk1LC4jlJyqtuFJdRWtyhAoI9BJAXLpKE+B4KxigyK2AkmRIIBBMQpJ5fn/0MMeUSwDZebbs92st/9izJ7Ofme/GvN0zgz5jjBEAAACsCLO9AAAAAC8jxgAAACwixgAAACwixgAAACwixgAAACwixgAAACwixoBvkEOHDql3796NbvvTn/6kvn37qqioqFnWMHv2bC1atOi899m2bZsyMzPPum/ChAlasWLFJR370KFD6t69u37/+983uv3VV1/VjBkzLukxz6Z///7atm3bZXu886mqqtKoUaM0ePBgrVu37oJ+ZsyYMSooKLik4504cUJjx469pJ/9OubMmaMJEyY0+3GBb4Jw2wsAcOnefPNNvfTSS1qyZIluuukm28sJiY+P14svvujIY4eFhWn+/Pnq06ePbrjhBkeO0Zx27Nih8vJyrV+/vlmOV1lZ2Wyhedqf/vQnrVmzRrfeemuzHhf4piDGgG+o3NxcrVixQvn5+erUqdNZ77N582Y999xzuvbaa7Vv3z5dddVVGj9+vH73u99p3759Sk1N1axZsyRJ7777rhYvXqy6ujq1adNG06dPV+/evVVVVaWsrCzt3LlTMTExatGihfr06SNJ+uyzzzR79mwdO3ZMPp9P48aN09ChQ7V582b9/Oc/1x/+8AeVlpZqxowZKisr07/927+pvLw8tL4XX3xR69evV8uWLdWuXTvNmzdPMTEx533ebdq00cMPP6wnn3xSb775plq1atVo/4wZM/Ttb39bjzzyyBnb/fv3V3p6ujZt2qTKykr96Ec/0kcffaTi4mKFh4dr8eLFio2NlSTl5+dr586dOnXqlB5++GGNHDnyvK/TokWL9Mknn6isrEzdu3fXggULGq3rnXfe0a9+9SsFg0G1bdtWM2fO1NVXX61Zs2aptLRU9913n5YuXao2bdqEfiYQCCgnJ0d79+5VWFiYRo0a1eiq1qFDh3Tvvffq448/PmM7EAho+vTpOnr0qCTpzjvv1JQpUzRz5kzV1NTovvvu04oVK7R//37NmTNHx44dU0NDg8aMGaORI0dq8+bNmjNnjiIiInTy5Enl5+crKytL//jHPxQWFqaePXtq9uzZCgsLU0ZGhkaNGqXvfe97Z8xrz549euWVVzR58mRt3LjxvLMFPMsA+MY4ePCg6dWrl5k/f7658cYbzRtvvHHe+2/atMncdNNNpri42BhjzCOPPGLuv/9+U1tba8rLy03Pnj1NSUmJ2bdvn0lPTzcVFRXGGGN27dplbr/9dnPy5EkzZ84c85Of/MQEg0FTXl5uUlJSzIsvvmjq6urM9773PbN27VpjjDElJSWmX79+5qOPPjKbNm0ygwcPNsYYM2nSJLNw4UJjjDH79+83vXr1MsuXLzdffPGF+c53vmNqa2uNMca8+uqrZv369Rf0/BsaGsyDDz5onnnmGWOMMa+88oqZPn26McaY6dOnm1deeSX0M1/dvuuuu8zcuXONMcb88Y9/ND169DA7duwIrXPx4sWh++Xk5ISeV1JSktm1a9d5X6cXX3zRpKWlmbq6ujPWvXv3bpOcnGwOHDhgjDGmsLDQ3H777ebEiRONXqt/NXnyZDN//nxjjDHHjx83gwcPNvv37zc/+MEPzJ///OfQ6/Gvr48xxvzqV78yTz31lDHGmJMnT5opU6aY48ePN7pPXV2dGTRokPn0009Dxxg4cKD5+OOPzaZNm0yPHj3MoUOHjDHGrFy50owbN84YY0x9fb3Jysoy+/fvP++8qqqqzLBhw8zf//53s3z5cjN+/Pjz3h/wKq6MAd8wX375pXbt2qXc3FxNnTpVvXv31s0333zO+3fq1Cm0v3PnzoqMjFSrVq3Uvn17tW3bVpWVlfqf//kflZWV6Yc//GHo53w+nw4cOKCioiLNmjVLPp9P7du31z333CNJ2r9/v2pra5WamipJio2NVWpqqv7yl7+ob9++occpLCzU9OnTJUldunQJ7YuNjVWPHj00bNgwpaSkKCUlRUlJSRf0GoSFhemXv/ylhg4dqjvuuOPCXzwptN7rrrtOHTp0UI8ePUKvTWVlZeh+o0aNCq3z9ttvV1FRkVq0aHHO10mSevXqpfDwM/+1umnTJiUmJuq6666TJCUlJal9+/b69NNP5fP5zrnWwsJCTZs2TZIUGRmpP/zhDxf8PPv166fx48fr8OHDSk5O1o9//GNFRkY2eo779+/XgQMHQldHJammpkbbt29X165dde2116pjx46SpD59+mjhwoUaM2aMkpOT9dBDD6lLly7nXUNWVpbGjBmjG2+8UZ9++ukFrx3wGmIM+IZp06aNFi9erJYtW2rChAl67LHHtGLFCkVFRemFF17Qu+++K+mfH0JPTEw84228s8VCMBhUUlKSnn/++dBthw8fDr1laL7yv7Bt0aKFJKmhoeGMkDDGqL6+vtFtPp+v0c+fPn5YWJjeeOMNbdu2TUVFRZo7d6769eunn/zkJxf0Olx77bX62c9+punTp2vo0KHnPF5dXV2jn/vq69GyZctzPn5Y2P99vykYDCo8PFwNDQ3nfJ3Wr1+viIiIsz5WMBg852t1vjWEh4c3+rmDBw+qXbt2oe3zPdeEhARt2LBBRUVF2rRpk77//e/rN7/5jaKiokL3aWhoUGRkpFatWhW67ciRI4qMjNQnn3zS6Plcd911Wr9+vTZv3qxNmzbp4Ycf1uzZs9W/f/+zrr2kpEQffPCB9u3bpyVLlqiyslInTpxQRkaGfvOb35zzOQNexLcpgW+YsLCw0C/w8ePHq1u3bvrxj3+sYDCoxx9/XKtWrdKqVav0+OOPX/BjJiUl6a9//av27NkjSXr//fc1ZMgQ1dTUqF+/fnrrrbcUDAZVWVmpDRs2SJJuuOEGhYeHh74BWFpaqrVr1yo5ObnRY/fr109Lly6VJH3xxRfavHmzJGnnzp1KT09X165dNWHCBP3whz+86A+WDxgwQCkpKXrttddCt7Vr1y50Faa0tFRbtmy5qMc8beXKlaE1FxUVKSkp6byv0/kkJSVp48aNOnjwoCSpqKhIhw8fbvID7UlJSVq+fLmkf34L8qGHHtL+/ftD+6+55hrV1dVp9+7dkqQ//vGPoX0LFizQSy+9pLvvvltZWVnq1q2bPvvss1BUGmN0/fXXq02bNqEYO3z4sNLT0896FSs/P18zZ87UHXfcoWnTpumOO+7Q9u3bz7n2uLg4bdy4MXQ+ZmZm6rbbbiPEgLPgyhjwDebz+TR//nwNGzZMzz//vJ544olLepxu3bpp9uzZeuKJJ2SMCX2YvW3btvqv//ov5eTkaODAgWrfvr1uvPFGSf+8qvTSSy/pF7/4hRYtWqSGhgZNnjxZiYmJoeCSpJycHM2cOVMDBw5UXFxc6G3BHj16aODAgRoxYoQiIiLUpk0bZWdnS5JeeOEFSbqgoMzOztaHH34Y2h4zZoyefPJJpaWlqVOnTkpMTLyk16S2tlbDhg1TXV2dsrOzdf3110vSOV+n8+nWrZtycnL02GOPqaGhQW3atNHLL7+syMjI8/7c008/rZ/+9Ke69957ZYzRhAkTdMstt4T2R0ZGatq0acrIyFD79u01YMCA0L6HHnpIM2bMUHp6ulq1aqXu3btr8ODBatGihRISEjR48GDl5eXppZde0pw5c/TKK6+ovr5ejz/+uPr06dNohpI0dOhQbdmyRYMGDdJVV12la6+9VmPGjJGk836AH0DTfOar17gBAADQrHibEgAAwCJiDAAAwCJiDAAAwCJiDAAAwCJiDAAAwKJv9F9tcfToSQWDzn0ZNDr6apWXVzn2+Lg0zMV9mIk7MRf3YSbu5PRcwsJ8atfu3H8Fzjc6xoJB42iMnT4G3Ie5uA8zcSfm4j7MxJ1szoW3KQEAACwixgAAACwixgAAACwixgAAACwixgAAACwixgAAACwixgAAACwixgAAACwixgAAACwixgAAACwixgAAACwixgAAACwixgAAACwixgAAACwKd/LBq6qqNGrUKL388svq1KlTo307duxQVlaWTp48qdtuu00/+9nPFB7u6HIuWFFxiVa8v0cVx2vV/prWGn5nVyX1jLO9rGZTVFyiP2/aqpk/nKp5SxZqYGKCp56/l50+98uP1yrag+c+vGlLyUda94+39WS/17TgLw8ptctQfTfuO7aXhWawpeQjrd5ToGO1xxTVOkpDug6wMnvHroz97W9/0wMPPKD9+/efdf+0adP09NNPa+3atTLGaNmyZU4t5aIUFZfotT/vVPnxWhlJ5cdr9dqfd6qouMT20prF6efftdNf1TnuoG7oVOip5+9lXz33Je+d+/CmLSUfKX/nct0QvU3Xfeuobojepvydy7Wl5CPbS4PDTs/+aO0xGUlHa49Zm71jMbZs2TLl5OQoJibmjH2ff/65ampq1KtXL0nS8OHDVVBQ4NRSLsqK9/foVH2w0W2n6oNa8f4eSytqXv7o8cqb/X1NeeBFSdLUB15Q3uzvyx893vLK4DSvn/vwJn/Uo3p12GJN7vuuJGly33f16rDF8kc9anllcNrqPQWqC9Y1uq0uWKfVe5q/Rxx7X3DOnDnn3FdWVia/3x/a9vv9Ki0tvehjREdffUlrO5+K/70qcLbb/f7Iy348t8n+zf3qOG63YtqXKbxFg+obWqjsaIx+u+Z+5c5yz/P3wiya29c995mJOzGX8/v5H3vpJ9cclr/tCYWHNaghGKbAyUi98bdeejHdmdeOmbjDsdpj57y9uWdk5UNawWBQPp8vtG2MabR9ocrLqxQMmsu5NLW/pnXobZp/vT0QOHFZj+VGtXX/rry1ozXtB/9P1bVt1DK8TnlrH9Cpun93zfP3+yNds5Yrydc595mJOzGXptXWddHST/9Djye9o+q6cLVs0aBln96m2voujrx2zMQ9olpH6ehZgiyqddRln1FYmO+8F5CsfJsyLi5OgUAgtH3kyJGzvp1pw/A7u6pVeOOXpVV4mIbf2dXSiprX8Du76s5ef1XtqdbKXztKtadaK6VXoWeev5d5/dyHNw3pOkC3d96n2vqW+n3xf6i2vqWSO+/TkK4DbC8NDhvSdYBahrVsdFvLsJZWZm/lyljHjh3VunVrffjhh+rTp49WrVqllJQUG0s5w+lvjnn125RJPeO048BUzfz1Ke07HKG/7UrViLtae+b5e9lXz32+TQmv+G7cd/T3yieVs6FYB47Xaevh2zT02z35NqUHnJ6xG75N6TPGXN73+f5F//799frrr6tTp07KyMhQZmam4uPjtXPnTmVnZ6uqqko9e/bUvHnz1KpVq4t6bCfepvwqLie7E3NxH2biTszFfZiJOzk9l6bepnQ8xpxEjHkTc3EfZuJOzMV9mIk72Y4x/gZ+AAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAi4gxAAAAixyNsTVr1mjQoEFKTU1VXl7eGfuLi4s1YsQIDRkyRBMmTNDx48edXA4AAIDrOBZjpaWlWrhwofLz8/X2229r6dKl2r17d6P7zJkzR5mZmVq9erWuv/56vfrqq04tBwAAwJUci7HCwkIlJiYqKipKERERSktLU0FBQaP7BINBnTx5UpJUXV2tNm3aOLUcAAAAVwp36oHLysrk9/tD2zExMdq6dWuj+8yYMUPjxo3T3LlzddVVV2nZsmUXdYzo6Ksvy1rPx++PdPwYuHjMxX2YiTsxF/dhJu5kcy6OxVgwGJTP5wttG2MabdfU1CgrK0tLlixRQkKCfvvb32r69OnKzc294GOUl1cpGDSXdd1f5fdHKhA44djj49IwF/dhJu7EXNyHmbiT03MJC/Od9wKSY29TxsXFKRAIhLYDgYBiYmJC27t27VLr1q2VkJAgSbr//vu1ZcsWp5YDAADgSo7FWHJysoqKilRRUaHq6mqtW7dOKSkpof1dunRRSUmJ9u7dK0nasGGD4uPjnVoOAACAKzn2NmVsbKymTp2qsWPHqq6uTiNHjlRCQoIyMjKUmZmp+Ph4zZs3T1OmTJExRtHR0Zo7d65TywEAAHAlnzHGuQ9dOYzPjHkTc3EfZuJOzMV9mIk7XbGfGQMAAEDTiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLiDEAAACLHI2xNWvWaNCgQUpNTVVeXt4Z+/fu3asxY8ZoyJAheuSRR1RZWenkcgAAAFzHsRgrLS3VwoULlZ+fr7fffltLly7V7t27Q/uNMXr00UeVkZGh1atX66abblJubq5TywEAAHAlx2KssLBQiYmJioqKUkREhNLS0lRQUBDaX1xcrIiICKWkpEiSJk6cqAcffNCp5QAAALhSuFMPXFZWJr/fH9qOiYnR1q1bQ9sHDhxQhw4dNGvWLO3YsUM33HCDnnrqqYs6RnT01Zdtvefi90c6fgxcPObiPszEnZiL+zATd7I5F8diLBgMyufzhbaNMY226+vrtWXLFr3xxhuKj4/X888/r2eeeUbPPPPMBR+jvLxKwaC5rOv+Kr8/UoHACcceH5eGubgPM3En5uI+zMSdnJ5LWJjvvBeQHHubMi4uToFAILQdCAQUExMT2vb7/erSpYvi4+MlSenp6Y2unAEAAHiBYzGWnJysoqIiVVRUqLq6WuvWrQt9PkySevfurYqKCu3cuVOS9O6776pnz55OLQcAAMCVHHubMjY2VlOnTtXYsWNVV1enkSNHKiEhQRkZGcrMzFR8fLx+/etfKzs7W9XV1YqLi9Ozzz7r1HIAAABcyWeMce5DVw7jM2PexFzch5m4E3NxH2biTlfsZ8YAAADQNGIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAImIMAADAonDbC3Cjj48c1/rPy3XsVL2iWoXrno7R6t3hGtvLajYfHzmuv5Ts16O3jdHiD36nfnH/7qnn72VeP/fhTVtKPtLqPQU6WntM7VpHaUjXAfpu3HdsLwsecs4rYy+88IKMMc25Flf4+Mhxvf2PMh07VS9JOnaqXm//o0wfHzlueWXN4/Tz79zuPf1b5D51jnrfU8/fy7x+7sObtpR8pPydy3W09pgk6WjtMeXvXK4tJR/ZXRg85ZwxtmnTJo0dO1aBQKA512Pd+s/LVRdsHKF1QaP1n5dbWlHz6hD1Iy28+3aNS8iRJI279WktvPt2dYj6keWVwWleP/fhTav3FKguWNfotrpgnVbvKbC0InjROWMsLy9PSUlJGjFihDZu3Nica7Lq9FWBC739SvPW3yeqvDpO9eaf72DXm3CVV8fprb9PtLwyOM3r5z686fQVsQu9HXDCOT8zFhYWpkmTJuk///M/lZ2drQ0bNqhz586h/Q8//HCzLLC5RbUKP+svn6hW3vh4XV399Vr12USN7zVLNfVXqWXYKa36bKLq6q+3vTQ4zOvnPrypXeuos4ZXu9ZRzb4WeFeT36YMCwuTz+fT7t27tWvXrtA/V6p7OkarZZiv0W0tw3y6p2O0pRU1r3s6Ruu7165XbcNVWv3ZBNU2XKXvXvuOZ56/l3n93Ic3Dek6QC3DWja6rWVYSw3pOsDSiuBF5/xPXmOMXn75Zb366quaOnWqHnzwweZclzWnvznm1W+U9e5wjfZUTdEviyJ0qOpb2hEYorTrqj3z/L3M6+c+vOn0tyb5NiVs8plzfGXy/vvvV3V1tRYsWKAbb7yxudd1QcrLqxQMOveNT78/UoHACcceH5eGubgPM3En5uI+zMSdnJ5LWJhP0dFXn3v/uXb07NlTb731lmtDDAAA4Epwzrcpn3766eZcBwAAgCfxv0MCAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwyNEYW7NmjQYNGqTU1FTl5eWd837vvfee+vfv7+RSAAAAXCncqQcuLS3VwoULtWLFCrVq1UqjRo1S37591a1bt0b3O3LkiObPn+/UMgAAAFzNsStjhYWFSkxMVFRUlCIiIpSWlqaCgoIz7pedna3HHnvMqWUAAAC4mmNXxsrKyuT3+0PbMTEx2rp1a6P7vP7667r55pt16623XtIxoqOv/lprvBB+f6Tjx8DFYy7uw0zcibm4DzNxJ5tzcSzGgsGgfD5faNsY02h7165dWrdunZYsWaKSkpJLOkZ5eZWCQfO113oufn+kAoETjj0+Lg1zcR9m4k7MxX2YiTs5PZewMN95LyA59jZlXFycAoFAaDsQCCgmJia0XVBQoEAgoBEjRmj8+PEqKyvT6NGjnVoOAACAKzkWY8nJySoqKlJFRYWqq6u1bt06paSkhPZnZmZq7dq1WrVqlXJzcxUTE6P8/HynlgMAAOBKjsVYbGyspk6dqrFjx2ro0KFKT09XQkKCMjIytG3bNqcOCwAA8I3iM8Y496Erh/GZMW9iLu7DTNyJubgPM3GnK/YzYwAAAGgaMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGARMQYAAGCRozG2Zs0aDRo0SKmpqcrLyztj/zvvvKP77rtPQ4YM0aRJk1RZWenkcgAAAFzHsRgrLS3VwoULlZ+fr7fffltLly7V7t27Q/urqqr005/+VLm5uVq9erW6d++uRYsWObUcAAAAV3IsxgoLC5WYmKioqChFREQoLS1NBQUFof11dXXKyclRbGysJKl79+46fPiwU8sBAABwpXCnHrisrEx+vz+0HRMTo61bt4a227Vrp3vuuUeSVFNTo9zcXI0ZM+aijhEdffXlWex5+P2Rjh8DF4+5uA8zcSfm4j7MxJ1szsWxGAsGg/L5fKFtY0yj7dNOnDihyZMnq0ePHho2bNhFHaO8vErBoPnaaz0Xvz9SgcAJxx4fl4a5uA8zcSfm4j7MxJ2cnktYmO+8F5Ace5syLi5OgUAgtB0IBBQTE9PoPmVlZRo9erS6d++uOXPmOLUUAAAA13IsxpKTk1VUVKSKigpVV1dr3bp1SklJCe1vaGjQxIkTNXDgQGVlZZ31qhkAAMCVzrG3KWNjYzV16lSNHTtWdXV1GjlypBISEpSRkaHMzEyVlJRo+/btamho0Nq1ayVJt9xyC1fIAACAp/iMMc596MphfGbMm5iL+zATd2Iu7sNM3OmK/cwYAAAAmkaMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWESMAQAAWORojK1Zs0aDBg1Samqq8vLyzti/Y8cODR8+XGlpacrKylJ9fb2TywEAAHCdcKceuLS0VAsXLtSKFSvUqlUrjRo1Sn379lW3bt1C95k2bZp+8YtfqFevXpo1a5aWLVum0aNHO7WkC3Z8U6GOrFiuXUcrFN6uvToMH6FrEpNtL6vZHN9UqKN//m/dPGOFtj8zXO0GPuCp5+9lp8/9+opyhbeP9ty5D2/ivIdtjl0ZKywsVGJioqKiohQREaG0tDQVFBSE9n/++eeqqalRr169JEnDhw9vtN+W45sKVfr6EtVXlEvGqL6iXKWvL9HxTYW2l9YsTj//yK7bFdH5hCJv2O6p5+9ljc59yXPnPryJ8x5u4FiMlZWVye/3h7ZjYmJUWlp6zv1+v7/RfluOrFguc+pUo9vMqVM6smK5pRU1r291mKy+v/u9vv34B5Kkb0/5QH1/93t9q8NkyyuD07x+7sObOO/hBo69TRkMBuXz+ULbxphG203tvxDR0Vd//YX+i11HK856e/3RCvn9kZf9eG7z4VPdFNGpTK39J6VwI1PvU21ZhP7xWjf1edk9z98Ls2huX/fcZybuxFzOz8a/85mJO9mci2MxFhcXpw8++CC0HQgEFBMT02h/IBAIbR85cqTR/gtRXl6lYNB8/cV+RXi79qHL1f96eyBw4rIey43qazvrQP4x3fjjLWqobiFfy6AO/PfNqq/t7Jrn7/dHumYtV5Kvc+4zE3diLk1r7n/nMxN3cnouYWG+815AcuxtyuTkZBUVFamiokLV1dVat26dUlJSQvs7duyo1q1b68MPP5QkrVq1qtF+WzoMHyFfq1aNbvO1aqUOw0dYWlHz6jB8hDr0+0LB2hY68N83K1jbQh36feGZ5+9lXj/34U2c93ADx66MxcbGaurUqRo7dqzq6uo0cuRIJSQkKCMjQ5mZmYqPj9eCBQuUnZ2tqqoq9ezZU2PHjnVqORfs9DdojqxYrnoPfpvymsRk1ex4Un+btUU1+6tV8bcExY7o65nn72WNzn2+VQaP4LyHG/iMMZf3fb5m5MTblF/F5WR3Yi7uw0zcibm4DzNxpyv2bUoAAAA0jRgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwiBgDAACwKNz2Ar6OsDDfFXEMXDzm4j7MxJ2Yi/swE3dyci5NPbbPGGMcOzoAAADOi7cpAQAALCLGAAAALCLGAAAALCLGAAAALCLGAAAALCLGAAAALCLGAAAALCLGAAAALCLGAAAALCLGAAAALCLGJK1Zs0aDBg1Samqq8vLyzti/Y8cODR8+XGlpacrKylJ9fb2FVXpPU3N55513dN9992nIkCGaNGmSKisrLazSW5qayWnvvfee+vfv34wr87am5rJ3716NGTNGQ4YM0SOPPMKflWbQ1EyKi4s1YsQIDRkyRBMmTNDx48ctrNJ7qqqqlJ6erkOHDp2xz+rveuNxJSUl5q677jJHjx41J0+eNPfee6/57LPPGt1n8ODB5uOPPzbGGDNz5kyTl5dnYaXe0tRcTpw4YW6//XZTUlJijDHm+eefNz//+c9tLdcTLuTPijHGBAIBM2DAAHPXXXdZWKX3NDWXYDBoUlNTzfvvv2+MMeaXv/ylefbZZ20t1xMu5M/KAw88YN577z1jjDHz5s0zzz33nI2lesonn3xi0tPTTc+ePc3BgwfP2G/zd73nr4wVFhYqMTFRUVFRioiIUFpamgoKCkL7P//8c9XU1KhXr16SpOHDhzfaD2c0NZe6ujrl5OQoNjZWktS9e3cdPnzY1nI9oamZnJadna3HHnvMwgq9qam5FBcXKyIiQikpKZKkiRMn6sEHH7S1XE+4kD8rwWBQJ0+elCRVV1erTZs2NpbqKcuWLVNOTo5iYmLO2Gf7d73nY6ysrEx+vz+0HRMTo9LS0nPu9/v9jfbDGU3NpV27drrnnnskSTU1NcrNzdXdd9/d7Ov0kqZmIkmvv/66br75Zt16663NvTzPamouBw4cUIcOHTRr1iwNGzZMOTk5ioiIsLFUz7iQPyszZsxQdna27rjjDhUWFmrUqFHNvUzPmTNnjm677baz7rP9u97zMRYMBuXz+ULbxphG203thzMu9HU/ceKExo8frx49emjYsGHNuUTPaWomu3bt0rp16zRp0iQby/OspuZSX1+vLVu26IEHHtDKlSt13XXX6ZlnnrGxVM9oaiY1NTXKysrSkiVLtHHjRo0ePVrTp0+3sVT8L9u/6z0fY3FxcQoEAqHtQCDQ6BLmv+4/cuTIWS9x4vJqai7SP/9LZvTo0erevbvmzJnT3Ev0nKZmUlBQoEAgoBEjRmj8+PGh+cBZTc3F7/erS5cuio+PlySlp6dr69atzb5OL2lqJrt27VLr1q2VkJAgSbr//vu1ZcuWZl8n/o/t3/Wej7Hk5GQVFRWpoqJC1dXVWrduXeizFZLUsWNHtW7dWh9++KEkadWqVY32wxlNzaWhoUETJ07UwIEDlZWVxdXKZtDUTDIzM7V27VqtWrVKubm5iomJUX5+vsUVe0NTc+ndu7cqKiq0c+dOSdK7776rnj172lquJzQ1ky5duqikpER79+6VJG3YsCEUy7DD9u/68GY7kkvFxsZq6tSpGjt2rOrq6jRy5EglJCQoIyNDmZmZio+P14IFC5Sdna2qqir17NlTY8eOtb3sK15TcykpKdH27dvV0NCgtWvXSpJuueUWrpA56EL+rKD5Xchcfv3rXys7O1vV1dWKi4vTs88+a3vZV7QLmcm8efM0ZcoUGWMUHR2tuXPn2l62J7nld73PGGOa7WgAAABoxPNvUwIAANhEjAEAAFhEjAEAAFhEjAEAAFhEjAEAAFhEjAHwtOLiYvXp00fbtm0L3VZRUaG7775b7733nr2FAfAM/moLAJ735ptvKjc3VytXrlTbtm01btw4JSUl6dFHH7W9NAAeQIwBgKRp06bpyy+/VOfOnXXw4EEtWrSI/7MDgGZBjAGApC+//FJDhw5VfX291qxZo7Zt29peEgCP4DNjACBp3759OnnypI4fP67i4mLbywHgIVwZA+B5FRUVGjlypJ544gnV1tZq4cKFWrlypfx+v+2lAfAAYgyApzU0NGjcuHHq1q2bnnrqKUnSzJkzdfDgQb322mtq0aKF5RUCuNLxNiUAT3v22WdVXV2t6dOnh257+umnVVlZqeeee87iygB4BVfGAAAALOLKGAAAgEXEGAAAgEXEGAAAgEXEGAAAgEXEGAAAgEXEGAAAgEXEGAAAgEX/HytavMO8MKwyAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 4 0.42\n" ] } ], "source": [ "print_sns_plot(dataset3)\n", "model11 = TrainModel_medoids(dataset3, 4)" ] }, { "cell_type": "markdown", "id": "b5e15802", "metadata": {}, "source": [ "### Przykłady z syntetycznymi zbiorami danych" ] }, { "cell_type": "code", "execution_count": 111, "id": "23475798", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAHwCAYAAAASMpP6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4tUlEQVR4nO3deXyU5b338e8kZF8MSxAOiguKUKvido5gH4G2gGGLCyqueHBBUfGgIki1LqgsxYJIUauc8nqpxYoF1FY8ohWrhLqjoIi7QUUTAmHIPslczx9hpgnZJsnMvc3n/ZczmeXiyu3MN79r8xljjAAAAOAYCXY3AAAAAI0R0AAAAByGgAYAAOAwBDQAAACHIaABAAA4DAENAADAYQhoAFr13XffaeDAgcrPz1d+fr7GjRuniRMn6sUXX4zo+UuXLtUrr7wSk7ZNnjxZu3fvbnJ/WVmZJk6cqDFjxujll1+O6nt+9913OvHEEzv8/A0bNujBBx9s9/MefPBBrV27tsPvC8BdutjdAADOl5qaqueeey58+/vvv9fll1+uxMREjRo1qtXnvvXWWzrqqKNi0q6NGzc2e/+2bdtUUlKi9evXx+R9O2PLli3au3dvu5934403xqA1AJyKgAag3fr06aNp06Zp+fLlGjVqlL7++mvdc889Ki8vV3FxsQYMGKDFixfr2Wef1datW7VgwQIlJibqqKOOavZxKSkpWrJkidavX6+kpCR17dpVc+fOVc+ePfXll1/qvvvuU2lpqerq6nTppZdqwoQJuu222yRJkyZN0h//+Ef17t1bkvTVV19p9uzZ+umnn5Sfn6+//OUvevPNN7V06VIFg0FlZGTotttu0/HHH6+HHnpImzdvVlFRkY455hgtXLiw0b/ztdde0+LFixUMBpWenq67775bmZmZ4Z8/9NBD2rNnj3772982uf3yyy/r4Ycfls/nU2Jiom699VYlJyfr6aefVl1dnbKysjR9+nStWrVKK1euVDAYVE5Oju644w7169dPs2bNUmlpqXbs2KFhw4appKRERx99tK644godd9xxuvrqq7Vx40YVFRXpyiuv1EUXXaS6ujotWLBA//jHP5SVlaXjjz9eX375pZ544gmLrgwAUWMAoBU7duwwgwYNanL/Z599Zk444QRjjDHz5s0za9euNcYYU1NTY8aOHWteeuklY4wxl1xyiVm3bl2rj/vhhx/MSSedZKqrq40xxixfvtysX7/eBAIBM3r0aLN161ZjjDF+v9/k5eWZDz74wBhjTP/+/U1JSUmTtv3rX/8yY8aMMcYY88UXX5ghQ4aYwsJCY4wxBQUF5vTTTzf79u0zS5YsMaNGjTKBQKDJaxQXF5uTTz7ZfPzxx8YYY/7v//7PXHHFFY36Y8mSJebuu+8OP6fh7V/96lfhdr7xxhvmoYceavKYt956y1x00UWmoqIi/LgzzzzTGGPMzJkzzaRJk8KvPXPmTPP444+H/91PPPGEMcaYLVu2mJ///OemqqrKrFy50lx88cWmqqrKVFdXm8mTJ5tLLrmkyb8NgPNRQQPQIT6fT6mpqZKkGTNmaOPGjXrsscf0zTffqKioSBUVFU2e09LjDj74YA0YMEBnn322zjjjDJ1xxhkaPHiwvvjiCxUWFmr27Nnh16iqqtInn3yiQYMGRdTOf/3rXzrttNN06KGHSpIGDx6sbt26aevWrZKkQYMGqUuXph+F77//vo4++mj97Gc/kySNHDlSI0eO1HfffRfR+44ZM0bXX3+9hg4dqtNPP11XXXVVk8ds2LBB3377rSZOnBi+z+/3q7S0VJJ08sknt/j6v/rVryRJxx57rGpqalRRUaHXX39d+fn5SklJkSRdcMEFVM8AlyKgAeiQLVu2qH///pKkm266SXV1dcrLy9OwYcO0c+dOmWaO+W3pcQkJCXryySe1ZcsWbdq0Sffff7/+3//7f8rPz1dWVlaj+W+7du1SVlZWxO0MBoPy+XyN7jPGqLa2VpKUnp7e7PMSExMbPc8Yo+3btzca4vT5fI3+nYFAIPzf06dP17nnnquNGzdq9erV+t///V89++yzTdqWn5+vGTNmhG8XFRXpoIMOarVtksIhLNRGY0yToJmQwDowwK34vxdAu3399ddatmyZJk+eLEl68803dd1112n06NGSpA8//FB1dXWS6oNOKAy19LhPP/1UY8eOVb9+/TRlyhRdfvnl2rJli4444ohGCxR27typsWPHhqtfDV+7JYMHD9abb76pHTt2SJI2bdqknTt36oQTTmj1eSeccIK+/PJLff7555KkV199NRykQrp27aqPP/5YxhiVlZXptddekyTV1tbql7/8pSorK3XhhRfqzjvv1Pbt21VTU9Oozb/4xS/097//XUVFRZKklStXatKkSa22qzVDhw7V888/r5qaGtXW1mrNmjUdfi0A9qKCBqBNVVVVys/Pl1RflUlJSdFNN92kYcOGSaqvFl133XVKT09XZmamTj31VBUWFkqSfvnLX+r3v/+9AoFAi48777zzlJeXp3PPPVfp6elKTU3V7bffruTkZC1btkz33XefHn/8cdXW1urGG28MD/2deeaZuvTSS/XQQw+Fq3kHOuqoo3TnnXfq+uuvV11dnVJTU/XII4+0WYXr0aOHFi5cqJkzZ6qurk6ZmZlatGhRo8eMHz9eb7zxhkaOHKmDDz5Y//mf/xmuZM2ePVu33HKLunTpIp/Pp/vvv1/Jyck67bTTdMstt2jOnDm64447dNVVV2ny5Mny+XzKzMzU0qVLm1T8InXOOefo66+/1llnnaX09HQdcsghSktL69BrAbCXzzQ3DgEAcJ0333xTJSUl4TB97733KiUlpUnlD4DzEdAAwCN++uknzZo1S7t27VIwGNSAAQN01113tWvOHgBnIKABAAA4DIsEAAAAHIaABgAA4DAENAAAAIdx3TYbe/aUKxi0b9pc9+6ZKikps+39nYA+qEc/0AcSfRBCP9AHIfRDfR/s2VOurl0zOvwargtowaCxNaCF2hDv6IN69AN9INEHIfQDfRBCP3S+DxjiBAAAcBgCGgAAgMMQ0AAAAByGgAYAAOAwBDQAAACHIaABAAA4DAENAADAYQhoAAAADkNAAwAAcBgCGgAAgMMQ0AAAAByGgAYAAOAwBDQAAACHIaABAAA4DAEN9vJJ/sqACovL5a+qlXx2NwgAAPt1sbsBiGM+aVvhXi15ZrOqA3VKSUrUtPMHaWDfgyRjd+MAALAPFTTYxl8RCIczSaoO1GnJM5vlrwjY3DIAAOxFQINtSstqwuEspDpQp9LyGptaBACAMxDQYJucrBSlJCU2ui8lKVE5Gck2tQgAAGcgoME22WldNO38QeGQFpqDlp2eZHPLAACwF4sEYB8jDex7kOZPHaLS8hrlZCTXhzMWCAAA4hwBDfYyUnZakrLTksK3AQCIdwxxAgAAOAwBDQAAwGEIaAAAAA5DQAMAAHAYAhoAAIDDENAAAAAchoAGAADgMAQ0AAAAhyGgAQAAOAwBDQAAwGEIaAAAAA5DQAMAAHAYAhoAAIDDENAAL/BJ/sqACovL5a+qlXx2NwgA0Bld7G4AgE7ySdsK92rJM5tVHahTSlKipp0/SAP7HiQZuxsHAOgIKmh2ouqBKPBXBMLhTJKqA3Va8sxm+SsCNrcMANBRVNDsQtUDUVJaVhMOZyHVgTqVltcoOy3JplZ5kK8+DJeW1SgnK0XZaV34fxVAzBDQbNJS1WP+1CF8qXZEHH955mSlKCUpsVFIS0lKVE5Gso2t8pjW/qACgBhgiNMmrVU90E77vzxnLivQXcvf0sw/bNS2wr1xM2ScndZF084fpJSkREkKh4fsdIJ+tMRkGJkpDgBaQQXNJlQ9oifuq5FGGtj3IM2fOkSl5TXKyUiuD2dxUkG0QtT/oGKKA4A22FpBmz9/vmbNmmVnE2xD1SN6qEZKMlJ2WpL69sioD6V8yUdV6A+qhjrzBxULOwC0xbYK2qZNm7RmzRoNGzbMribYi6pH1FCNRKyF/qA6sOLV0T+oWNgBoC22BLTS0lItWrRI11xzjT799FM7muAM+6se4Q9kwlmHtPrlSZ8iGqL8BxV/VABoi88YY/lX2LRp03ThhRdq586devvttzVv3jyrmwCPCQaNdu4q1+59leqWlabePTKUkMCsazhTMGi0actOLVr5fviPiukXnqTBx/XmugUgyYYK2qpVq9S7d28NHjxYq1evbvfzS0rKFAzaVxbJzc1ScfE+297fCdrsA5u2vEj2Sb2yUyUZlZSUxfz9uBboA6njfdC/T1aTipwV122scC3QByH0Q30flJSUqXv3zA6/huUB7cUXX1RxcbHy8/O1d+9eVVRU6P7779fs2bOtbgpigdVpQGSY4gCgFZYHtD/96U/h/169erXefvttwpmHxP2WFwAARAEb1SKq2PICAIDOs3Wj2nPOOUfnnHOOnU1AlLE6DZLi+ugtAIgGThJAVLHlBZiHCACdR0BDdBlp4GEH6d4pg1Xir1L37FR1z06WgnY3DFZhHiIAdB4BDdHlk7Z9a3H1hOE0R2GXfADoPAIaosry6gnDaY7DPEQA6DxWcSKqrF7FyaHTzhOahxg6XLyz51YCQDyigoaosrp6wnCaA0X53EoAiEdU0BBVVldPQoGwIYbTHGD/Lvl9e2TUB2XCGQC0CxU0RJfF1RO29QAAeBEBDdHX0TMGO7Iak+E0AIAHEdDgDJ1Zjcmh0wAAj2EOGtrHJ31fVKbC4nL5q2olX3ReltWYAAD8GxU0RC6Ge46xGhMAgH+jgoaIxbLKxWpMAAD+jYCGiMVyE9qWtudISPBFfTgVAACnY4gTEYvpJrTNrMYsLq3SjKUbOcIJABB3qKAhYjHfhLbB5qaStPDP77NoAAAQl6igIXL7q1wP3jRMP5aUxXTPMRYNAADiGQEN7WOkPj0zlewz4duxYPWZngAAOAlDnHAkq8/0BADASaigwZk4wgkAEMcIaHAujnACAMQphjgBAAAchoAGAK3xSf7KABsmA7AUQ5ywn6/+GKnSshrlZKUoO60Lw5mwXnPXoWJ3/iwAtIaABnvF8AB2IGItXId9eqQ3e/7s/KlD2I8PQEwxxAlbxfIAdiBSLV2Hu/zVHT9/lqFRAJ1ABQ224sQAOEFL12FaSpeObZhMZRhAJ1FBQ/v4pO+LyqJWFQidGNAQJwbAai1dh1kd3DCZyjCAzqKChsjFoCoQOjHgwNdkU1pYqaXrMDO1S4c2TKYyDKCzCGiIWEtVgU5NmG7txABWd8IqbZxc0d4NkzlLFkBnEdAQsahVBZoJXk2+AJnDA6tF8eQKKsMAOouAhohFpSoQYfCKSbUOsApnyQLoJBYJIGLZHZww3VCkk6dbq9YBrrC/Ite3R0b9HxWEMwDtQAUNkdtfFXjwpmH6saSsQ1WBSIdJux2UqokjjlHQ1L/4P94t1L7yAHN4AABxgYCG9jFSn56ZSvaZ8O32iGiY1Cft+KlMazZ8ER4GnTiivw7JzYztMBGLEgAADsEQJywVyTBpc8OgT6//TLk5qTENZ9sK92rmsgLdtfwtzfzDRm0r3Mvu7wAAW1BBg7UOmDzdLStFwaBRYVF5uGplxx5SLEoAADgJAQ3WC21nkJ7U7IrOQw/OtHwPKTYWBQA4CUOcsE1LVatgXbDTq0Vb1MIB1hw5BQBwEiposE1rVauY7CHVyh5sbCwKV2AhCxA3CGiInnZ+ebS6ojOKu7qHtDXPjI1F4WicrgHEFYY4ER0dWAWZ4JMmjujfaChz4oj+SkiIzdLJNje/ZWNRa7Uw3IzmRbrJMwBvoIKGqOjIKsjd/mr9veBr5Z/Rr/7L2Uh/L/haR/xHtjJTon9pcoC1g1ANajcWsgDxhQoaoqIjRzPlZKVoX3lAz7z6mZ555TM98+pnMT0tIBpHVSE6XFUNinalr4Ovx0IWIL5QQUNUtLs65ZNkjKZdMEg7firTK+98q33lgdhOzOcAa8dwTTUo2pW+TrweC1mA+EJAQ1S068ujmS+pa889Xkf2zlJmaoxXpcVg8QHazy3DzdHewLhTr8cfGEBcIaAhOtrx5dHcl9TDf/1I86cO4csmTrilGhTtSl+nX48/MIC4QUBD9ET45eGa4S3EjkuqQZFU+oJBI39lZNvLuKVyCMB+LBKA5ZjsDEmu2NakzYUlPmnTlp0Rby/DQhUAkfIZYxz4sdiykpIyBYP2NTk3N0vFxftse38n6HQfeGSLBa6FOOmD0AbMzVT6/JUBzVxW0KQi1uqcslZez83i4lpoA31Qj36o74OSkjJ1757Z4ddgiBPWc8nwFjykM0cktTJ036HheuaRAYgAAQ324EsKVolhxZY5ZQBihTloADwtlpviZqd10fQLT2JOGYCoo4IGwNNiumrYSIOP661eXRmub1FnhpeBOEZAA+BpsR6GTEjwMVzfEo8sCALswBAnAE9jawv7uOrMVcBhqKAB8DZWDduGTamBjiOgAfA+Vg3bglWuQMcxxAkAiAmGl4GOo4IGAIgNhpeBDiOgoXXNLZEHgEgxvAx0CN+2aFkLS+S7d+v42WIAAKBtzEFDi1paIr9zV7nNLQMAwNtsCWhLly7VmDFjNGbMGC1YsMCOJiACLS2R372v0qYWAQAQHywPaAUFBXrzzTe1Zs0arV27Vh9//LHWr19vdTMQgdAS+YZSkhLVLSvNphYBABAfLA9oubm5mjVrlpKTk5WUlKR+/frphx9+sLoZiEBLS+R798iwuWWAw/kkf2VAhcXl8lfVSj67GwTAbXzGGNvW1HzzzTe68MILtXLlSh1++OF2NQOtCAaNdu4q1+59leqWlabePTKUkMC3DdwjfA37K9UtO/bXcDBotGnLTi1a+X54cc30C0/S4ON68/8OgIjZFtA+//xzTZkyRTfccIPOPvvsiJ9XUlKmYNC+ddq5uVkqLt5n2/s7AX1QzzH90NxWKBb9L+KYPmiJBYd1H9gH/sqAZi4raLJ7/vypQzx9vJHjrwUL0Af16If6PigpKVP37h3f9cCWRQLvvfeeLr/8ct18883tCmcADrA/gMxcVqC7lr+lmX/YqG2FexlS28+Ow7pbO38SACJleUDbuXOnrrvuOi1cuFBjxoyx+u0BT7EjgLiJHWGppcU1nD8JoD0sD2jLly9XdXW15s2bp/z8fOXn52vlypVWNwPwhLis1kQ6Ad8nZaQlaeKI/jr/1/3VIydVUuzDEudPAogGy08SuP3223X77bdb/baAJ4WqNQfOd/JstSbSOWXNPO6CEf21/q1vdcmZA2N7HiTnTwKIAk4SAFws3qo1kQ7pNve4v6z/TDddeFJUFwi0aP/5k317ZNQvDCCcAWgnzuIEOsvGVZTxVq1pbUi34QrJlh5XXhVQ90yPVhcBeAoBDegMC7ZxaNP+ak04oHg0nEmRD+nG3dAvAM9hiBNor/2T1Ld8UaySfTWsorRQpEO68Tb0C8B7qKAB7XFAxWziiP4RDbkhSiId0o3kcXYOTQNAGwhoQDscOPk8aMRQmtUiHdJt7XFOGJoGgFYwxAm0w4GTz//xbqEuGNGfoTSXYYNfAE5HBQ1ohwMnn+8qrdL6t77VvVMGq7wq4PlVlF4R6WpQALALFTSgHZqbfH7JmQPVPSuZPa9chOOYADgdFTSvYeJzbDWYfF4RqFN6UiIVMxcKBe0D56DxuwTgFAQ0L2HiszX2Tz7v17ebiov30bduFGcb/AJwH4Y4PYSJz0A7cBwTAAcjoHlIaxOfAQCAexDQPISJz0A77T8VorC4XP6qWslnd4MAoB5z0DyEic9AOzBnE4CDEdC8hInPQMRamrM5f+oQ9kIDYDsCmtdEegwO4AWd2FaGzWoBOBkBDYA7dXKI8sBTISTmbAJwDhYJAHClzm4r09ypEJyjCsApqKABcKVOD1EyZxOAgxHQALhSVIYombMJwKEY4gTgSgxRAvAyKmgA3Km1IcpOrO4EACcgoAFwr+aGKNmAFoAHMMQJwFM6u7ozpjhaCkCEqKAB8BTHbkBLZQ9AO1BBA+ApodWdDTlhA1pHV/YAOA4BDYCnOHV1Z2uVPQA4EEOcALzFoRvQcrQUgPagggbAe/av7uzbI6N+3pkD5ng5tbIHwJmooAGAFRxa2QPgTAQ0ALAKR0sBiBBDnAAAAA5DQAMAAHAYAhoAAIDDENAAAAAchoAGAADgMAQ0AN7F4eQAXIptNgB4E4eTA3AxKmgAPInDyQG4GQENgCdxODkANyOgAfCk0OHkDUX9cHKf9H1RGXPcAEQdc9AAeFLocPID56BF7fxL5rgBiCECGgBvivHh5C3NcZs/dci/z9oEgA4ioAHwrhgeTt7aHDcCGoDOYg4aAHSAJXPcAMQtAhoAdEBojlsopDWa4wYAncQQJwB0xP45bg/eNEw/lpRFfY4bgPhGQAOAjjJSn56ZSvaZ8G0AiAaGOAEAAByGgAYAAOAwBDQAAACHIaABAAA4DAENAADAYQhoAAAADkNAAwAAcBgCGgAAgMMQ0AAAAByGgAYAAOAwBDQAAACHIaABAAA4DAENAADAYWwJaC+88IJGjx6tkSNH6qmnnrKjCQAAAI7Vxeo3/Omnn7Ro0SKtXr1aycnJmjhxov7rv/5LRx11lNVNAQAAcCTLK2gFBQU67bTTlJOTo/T0dI0aNUovvfSS1c0AAABwLMsraEVFRcrNzQ3f7tmzpz766KOIn9+9e2YsmtUuublZdjfBdvRBPfqBPpDogxD6gT4IoR86n1csD2jBYFA+ny982xjT6HZbSkrKFAyaWDQtIrm5WSou3mfb+zsBfVCPfqAPJPoghH6gD0Loh/o+KCkp61RIs3yIs1evXiouLg7fLi4uVs+ePa1uBgAAgGNZHtCGDBmiTZs2affu3aqsrNTLL7+sM844w+pmAAAAOJblQ5wHH3ywpk+frssuu0yBQEATJkzQ8ccfb3UzAAAAHMvygCZJ48aN07hx4+x4awAAAMfjJAEAAACHIaABAAA4DAENAADAYQhoAAAADkNAAwAAcBgCGgAAgMMQ0AAAAByGgAYAAOAwBDQAAOKdT/JXBlRYXC5/Va3ks7tBsOUkAQAA4BA+aVvhXi15ZrOqA3VKSUrUtPMHaWDfgyRjd+PiFxU0AAC8rI3qmL8iEA5nklQdqNOSZzbLXxGwobEIoYIGAIBXRVAdKy2rCYezkOpAnUrLa5SdlmRDoyFRQQMAwLMiqY7lZKUoJSmx0fNSkhKVk5FsaVvRGAENAACPaq06FpKd1kXTzh8UDmmhKlt2OtUzOzHECQCAR4WqYw1DWpPqmJEG9j1I86cOUWl5jXIykuvDGQsEbEUFDQAAj4q4Omak7LQk9e2RUT/vjHBmOypoAAB4FdUx1yKgAQDgZfurY+EVmYQzV2CIEwAAwGEIaAAAAA7TZkC74YYbVFBQYEVbAAAAoAgC2ogRI7Rs2TKNGjVKy5cvV2lpqQXNAgAAiF9tBrTx48frySef1LJly1RSUqIJEyZoxowZ+uijj6xoHwAAQNyJaA5aMBjUt99+q2+++UZ1dXXq3r277rrrLi1ZsiTW7QMAAIg7bW6zsWjRIq1evVqHHnqoLrroIj344INKSkpSRUWFhg8frmnTplnRTgAAgLjRZkDbvXu3HnvsMQ0YMKDR/enp6XrggQdi1jAAAIB41WZAmzNnTos/+8UvfhHVxgAAAIB90AAAAByHgAYAAOAwBDQAAACHIaABAAA4DAENAADAYQhoAAAg+nySvzKgwuJy+atqJZ/dDXKXNrfZAAAAaBeftK1wr5Y8s1nVgTqlJCVq2vmDNLDvQZKxu3HuQAUNAABElb8iEA5nPXJSlX9GP+0o2qeSfTVU0iJEBQ0AAERVaVlNOJyNHnKE/rL+M1UH6rRmw5dU0iJEBQ0AAERVTlaKUpIS9cuT+4bDmSRVB+q05JnN8lcEbG6h8xHQAABAVGWnddG08wcpIUHhcBZSHahTaXmNTS1zDwIaAACILiMN7HuQTj6mp1KSEhv9qHf3dGWkJrG6sw3MQQMAANFnpO5ZyZp2/qDwgoHe3dN1/q/76/ZHN7G6sw0ENAAAEBv7K2nzpw5RaXmNMlKTwuFM+vectPlThyg7LcnmxjoLQ5wAACB2jJSdlqS+PTJUXhlgTlqECGgAAMASodWdDaUkJSonI9mmFjkXAQ0AAFgitLozFNJCc9Cy0xnePBBz0AAAgDUOmJOWk5FcH85YINAEAQ0AAFhn/5y08KKA9oYzX/1RUqVlNcrJSlF2WhdPBjwCGgAAcIc4OoSdOWgAAMAVGh7CLnn76CgCGgAAcIXQIewNeXWbDgIaAADxxif5KwOuO24pnrbpYA4aYitOJnMCgGu4eB5XaJuOA9vuxZWgBDTEjos/BADAq1qax+WK45biaJsOhjgRM/E0mRMA3ML187gaHB2VnebNcCYR0BBDrv8QAAAPiqd5XG5GQEPM8CEAABaLYPI/xy25A3PQEDPxNJkTAGwX6bzfOJrH5WYENMQOHwIAYJl2Tf7v7HFLiDkCGmKLDwEAsERr834dvzoTTTAHDQAAD2Der7cQ0AAA8AAm/3sLQ5wAAHgB8349hYAGAIBXMO/XMxjiBAAAcBjLA9p7772nCRMmKD8/X5MmTdL3339vdRMAAAAczfKANmPGDN1777167rnnNG7cON17771WNwEAAMDRLA1oNTU1uvHGGzVgwABJ0jHHHKOdO3da2QQAAADH8xljbJlCGAwGde211+q4447T9ddfb0cTAACAgwSDRjt3lWu3v1LdstPUu0eGEhKaOVA0DsRsFee6des0d+7cRvcdeeSRWrFihWpqajRr1izV1tZqypQp7XrdkpIyBYP2LUvJzc1ScfE+297fCeiDevQDfSDRByH0A30Q0uF+iPQsURfIzc1SSUmZunfP7PBrxCyg5eXlKS8vr8n95eXluvbaa5WTk6OHH35YSUlsoAcAQLxr11miccCWRQKHHXaYFi9erORkjp8AAACtnyUajyzdqPaTTz7Rq6++qqOOOkpnn322JKlnz5567LHHrGwGAACIkWDQyF8ZUGlZjXKyUpSd1iWiIcrQWaINQ1o8nyVqaUD72c9+pu3bt1v5lgAAwCo+adOWnVq08v12zyMLnSV64By0eD2uiqOeAABAVPgrAuFwJrUwj8xX/7gmFTbOEm2EgAYAAKKitXlk2WlJba/U5CzRMM7iBAAAURGaR9ZQw3lkLa3U9FcELG+r0xHQAABAVGSnddH0C08Kh7RG88jESs32YIgTAIB40NLcr2gy0uDjeqtX1+bnkbFSM3IENAAAvM6KXfr3B8Afv9ql9JQu6pubEZ5XFsJKzcgR0AAA8LiY79IfaQBkpWbEmIMGAIDHxXruV7sm/+9fqdm3R0Z9OCScNYuA5jY+yV8ZUGFxufxVtZLP7gYBAJyurdWVncXk/+hjiNNNrJhDAADwnFjP/WLyf/QR0Fwk5nMIYiFaq4asWH0EAF4V47lfTP6PPgKai7S5Q3MkrAw60ar4UTkEgM6L5S79DQJgRaBO6UmJhLNOYg6ai3R6DsH+oDNzWYHuWv6WZv5ho7YV7o3ZPLZo7RjNztMA4AL7A+Bx/XKZ/B8FBDQXCZWQW9qhuS1WB51oTRpl8ikAIN4wxOkmnZxDEJUh0naI1qRRJp8CAOINFTS36cT+MbFeZn2gzlb8ov06AAC4BRW0OGL5KptorRpi52kAQJwhoMUTO4JOtFYNxXL1EQAADkNAizcEHQAAHI85aAAAAA5DQAMAAHAYAhoAAIDDENAAAIgnPslfGVBhcbn8VbWRnybT0eehQ1gkAABAvOjo2caciWw5KmgAAMSJjh75x5nI1iOgAQAQJzp6tjFnIluPgAYAQJzo6JF/Vh8VCAKaOzFREwDQAR0925gzka3HIgG3YaImAKCjOnrkH2ciW44KmsswURMA0Cn7j/zr2yOj/ti/SENWR5+HDiGguQwTNQEA8D4CmsswURMAAO8joLkMEzUBAPA+Fgm4DRM1AQDwPAKaG+2fqJmdlhS+DQAAvIMhTgAAAIchoAEAADgMAQ0AAMBhCGhuE4tjnjg6CgAAR2GRgJvE4pgnjo4CAMBxqKC5SMNjnnrkpCr/jH7aUbRPJftqOlz14ugoAACch4DmIqFjnnrkpGr0kCP03D+/1NPrP9Ptj27StsK9TUNaBEOXHB0FAIgrLpnWwxCni4SOefrlyX31l/WfNal6zZ865N97o0U4dBl6zYYhjaOjACBO+epHVkrLapSTlaLstC7emu7iomk9VNBcJHTMU0KC2qx6RTp0ydFRAABJ4fAyc1mB7lr+lmb+YWPzozMu5qZpPVTQ3GT/MU89u6ZpzYYvW616tTZ0Ga6yNXhNjo4CgPjWUni5d8pgdc9Kjv33ggXVu4i/Gx2AgOY2Ruqelaxp5w9qUqJtGKzaNXTJ0VEAEPdaCi/vbS/SoT2zYjsMaNHQo5um9TDE6UYNql53Xflfmj91SJOLmKFLAEB7hMJLQylJiQoGFfNhQKuGHt303UgFza3aqnq5dejS6xNUAcChQuGlYRXrghH99WLB19EZBmzl892yoUcXfTcS0LzMbUOXLlpdAwCesz+83DtlsN7bXqRgUHqx4GvtKq1qfhiwPX9Qt/H5bunQo0u+GxnihGO4aXUNAHjS/nnOh/bM0nP//DIczpoMA7ZzxWdbn+9uGnq0ChU0OIabVtcAgGdFMAzYUuCaP3WIcpt5yTY/31009GgVAhocw02rawDA09oYBmzvKTQRfb67ZOjRKgxxRoMTjo1wQhs6iRI3ALhDSys+W/qDms/39qOC1llOmNjuhDZEAyVuAHCF5lZ8thq4+HxvNwJaJ7U2Dm/VvCkntCFqKHEDgPN1JHDx+d4uBLROcsLEdie0AQAQZwhcMcUctE5q7zi8V9sAAACih4DWSU6Y+OiENgAAgOhhiLOznDDx0QltAAB4H8fxWYaAFg1OGId3QhsAAN7llR0DXIIhTgAA0CaO47MWAQ0AALSpvacHoHNsC2iffPKJfv7zn9v19gAAoB3YMcBatgS0yspKzZkzR4EAZVEAAByhjSMD2THAWrYsEpg3b54mTZqk999/3463BwAADUWyAKAzOwaw+rPdLA9or776qqqqqnTmmWda/db24uIEADhUxEcGdmTHAFZ/dkjMAtq6des0d+7cRvcdeeSRKisr04oVKzr8ut27Z3ayZZ2Xm5vVrscHg0abtuzUopXvhy/O6ReepMHH9VZCgq/tF3Cg9vaBV9EP9IFEH4TQD+7tgx+/KG52AUBFoE79+nZr9+s17Ifvi8qaDX8P3jRMfXra/50eK53NKzELaHl5ecrLy2t036pVq/Too4/q4osvDt+Xn5+vp556SpmZkf1DSkrKFAzaF7lzc7NUXLyvXc/xVwbC4UyqvzgXrXxfvbq68DBzdawPvIh+oA8k+iCEfnB3H6SndFFKUmKjkJaSlKj0pMR2/5sO7Icfd5U3G/5+LClTss+bJbTc3CyVlJR1KqRZOsR53nnn6bzzzgvfPuaYY/Tcc89Z2QRbeO0w82DQyF/JcC0AeEVoAcCBw5DROJUmtPrzwPDH6s/WcZKABTx1cfrUZLiWuQQA4HIxPDIwluHPy2wNaNu3b7fz7S3jpYvTX9F0uLbZiaQAAHeJ1ZGBnBfdIVTQrOChi9Nrw7UAAAtwXnS7EdCs4pGL01PDtQAAOBRncaJdstO6aPqFJ7GTNAAAMUQFDe1jpMHH9Vavru4frgUA2ITN29tEQEO7JST4PDFcCwCwAScLRIQhTgAAYJmWjpXyVwRsbpmzENDiga/+NIPC4nL5q2old54uBQDwgNZ2A8C/McTpdZSSAQAOwm4AkaGC5nGUkgEAThLavJ3dAFpHBc3jLNlYltU4AIBIeWjz9lgioHlczEvJDKECANrLI5u3xxJDnB4X61IyQ6gAAEQfFTSvi3EpmbM5AQCIPgJaPIhhKZnVOAAARB9DnOgUVuMAABB9VNCcyi0rI1mNAwBA1BHQnMhtKyNZjQMAQFQxxOlArIwEACC+EdAciHPKAACIbwQ0BwqtjGyIlZEAAMQPAlpn+CR/ZUCFxeXyV9VKvui8LCsjAQCIbywS6KhYTuRnZSQAAHGNCloHxXwi//6VkX17ZNSvjrQjnMWoQggAAFpHBa2DPH/EUWsVQgAAEFNU0DrI6xP52eoDAAD7ENA6yOsT+dnqAwAA+zDE2VEen8jPIegAANiHClpnOGEif4x4vUIIAICTUUFD8zxeIQQAwMkIaGgZh6ADAGALhjgBAAAchoDmdWw2CwCA6zDE6WWxPI4KAADEDBU0D2OzWQAA3ImA5mFsNgsAgDsR0DzM68dRAQDgVQQ0D2OzWQAA3IlFAl7GZrMAALgSAc3r2GwWAADXYYgTAADAYQhoAAAADkNAAwAAcBgCGgAAgMMQ0AAAAByGgAYAAOAwBDQAAACHIaABAAA4DAENAADAYQhoTuCT/JUBFRaXy19VK/nsbhAAALATRz3ZzSdtK9yrJc9sVnWgLnyg+cC+B3EsEwAAcYoKms38FYFwOJOk6kCdljyzWf6KgM0tAwAAdiGg2ay0rCYczkKqA3UqLa+xqUUAAMBuBDSb5WSlKCUpsdF9KUmJyslItqlFAADAbgQ0m2WnddG08weFQ1poDlp2epLNLQMAAHZhkYDdjDSw70GaP3WISstrlJORXB/OWCAAAEDcIqA5gZGy05KUnZYUvg0AAOIXQ5ywFnu+AQDQJiposA57vgEAEBEqaLAMe74BABAZAhosw55vAABEhoAGy7DnGwAAkSGgwTLs+QYAQGRYJADrsOcbAAARsTygFRUV6fbbb1dRUZFSU1O1cOFCHXLIIVY3A3ZhzzcAANpk+RDnrbfequHDh2vt2rXKz8/XwoULrW5Cy9ijCwAAOIClFbTdu3fr008/1Z/+9CdJ0rnnnqvBgwdb2YSWsUcXAABwCJ8xxrL48eGHH+ruu+/WqaeeqnfffVe5ubm644471KdPH6ua0KLvi8p04+83NNoGIiUpUQ/eNEx9emba2DIAABBvYlZBW7dunebOndvovsMOO0yffPKJbrjhBt12221atWqVZs2apSeeeCLi1y0pKVMwGP1M+eOu8mb36PqxpEzJvn+/X25uloqL90X9/d2EPqhHP9AHEn0QQj/QByH0Q30flJSUqXv3jhd4YhbQ8vLylJeX1+i+wsJCnX322Ro+fLgkaezYsbr33ntj1YR2Ce3RdWAFjT26AACA1SxdJNC3b1/16tVLr7/+uiTptdde07HHHmtlE1rEHl0AAMApLN9m46GHHtKdd96p3/3ud8rMzNS8efOsbkLz2KMLAAA4hOUB7cgjj2zXnDNLsUcXAABwAI56AgAAcBgCmtuxuS4AAJ7DWZxuxua6AAB4EhU0F/NXBMLhTKrft23JM5vlrwjY3DIAANAZBDQXKy2raXZz3dLyGptaBAAAooGA5mKhzXUbYnNdAADcj4DmYmyuCwCAN7FIwM3YXBcAAE8ioLkdm+sCAOA5DHECAAA4DAENAADAYQhoAAAADkNAAwAAcBgCGgAAgMMQ0AAAAByGgAYAAOAwBDQAAACHIaABAAA4DAENAADAYQhoAAAADkNAAwAAcBgCGgAAgMN0sbsB7ZWQ4LO7CY5og93og3r0A30g0Qch9AN9EEI/dL4PfMYYE6W2AAAAIAoY4gQAAHAYAhoAAIDDENAAAAAchoAGAADgMAQ0AAAAhyGgAQAAOAwBDQAAwGEIaAAAAA5DQAMAAHAYAhoAAIDDuO4sTqssXrxYiYmJuuGGGyRJfr9ft9xyi3bs2KFu3bpp8eLFys3NbfQcY4wWLFig1157TQkJCZozZ45OPvlkO5ofNSUlJZo8eXL49r59+7Rnzx598MEHjR73/fffa+zYserbt68kqUePHlq+fLmlbY2lNWvW6IEHHlD37t0lScOGDdP06dMbPaampka/+c1vtHXrVqWmpmrhwoXq16+fHc2Nmffee09z585VIBBQTk6O7r//fvXp06fRY7x6Lbzwwgt6+OGHVVtbq0mTJuniiy9u9PNt27bpN7/5jcrLy3XKKafo7rvvVpcu3vqIXbp0qdatWydJGjp0qG699dYmP//rX/+q7OxsSdL555/fpJ+84NJLL9Xu3bvDv9977rlHJ5xwQvjnXr8WVq1apSeffDJ8+7vvvlN+fr5++9vfhu/z8rVQVlamiRMn6pFHHtEhhxyigoICzZ07V9XV1crLy2vy3SBJP/zwg2bMmKGSkhIdccQRWrhwoTIyMlp/I4NG/H6/ue2228zxxx9vlixZEr7/7rvvNo8++qgxxpg1a9aYG2+8sclz161bZ6666ipTV1dnvvrqKzNixAgTCASsanrM1dXVmUsuucQ8//zzTX720ksvmTvuuMOGVlnjnnvuMS+88EKrj3n88cfDffD222+b8847z4qmWWr48OFm27ZtxhhjVq1aZa655pomj/HitfDjjz+a4cOHmz179pjy8nIzbtw48/nnnzd6zJgxY8wHH3xgjDHmtttuM0899ZQNLY2djRs3mgsuuMBUV1ebmpoac9lll5mXX3650WOmTJli3n//fZtaaI1gMGh+8YtftPrZ7vVroaHPPvvMjBgxwpSUlDS636vXwubNm83YsWPNsccea3bs2GEqKyvN0KFDTWFhoQkEAmby5Mlmw4YNTZ539dVXm7/97W/GGGOWLl1qFixY0OZ7McR5gFdffVWHH364/vu//7vR/Rs2bNC4ceMkSWPHjtU///lPBQKBRo95/fXXNXr0aCUkJOiII45Q7969m1Sa3Oyvf/2r0tLSwv3Q0JYtW/TZZ58pPz9fl112mbZv325DC2Nny5YtWrNmjcaNG6dbbrlFe/fubfKYDRs2aPz48ZKkU089Vbt379YPP/xgdVNjpqamRjfeeKMGDBggSTrmmGO0c+fOJo/z4rVQUFCg0047TTk5OUpPT9eoUaP00ksvhX/+/fffq6qqSoMGDZIknXPOOY1+7gW5ubmaNWuWkpOTlZSUpH79+jW5vrdu3apHH31U48aN0z333KPq6mqbWhs7X331lSRp8uTJGj9+fKNKkhQf10JDd911l6ZPn65u3bo1ut+r18IzzzyjO++8Uz179pQkffTRRzrssMN06KGHqkuXLho3blyT33cgENA777yjUaNGSYr8miCgHeCss87S1VdfrcTExEb3FxUVhYc0u3TposzMTO3evbvJY0K/NKn+A+3HH3+MfaMtUFdXp0ceeUQ333xzsz9PSUnR+PHjtWbNGl1xxRW67rrrVFNTY3ErYyc3N1dTp07V888/r969e+uee+5p8piG10joOV75/UtScnKy8vPzJUnBYFBLly7Vr3/96yaP8+K1cODvtmfPnvrpp59a/Hlubm6jn3vB0UcfHQ4d33zzjdatW6ehQ4eGf15eXq6BAwdqxowZWrNmjfx+v5YtW2ZTa2PH7/dr8ODB+sMf/qAVK1bo6aef1saNG8M/j4drIaSgoEBVVVXKy8trdL+Xr4X77rtPp5xySvh2W58NkrRnzx5lZmaGh7kjvSa8MyjeTuvWrdPcuXMb3XfkkUdqxYoVET3fGKOEhMb5NhgMyufztfoYJ2utT9544w0dfvjhOuaYY5p9bmiunlQ/N+WBBx7QV199Fa62uEUk18WVV16pESNGNHmuMcbVv/+GWuuHmpoazZo1S7W1tZoyZUqT53rlWmiouf+3G95u6+de8vnnn2vKlCm69dZbdfjhh4fvz8jI0GOPPRa+PXnyZM2ePbvZ+ThuduKJJ+rEE08M354wYYJef/11nX766ZLi61p4+umnm4w2SfFzLUiR/b6buy+SayJuA1peXl6T1N+anj17ateuXerVq5dqa2tVXl6unJycRo/p1auXioqKwrd37drVqKLmdK31ySuvvKLRo0e3+NwnnnhCY8eOVdeuXSXVX5BunBTbXB/s27dPK1as0OWXXy6p/t92YIVVkg4++GAVFRWFJ8e77fffUEvXQnl5ua699lrl5OTo4YcfVlJSUpPHeOVaaKhXr1569913w7eLi4sb/W579eql4uLi8G03/+5b895772natGmaPXu2xowZ0+hnP/zwgwoKCjRhwgRJ3vi9N+fdd99VIBDQ4MGDJTX9d8bLtVBTU6N33nlH8+bNa/KzeLkWpKa/7wM/GySpW7du2rdvn+rq6pSYmNjsY5rjzj/vbTB06FCtXbtWkvTiiy/qlFNOafLldMYZZ+iFF15QXV2dvv32W33zzTc67rjjbGht9G3evLlRWfdA77zzjp599llJ0ttvv61gMKgjjzzSqubFVHp6uh5//HF9+OGHkqQnn3yy2Qra0KFD9dxzz0mq/xBPSUnRf/zHf1ja1libMWOGDjvsMC1evFjJycnNPsaL18KQIUO0adMm7d69W5WVlXr55Zd1xhlnhH/ep08fpaSk6L333pMkPffcc41+7gU7d+7Uddddp4ULFzYJZ5KUmpqq3/3ud9qxY4eMMXrqqaea/f/E7fbt26cFCxaourpaZWVlWrNmTaN/ZzxcC5K0fft2HX744UpPT2/ys3i5FiTphBNO0Ndff61vv/1WdXV1+tvf/tbk952UlKRTTjlFL774oiRp7dq1kV0TnV3R4FVLlixptIpzz549ZsqUKWb06NHmggsuMDt27DDGGPPKK6+Y2bNnG2PqV/fMmzfPjB492owePdq88cYbtrQ9Fo4//nhTVVXV6L4///nPZvHixcaY+lVul19+uRkzZow555xzwiv9vOKdd94xZ511ljnzzDPNNddcY/x+vzGmcR9UVVWZW2+91YwePdqcddZZZuvWrXY2Oeo+/vhj079/fzN69Ggzfvx4M378eHPllVcaY+LjWnj++efNmDFjzMiRI80f//hHY4wxV155pfnoo4+MMcZs27bNnHvuuWbUqFHmpptuMtXV1XY2N+rmzJljBg0aFP7djx8/3vz5z39u1AcvvfRSuI9mzZrluT4IWbRokTnzzDPNyJEjzYoVK4wx8XUtGGPM3//+d/M///M/je6Lp2th+PDh4RxQUFBgxo0bZ0aOHGnuu+8+EwwGjTHGzJ4927zyyivGGGO+++47c8kll5i8vDwzefJkU1pa2uZ7+IwxJhapEgAAAB3DECcAAIDDENAAAAAchoAGAADgMAQ0AAAAhyGgAQAAOAwBDQAAwGEIaAAAAA5DQAMQl9asWaNf//rXKi8vV0VFhfLy8sKnhQCA3dioFkDcuvnmm5WVlaWamholJiZqzpw5djcJACQR0ADEsbKyMuXn5ys1NVWrV69WSkqK3U0CAEkMcQKIYyUlJaqurpbf71dRUZHdzQGAMCpoAOJSIBDQxIkTNXHiRAWDQa1atUorV65UUlKS3U0DACpoAOLT73//e/Xo0UPnnXeeLrjgAnXt2lWLFi2yu1kAIIkKGgAAgONQQQMAAHAYAhoAAIDDENAAAAAchoAGAADgMAQ0AAAAhyGgAQAAOAwBDQAAwGH+P+vv6HOy2Lo7AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Dataset with 4 centers\n", "X1, Y1 = make_blobs(n_features=2, centers=4)\n", "print_sns_plot(X1)" ] }, { "cell_type": "code", "execution_count": 112, "id": "df756b46", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHwCAYAAADq0mgNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA65klEQVR4nO3df3xU1Z3/8XeGhEAwaSDmh6vC2lBJjUTErhJQqLYCkRAh0IcIC1QsYJGl0paCkkIXi4BaUanYB627oiXf4pYoomtA5SGPVYJs1RYMZFGQBVtCxoTfhphk7vcPdqYMZH4kmTv3ztzX87+ZOz9O5gTynnM+55wEwzAMAQAAwBIuqxsAAADgZIQxAAAACxHGAAAALEQYAwAAsBBhDAAAwEKEMQAAAAsRxoAY8vnnn+v666/3u+8///M/ddNNN6mqqioqbViyZIlWrVoV9DG7d+/WnDlz2rw2c+ZMVVRUdOi9P//8c/Xr10//8R//4Xf/c889pwULFnToNdty2223affu3RF7vWBOnz6tCRMmaNSoUdqyZUtYz5k8ebIqKys79H6nTp3SlClTOvTc9vJ4PHr00Uc1atQojR49WrNnz1ZDQ0NU3huIJYQxIIb94Q9/0PLly/X888+rsLDQ6ub49O/fX08//bQpr+1yubRixQodOHDAlNePtr1796q+vl6vv/66hg8fbvr7nThxImpBc8OGDaqurtbLL7+sTZs2qXfv3lq+fHlU3huIJYlWNwBAx6xZs0YVFRUqLy/XFVdc0eZj3n//fT3xxBO67LLL9Nlnn6l79+6aMWOGXnzxRX322WcaPny4HnroIUnS1q1b9eyzz6q5uVndunXT/Pnzdf311+v06dNauHChampqlJWVpS5duuiGG26QJH3yySdasmSJjh8/roSEBE2bNk1jxozR+++/r4cfflivvfaajh49qgULFqiurk7/8A//oPr6el/7nn76ab355ptKSkpSz549tWzZMmVlZQX9ubt166Z77rlHP/3pT/WHP/xBXbt29bu+YMECfeMb39C999570e3bbrtNxcXF2rFjh06cOKEf/OAH+vDDD1VdXa3ExEQ9++yzys7OliSVl5erpqZGX331le655x6NHz8+6Oe0atUq/fnPf1ZdXZ369eunxx9/3K9db731ln7961/L4/GoR48eevDBB3XJJZfooYce0tGjR3XnnXdq/fr16tatm+85brdbixcv1oEDB+RyuTRhwgS/Ua3PP/9co0eP1kcffXTRbbfbrfnz5+vYsWOSpGHDhumBBx7Qgw8+qLNnz+rOO+9URUWFDh48qKVLl+r48eNqbW3V5MmTNX78eL3//vtaunSpUlJSdObMGZWXl2vhwoX63//9X7lcLuXn52vJkiVyuVyaPn26JkyYoO985zt+P3Pfvn31s5/9zNdH1157rcrLy4P2L+BIBoCYcfjwYWPAgAHGihUrjKuvvtr4/e9/H/TxO3bsML75zW8a1dXVhmEYxr333mvcddddRlNTk1FfX2/k5+cbtbW1xmeffWYUFxcbDQ0NhmEYxr59+4whQ4YYZ86cMZYuXWr87Gc/Mzwej1FfX28MHTrUePrpp43m5mbjO9/5jrF582bDMAyjtrbWuOWWW4wPP/zQ2LFjhzFq1CjDMAxj1qxZxsqVKw3DMIyDBw8aAwYMMDZs2GD87W9/MwYOHGg0NTUZhmEYzz33nPHmm2+G9fO3trYakyZNMpYvX24YhmH87ne/M+bPn28YhmHMnz/f+N3vfud7zvm3b731VuORRx4xDMMwXn/9dSMvL8/Yu3evr53PPvus73GLFy/2/VyFhYXGvn37gn5OTz/9tDFixAijubn5onZ/+umnxuDBg41Dhw4ZhmEY27dvN4YMGWKcOnXK77O60P3332+sWLHCMAzDOHnypDFq1Cjj4MGDxj//8z8bb7zxhu/zuPDzMQzD+PWvf238/Oc/NwzDMM6cOWM88MADxsmTJ/0e09zcbNxxxx3Gxx9/7HuPoqIi46OPPjJ27Nhh5OXlGZ9//rlhGIbx8ssvG9OmTTMMwzBaWlqMhQsXGgcPHgzaX+c7fvy4MWrUKOPFF18M+zmAUzAyBsSYL7/8Uvv27dOaNWs0d+5cXX/99brmmmsCPv6KK67wXe/du7dSU1PVtWtX9erVSz169NCJEyf03//936qrq9P3v/993/MSEhJ06NAhVVVV6aGHHlJCQoJ69eql22+/XZJ08OBBNTU1+abWsrOzNXz4cP3Xf/2XbrrpJt/rbN++XfPnz5ck9enTx3ctOztbeXl5Gjt2rIYOHaqhQ4eGPdXqcrn02GOPacyYMbr55pvD//AkX3uvvPJKXXrppcrLy/N9NidOnPA9bsKECb52DhkyRFVVVerSpUvAz0mSBgwYoMTEi/9b3bFjhwYNGqQrr7xSklRYWKhevXrp448/VkJCQsC2bt++XfPmzZMkpaam6rXXXgv757zllls0Y8YMHTlyRIMHD9ZPfvITpaam+v2MBw8e1KFDh3yjo5J09uxZ7dmzR7m5ubrssst0+eWXS5JuuOEGrVy5UpMnT9bgwYM1depU9enTJ6y2HDp0SPfff78GDhyoSZMmhf0zAE5BGANiTLdu3fTss88qKSlJM2fO1OzZs1VRUaH09HQ99dRT2rp1q6RzReiDBg26aBqvrbDg8XhUWFioJ5980nffkSNHfFOGxnlH2Hbp0kWS1NraelGQMAxDLS0tfvclJCT4Pd/7/i6XS7///e+1e/duVVVV6ZFHHtEtt9yin/3sZ2F9Dpdddpn+9V//VfPnz9eYMWMCvl9zc7Pf887/PJKSkgK+vsv195Jaj8ejxMREtba2Bvyc3nzzTaWkpLT5Wh6PJ+BnFawNiYmJfs87fPiwevbs6bsd7GctKCjQ22+/raqqKu3YsUPf+9739Nvf/lbp6em+x7S2tio1NVUbN2703ffFF18oNTVVf/7zn/1+niuvvFJvvvmm3n//fe3YsUP33HOPlixZottuuy1g+6VzQXTu3Ln6wQ9+4Js6BuCPAn4gxrhcLt8f8BkzZqhv3776yU9+Io/Hox/96EfauHGjNm7cqB/96Edhv2ZhYaHee+897d+/X5K0bds2lZSU6OzZs7rlllv0xz/+UR6PRydOnNDbb78tSfr617+uxMRE3wrAo0ePavPmzRo8eLDfa99yyy1av369JOlvf/ub3n//fUlSTU2NiouLlZubq5kzZ+r73/9+uwvLR44cqaFDh2rt2rW++3r27KmPP/7Y16adO3e26zW9Xn75ZV+bq6qqVFhYGPRzCqawsFDvvvuuDh8+LEmqqqrSkSNHdN1114V83oYNGySdWwU5depUHTx40Hc9LS1Nzc3N+vTTTyVJr7/+uu/a448/rtWrV+u73/2uFi5cqL59++qTTz7xhUrDMHTVVVepW7duvjB25MgRFRcX+z6/85WXl+vBBx/UzTffrHnz5unmm2/Wnj17gra/urpas2fP1ooVKwhiQBCMjAExLCEhQStWrNDYsWP15JNP6sc//nGHXqdv375asmSJfvzjH8swDF8xe48ePfQv//IvWrx4sYqKitSrVy9dffXVks6NKq1evVq//OUvtWrVKrW2tur+++/XoEGDfIFLkhYvXqwHH3xQRUVFysnJ8U0L5uXlqaioSOPGjVNKSoq6deumsrIySdJTTz0lSWEFyrKyMn3wwQe+25MnT9ZPf/pTjRgxQldccYUGDRrUoc+kqalJY8eOVXNzs8rKynTVVVdJUsDPKZi+fftq8eLFmj17tlpbW9WtWzf95je/UWpqatDnLVq0SL/4xS80evRoGYahmTNn6tprr/VdT01N1bx58zR9+nT16tVLI0eO9F2bOnWqFixYoOLiYnXt2lX9+vXTqFGj1KVLFxUUFGjUqFFat26dVq9eraVLl+p3v/udWlpa9KMf/Ug33HCDXx9K0pgxY7Rz507dcccd6t69uy677DJNnjxZkgIW8D/xxBMyDEO/+tWv9Ktf/UrSuWnzZ555JsSnDzhLgnH+GDcAAACiimlKAAAACxHGAAAALEQYAwAAsBBhDAAAwEKEMQAAAAvF9NYWx46dkcdj3mLQjIxLVF9/2rTXR8fQL/ZDn9gT/WI/9Ik9md0vLleCevYMvAVOTIcxj8cwNYx53wP2Q7/YD31iT/SL/dAn9mRlvzBNCQAAYCHCGAAAgIUIYwAAABYijAEAAFiIMAYAAGAhwhgAAICFCGMAAAAWIowBAABYiDAGAABgIcIYAACAhQhjAAAAFiKMAQAAWIgwBgAAYCHCGAAAgIVMDWOnT59WcXGxPv/884uu7d27V6WlpRoxYoQWLlyolpYWM5uCGFBVXat5q9/TtOVbNW/1e6qqrrW6SQAAmM60MPaXv/xFd999tw4ePNjm9Xnz5mnRokXavHmzDMPQSy+9ZFZTEAOqqmu19o0a1Z9skiTVn2zS2jdqCGQAgLhnWhh76aWXtHjxYmVlZV107a9//avOnj2rAQMGSJJKS0tVWVlpVlMQAyq27ddXLR6/+75q8ahi236LWgQAQHQkmvXCS5cuDXitrq5OmZmZvtuZmZk6evRou98jI+OSDrWtPTIzU01/D0gN/zci1tb9bfUB/WI/9Ik90S/2Q5/Yk5X9YloYC8bj8SghIcF32zAMv9vhqq8/LY/HiGTT/GRmpsrtPmXa6+PveqUl+6YoL7z/wj6gX+yHPrEn+sV+6BN7MrtfXK6EoANIlqymzMnJkdvt9t3+4osv2pzOhHOUDstV10T/X8euiS6VDsu1qEUAAESHJWHs8ssvV3Jysj744ANJ0saNGzV06FArmgKbKMzP0dSiPGWkJUuSMtKSNbUoT4X5ORa3DAAAc0V1mnL69OmaM2eO+vfvr8cff1xlZWU6ffq08vPzNWXKlGg2BTZUmJ9D+AIAOE6CYRjmFV2ZjJoxZ6Jf7Ic+sSf6xX7oE3tyZM0YAAAAziGMAQAAWIgwBgAAYCHCGAAAgIUIYwAAABYijAEAAFiIMAYAAGAhwhgAAICFCGMAAAAWIowBAABYiDAGAABgIcIYAACAhRKtbgCAyKmqrlXFtv2qP9mkjLRklQ7LVWF+jtXNAgAEQRgD4kRVda3WvlGjr1o8kqT6k01a+0aNJBHIAMDGCGM2wYgGOqti235fEPP6qsWjim37+V0CABsjjNkAIxqIhPqTTe26Hx3HlycAkUQYswFGNCLLqX8oM9KS2wxeGWnJFrQmfvHlCUCkEcZsgBGNyHHyH8rSYbl+P7skdU10qXRYroWtij9mfHly6hcIAOewtYUNBBq5YESj/YL9oYx3hfk5mlqU5/u9yUhL1tSiPP6oR1ikvzx5v0B4n+/9AlFVXdvhNgKILYyM2QAjGpHj9FHGwvwcwpfJIj0dTJkCAEbGbIARjchhlBFmKx2Wq66J/v91dubLk9O/QABgZMw2GNGIDEYZYTbvv9NI1Xix8AIAYQxxJdJ/KIG2RPLLE18gABDGYCorVokxyohYwhcIAIQxmMbJ20wA7cEXCMDZKOCHaZy8zQQAAOEijME0rBIDACA0pilhGlaJQWJ3eQAIhZExmCbS+zEh9rC7PACERhiDaQrzczSkf45cCeduuxKkIf0pVHYS6gYBIDSmKWGaqupavbe7Vh7j3G2PIb23u1Z9r0g3LZAxJWYv1A0CQGiMjME00R4VYUrMfjieCgBCI4zBNNEeFWFKzH6oGwSA0JimhGmivZqSKTH7YXd5AAiNMAbTRPvMPbbSsCd2lweA4JimhGkK83M0tSjPF4Yy0pI1tSjPtD/MTIkBAGIRI2MwVUdGRTq6IpIpMQBALCKMwVY6e7g4U2IAgFhDGEOHmbGnV7AVkYQsAEA8IoyhQzo7ghUIKyIBAE5DAT86xKw9vdgkFADgNIyMoUPMGsEKtB1GQW6G5q1+T/Unm5TZs7vG3HwV05YAgLhAGEOHmLWnV1srIgtyM/Te7lpfQHMfa4zIlCgAAHZAGEOHmLmh64UrIuetfo+ifgBA3CKMoUOiuacXRf0AgHhGGEOHRWtPL445AgDEM1ZTwvY45ggAEM8YGYPtXTglympKAEA8IYwhJpw/JZqZmSq3+5TFLQIAIDKYpgQAALAQI2MAECYzzmMFAMIYbIU/drCDtn4PJZlyHisAEMZgG2YdPg60R6Dfw65JLjYfBmAKwhhsI9jh4/yxQ7QE+j288D6vcDYfZsQXQDCEMdgGO+3DDtr7+xZq82FGfAGEQhhDh0X62z477cMOAv0e9ujWRc0tRrvPY2XEF0AobG2BDvF+2/f+0fJ+26+qru3wa7LTPuwg0O/hxNv7aWpRnu/LQUZasqYW5YUMVIz4AgiFkTF0iBnf9oMdPn7+KBw78MNMwX4Pz78eLkZ8AYRCGEOHROrbfltTnY/NGnLRY86vuXEfa6TmBqY6/8SHziodluv3+ysx4gvAH9OU6JBA3+rb820/3KnOYKNwgN0V5ud0aHoTgHMwMoYOicS3/XCnOqm5QayL5EgbgPhDGEOHhKqrCUe4IatHty46c7b1osdRcwMAiAeEMXRYZ7/th1PYXFVdq6bmizfb7JIgU2tu2KQTABAt1IzBMuFsZVGxbb9aWo2Lntu9W6Jp4ciMbTsAAAiEMAbLXFjY3KNbF3VNcum3m/Zo3ur3VFVdG3Aq83Rji2ntYsEAACCamKaEpbxTnX/fvuJcbZh3NMqKejEWDAAAookwBlsINBrVNSlRXRNdfteSk7pEpF4sUF0Ym3QCAKKJMAZbCDYdOX30NX6h6fvF+crvnd6p9wt2eDObdCIWsMgEiB+EMZiivX8oLume2GYd2CXdEy9atZmZmSq3+1Sn2hesLsx7AgB/6GBXwb5M8HsKxB7CGCKuI38oDOPiFZPB7u+sUHVhbNIZXYzytI8ZZ8MCsI6pqyk3bdqkO+64Q8OHD9e6desuul5dXa1x48appKREM2fO1MmTJ81sDqKkI6sR2yrSD3Z/Z0XiOCdEBluJtB+LTID4YloYO3r0qFauXKny8nK98sorWr9+vT799FO/xyxdulRz5szRq6++qquuukrPPfecWc1BFHXkD0W0w1E4e5whOmJpK5Gq6lrNW/2epi3f6tt+xYrX48sEEF9MC2Pbt2/XoEGDlJ6erpSUFI0YMUKVlZV+j/F4PDpz5owkqbGxUd26dTOrOYii9v6hOLfL/sUjYGaGIw5vto9YGeWJ9AheZ16PLxNAfDGtZqyurk6ZmZm+21lZWdq1a5ffYxYsWKBp06bpkUceUffu3fXSSy+16z0yMi6JSFuDycxMNf094s33i/P16//4i1/ASk7qou8X51/0eb7zwWG9UPk/F4Wx1JQkzRjTX9++4co23yMS/VLy7VSVfPsbnX4dnNPRPsns2V3uY41t3m+nf3+vvFvV5gjeK+9+1qHfo868Xsm3U5WW2k0vvLFXXxxr1KU9u2tK0Tfb/Pdip88Q59An9mRlv5gWxjwejxISEny3DcPwu3327FktXLhQzz//vAoKCvTv//7vmj9/vtasWRP2e9TXn5bHY06BtxSZVXtOlN87XVNG9ruoIDu/d/pFn+fzr1UHHBVr6/ES/WJHnemTMTdf1eZWImNuvspW/dxWYPTe35F2dvb18nuna8XMQv/nXvA8/q3YD31iT2b3i8uVEHQAybQwlpOToz/96U++2263W1lZWb7b+/btU3JysgoKCiRJd911l5566imzmoMoC3c1YqxMUcE83t8Tu6+mDPdg+3B/DjYXBuBlWs3Y4MGDVVVVpYaGBjU2NmrLli0aOnSo73qfPn1UW1urAwcOSJLefvtt9e/f36zmwKYoRIZ0LpA9NmuI/m3BbXps1hDbBTEpdJ1We2vAqPsC4GXayFh2drbmzp2rKVOmqLm5WePHj1dBQYGmT5+uOXPmqH///lq2bJkeeOABGYahjIwMPfLII2Y1BzbFbveIFaFG8Nq791esjAgCMF+CYdaumlFAzVh8aO+Gn/SL/cRSn5i1wey05VsDXvu3Bbd1+vU7Ipb6xSnoE3uK25oxIFzsdo9oMfMYIWrAAHSUqTvwA4CdmLnBLDVgADqKkTEAjmHm6l1qwELjDFKgbYQxAI5h9lQiU+6BmTlFDMQ6pikBOAZTidaJpTNIgWhjZAyAYzCVaB02eAYCI4wBcBSmEq3BalMgMKYpAQCmY4oYCIyRMQCA6ZgiBgIjjCFsLEsH0BlMEQNtI4whLCxLBwDAHNSMISwsSwcAwByEMYSFZekAAJiDMIawBFp+zrJ0AAA6h5oxhKV0WK5fzZjEsnQgHCx8ARAKYQxhYVk64kG0gxELXwCEgzCGsLEs3f4YhQnMimAUbOEL/QLAi5oxIE54w4Z3UYU3bFRV11rcMnuwYkUwC18AhIMwBsQJth8JzopgxMIXAOFgmhKIE04chQlnWtb7mEDMDEYsfAEQDsIYECcy0pLbDF7xOgoTTg3YhY+5kNnBiIUvAMJBGAPihNNGYcIpjm/rMV7RCkYsfAEQCjVjQARVVddq0XNb1Niar0XPbYlq8Xxhfo6mFuX5RsIy0pI1tSgvboNAONOywaZoH5s1JG4/GwCxhZExIEK8U2KF/d9T75zD+voV27X2ja6SorenlJNGYcKZlnXa1C2A2EQYAzrowuLx6WOWad2S95WY2CJJmnv3U2r53jP6aF+hpFetbWwcCmda1mlTtwBiE2EM6IA2i8dfv1tXZh9QVq86JXZpVUtrF9Udy9K/bbpLj0y3uMFxKJzi+HAew0a5AKxGGAM6oK3C8CP1l2nd5oma98+/UmNTNyUlNmvd5rvV3PyP1jTSAcKZlg32GI4rAmAHFPADHRCoMPyW695V01fJKt88QU1fJWvogO1MidkYG+UCsANGxoAOCFQY/p/bx+mlt2brsyMp+su+4Rp3azIjLDbmxI1yAdgPYQzogECF4YOuGU34iiGstgRgB4SxOEZhsnnYWT0+sNoSgB0QxuIUhcnmc9KeXvGKUA3ADghjcSqco2IAEKoBWI/VlHGKwmQAAGIDI2NxisJkoH2osQRgFUbG4lTpsFx1TfTvXgqTgbZ5ayy9X2C8NZbRPOgdgHMRxuJUYX6Ophbl+UbCMtKSNbUoj2/6QBvY/BWAlZimjGMUJsNJOjPNSI0lACsxMgYg5nV2mjFQLSU1lgCigTAGIOZ1dpqRGksAVmKaEkDM6+w0I5u/ArASYQxAzIvEVi7UWAKwCtOUAGIe04wAYhkjYwBiXrBpRjZzBWB3hDEAcaGtaUbvKktvcb93laX38QBgB4QxAHEr2CpLq8MYI3YAvAhjAOKWXTdzZcQOwPko4AcQt+y6mSvHLwE4H2EMQNyy6ypLu47YAbAG05QA4pZdN3ONxL5oAOIHYQxAXLPjZq6lw3L9asYke4zYAbAGYQwAosyuI3YArEEYAwAL2HHEDoA1KOAHAACwEGEMAADAQoQxAAAACxHGAAAALEQYAwAAsBCrKQE4AgdzA7ArwhiAuMfB3ADsjGlKAHGPg7kB2BlhDEDc42BuAHbGNCWAuBeNg7mpSQPQUYyMAYh7pcNy1TXR/7+7SB7M7a1J8wY+b01aVXVtRF4fQHwjjAGIe4X5OZpalOcbCctIS9bUoryIjVxRkwagM5imBOAIZh7MTU0agM5gZAwAOilQ7Vkka9IAxC/CGAB0ktk1aQDiG9OUANBJ3ulPVlMC6AjCGABEgJk1aQDim6nTlJs2bdIdd9yh4cOHa926dRddP3DggCZPnqySkhLde++9OnHihJnNAQAAsB3TwtjRo0e1cuVKlZeX65VXXtH69ev16aef+q4bhqEf/vCHmj59ul599VV985vf1Jo1a8xqDgAAgC2ZFsa2b9+uQYMGKT09XSkpKRoxYoQqKyt916urq5WSkqKhQ4dKku677z5NmjTJrOYAAADYkmk1Y3V1dcrMzPTdzsrK0q5du3y3Dx06pEsvvVQPPfSQ9u7dq69//ev6+c9/3q73yMi4JGLtDSQzM9X090D70S/2Q5/YE/1iP/SJPVnZL6aFMY/Ho4SEBN9twzD8bre0tGjnzp36/e9/r/79++vJJ5/U8uXLtXz58rDfo77+tDweI6LtPl9mZqrc7lOmvT46hn6xH/rEnugX+6FP7MnsfnG5EoIOIJk2TZmTkyO32+277Xa7lZWV5budmZmpPn36qH///pKk4uJiv5EzAAAAJzAtjA0ePFhVVVVqaGhQY2OjtmzZ4qsPk6Trr79eDQ0NqqmpkSRt3bpV+fn5ZjUHAADAlkybpszOztbcuXM1ZcoUNTc3a/z48SooKND06dM1Z84c9e/fX88884zKysrU2NionJwcPfroo2Y1BwAAwJYSDMMwr+jKZNSMORP9Yj/0iT3RL/ZDn9hT3NaMAQAAIDTCGAAAgIUIYwAAABYijAEAAFiIMAYAAGAhwhgAAICFCGMAAAAWIowBAABYiDAGAABgIcIYAACAhQhjAAAAFiKMAQAAWIgwBgAAYCHCGAAAgIUIYwAAABYijAEAAFiIMAYAAGAhwhgAAICFCGMAAAAWIowBAABYiDAGAABgoUSrGwAAAOxjZ+2HenV/pY41HVfP5HSV5I7UjTkDrW5WXCOMAQAASeeCWHnNBjV7miVJx5qOq7xmgyQRyExEGAMAwCFCjXq9ur/SF8S8mj3NenV/JWHMRIQxAAAcIJxRr2NNx9t8bqD7ERkU8AMA4ADBRr28eiant/ncQPcjMghjAAA4QDijXiW5I5XkSvK7nuRKUknuSBNbBqYpAQBwgJ7J6W0GsvNHvbzTlaymjC7CGAAADlCSO9KvZkxqe9TrxpyBhK8oI4wBAOAAjHrZF2EMAACHYNTLnijgBwAAsFDAMPbUU0/JMIxotgUAAMBxAoaxHTt2aMqUKXK73dFsDwAAgKMEDGPr1q1TYWGhxo0bp3fffTeabQIAAHCMgAX8LpdLs2bN0re//W2VlZXp7bffVu/evX3X77nnnqg0EAAAIJ6FXE3pcrmUkJCgTz/9VGfPno1GmwAAABwjYBgzDEO/+c1v9Nxzz2nu3LmaNGlSNNsFAADgCAHD2IQJE9TY2Kjy8nJdffXV0WwTAACAYwQs4M/Pz9cf//hHghgAAICJAo6MLVq0KJrtAAAAcCR24AcAALAQYQwAAMBChDEAAAALEcYAAAAsFHLTVwAAgM7YWfuhXt1fqWNNx9UzOV0luSN1Y85Aq5tlG4QxAABgmp21H6q8ZoOaPc2SpGNNx1Ves0GSCGT/h2lKAABgmlf3V/qCmFezp1kv7lmvnbUfWtQqeyGMAQAA0xxrOt7m/R4ZKq/ZQCATYQwAAJioZ3J6wGvNnma9ur8yeo2xKcIYAAAwTUnuSCW5kgJeDzRy5iSEMQAAYJobcwZqYt44uZQQ8DFl7z3i6OlKVlMCAABTeVdNnr+q8nxOX2HJyBgAADCdd4QsUA2Zk+vHCGMAACAqbswZqF8OeSjgdafWjxHGAABAVAUaHQu28jKeEcYAAEBUtbXCMsmVpJLckRa1yFoU8AMAgKjyFulzXuU5hDEAABB1N+YM7HT4ipcDyAljAAAg5sTTAeTUjAEAgJgT6ADyWNwegzAGAABiTqBtMGJxewymKQEAcLBYrbvqmZzeZvCKxe0xCGOImqrqWlVs26/6k03KSEtW6bBcFebnWN0sAHCsWK67KskdedHxSrG6PQbTlIiKquparX2jRvUnmyRJ9SebtPaNGlVV11rcMgBwrliuu7rweKWeyemamDfO9iGyLYyMISoqtu3XVy0ev/u+avGoYtt+RscAwCKxXncVie0x7ICRMUSFd0Qs3PsBAObjWCJ7YGQMUZGRltxm8MpIS7agNQAQ/8IpzI+nuqtYxsgYoqJ0WK66Jvr/unVNdKl0WK5FLQKA+OUtzPdON3oL83fWfuj3uHiqu4pljIwhKrx1YaymBADzBSvMvzBoxUvdVSwzNYxt2rRJzz77rFpaWjR16lRNmjSpzce98847WrJkibZu3Wpmc2CxwvwcwhcAREGsF+Y7jWlh7OjRo1q5cqUqKirUtWtXTZgwQTfddJP69u3r97gvvvhCK1asMKsZAAA4TjxtiOoEptWMbd++XYMGDVJ6erpSUlI0YsQIVVZevG9JWVmZZs+ebVYzAABwnJLckUpyJfndR2G+fZk2MlZXV6fMzEzf7aysLO3atcvvMS+88IKuueYaXXfddR16j4yMSzrVxnBkZqaa/h5oP/rFfugTe6Jf7CcafTIqc5jS0rrr/+3aqPovG5SR0kt3F9ypW/rcaPp7xyor/62YFsY8Ho8SEhJ8tw3D8Lu9b98+bdmyRc8//7xqazu2C3t9/Wl5PEan2xpIZmaq3O5Tpr0+OoZ+sR/6xJ7oF/uJZp/kpXxT/zrom3738fvQNrP7xeVKCDqAZNo0ZU5Ojtxut++22+1WVlaW73ZlZaXcbrfGjRunGTNmqK6uThMnTjSrOQAAALZkWhgbPHiwqqqq1NDQoMbGRm3ZskVDhw71XZ8zZ442b96sjRs3as2aNcrKylJ5eblZzQEAALAl08JYdna25s6dqylTpmjMmDEqLi5WQUGBpk+frt27d5v1tgAAADElwTAM84quTEbNmDPRL/ZDn9gT/WI/9Ik9WV0zxg78AADAdsI5WzNeEMYAAICteM/W9B7p5D1bU1JcBjIOCgcAALYS7GzNeEQYAwAAtuK0szWZpgQAAKboaN2X087WZGQMAABEnLfuyxuqvHVfO2s/DPlcp52tycgYAACIuGB1X97RsUAjZ97rrKYEAADooFB1X6FWTJ4fyuId05QAACDiAtV3ee932orJYAhjAAAg4kLVfTltxWQwTFMCAOAw0djdPlTdl9NWTAbDyBgAAA7SmVWO7XmPX76/SAW9x6pb4llNvWaCfjnkIb/A57QVk8EQxgAAcBCza7W8Ye/rGbt15deO6esZu9sMezfmDNTEvHG+kbCeyemamDfOMUX752OaEgAABzG7Visz/Yd6buwnSnS1SpLuv2mrZv7TNu068pak9/0e66QVk8EQxmJYVXWtKrbtV/3JJmWkJat0WK4K83OsbhYAwMbMrtV6cdcAzU87oswep5ToalWrxyX3mVS9+JcBWnRTRN4i7jBNGaOqqmu19o0a1Z9skiTVn2zS2jdqVFVda3HLAAB2Znat1lfNfbT+439SF5dHjc2J6uLy6KWPv6WvWvpE5PXjESNjMapi23591eLxu++rFo8qtu237ehYpEby3vngsJ5/rZoRQQDoALN3ty/JHamM9D+qqSVJG/bcoHHXfKDBvT9TXtrCiLx+PCKMxSjviFi497clmtOc3pE8b4D0juRJatd7VlXX6oXK/1FTc2unXgcAnMzMWq0bcwbqf078VIvfrtahk83adeRbGvONfGrDgiCMxaiMtOQ2g1dGWnJYz49UOApXpEbyKrbt9wWxzrwOAMA8/b42UfO/ZXUrYgc1YzGqdFiuuib6d1/XRJdKh+WG9fxg4cgMkRjJi+TrAABgF4SxGFWYn6OpRXm+kbCMtGRNLcoLe3Qo2qEm0IhduCN5kX4dAADsgmnKGFaYn9PhqbnOTnO2V+mwXL9pUal9I3nnv875NWMdfR0AAOyCkTGH6uw0Z3t1diTv/NeZ/b3rOv06AADYBSNjDuUNL9HcNLYzI3nn+/YNVyq/d3rnGwQAgA0QxhwsUuEIAAB0HNOUAAAAFiKMAQAAWIgwBgAAYCFqxgAAcKidtR926IzKjj4PbSOMAQDgQDtrP1R5zQY1e5olSceajqu8ZoMkBQ1WHX0eAmOaEgAAB3p1f6UvUHk1e5r16v5KU56HwAhjAAA40LGm4+26v7PPQ2CEMQAAHKhncnq77u/s8xAYYSzGVVXXat7q9zRt+VbNW/2eqqprrW4SACAGlOSOVJIrye++JFeSSnJHmvI8BEYBfwyrqq71O3y7/mST1r5RI0nsrA8ACMpbbN/eVZEdfR4CI4zFsIpt+31BzOurFo8qtu0njAEAQroxZ2CHQlRHn4e2MU0Zw+pPNrXrfgAAYD+EsRiWkZbcrvsBAID9EMZiWOmwXHVN9O/CrokulQ7LtahFAACgvagZi2HeurCKbftVf7JJGWnJKh2WS70YAAAxhDAW4wrzcwhfAADEMKYpAQAALEQYAwAAsBBhDAAAwELUjMWwquraiBfvm/GaAAAgMMJYjDLjKCSOVwIAIPqYpoxRgY5Ceu61PR0+LDzY8UoAAMAcjIzFqEBHHnkMtTmaFc70I8crAQCcZGfth3p1f6WONx1XuoUHnhPGYlRGWnLAkHThYeHhTj8Gek2OVwIA5/EGlWNNx9XTwqBilp21H6q8ZoOaPc2SpGNNx1Ves0GSov5zMk0Zo9o6Cul854eqcKcfOV4JACD9Pagcazou6e9BZWfth9Y2LIJe3V/pC2JezZ5mvbq/MuptYWQsRnlHtJ57bY88xsXXzx/NCnf6keOVAABS4KDy4p71kswfOYrGqJw3aIZ7v5kIYzHMG5LOn4KULh7Nas/0I8crAQACBRKPDNOn8qI1fdgzOb3Nn7NncnrE3iNcTFPGuML8HE0tyvMFq4y0ZE0tyvMLVEw/AgDaI1ggMXsqL1rThyW5I5XkSvK7L8mVpJLckRF9n3AwMhYHQo1mxeL0I5vPAoB1SnJH+o1OXaizU3nBpiGjNX3ofT9WUyJqYmn6kc1nAcBa3kDy4p718ujiwuQLR87aU+MVahoymtOHN+YM1I05A5WZmSq3+1TEXz9cTFPCdth8FgCsd2POQE2+5q6QU3ntXXkZahrSTtOH0UIYg+2w+SwA2MONOQM1MW+cb1SqZ3K6JuaN8xv1am+NV6hpyHDeM94wTQnbYfNZALAP71ReIO2t8QpnGjLUe8YbwliE2aHw3A5t6IzSYbkht+sAANhDe2u82locEO/TkKEwTRlB3sJz76iOt/C8owd3x2obOiuc7ToAAPbQ3hovJ05DhsLIWAQFKzyPVpCwQxsiIZZWfwKAk52/RUS4O+Y7bRoyFMJYBNmh8NwObQAAOAvhqnOYpoygQAXm0Sw8t0MbAABA+AhjEWSHY4fs0AYAABA+pikjyA7HDtmhDQCA+NeeXfcRHGEswuxQeG6HNgAA4leoI43QPkxTAgCAdmnvrvsIjjAGAADapb277iM4whgAAGiXQLvrB7ofwVEzBgAA/IQqzudIo8gyNYxt2rRJzz77rFpaWjR16lRNmjTJ7/pbb72lVatWyTAMXXHFFVq2bJm+9rWvmdkkAAAQRDjF+R3Zdf/812cVpj/TwtjRo0e1cuVKVVRUqGvXrpowYYJuuukm9e3bV5J0+vRp/eIXv9CGDRuUnZ2tp556SqtWrVJZWZlZTbKFWD/EGwAQ34IV558fmjqy6z6rMNtmWs3Y9u3bNWjQIKWnpyslJUUjRoxQZeXfV1k0Nzdr8eLFys7OliT169dPR44cMas5thAPh3gDAOKbmcX5rMJsm2kjY3V1dcrMzPTdzsrK0q5du3y3e/bsqdtvv12SdPbsWa1Zs0aTJ09u13tkZFwSmcYGkZmZGrHXeuXdqjYP8X7l3c9U8u1vROx9nCCS/YLIoE/siX6xH7v3yaUpvfTFlw1t3t/Zth8PEOiONx23/HOx8v1NC2Mej0cJCQm+24Zh+N32OnXqlO6//37l5eVp7Nix7XqP+vrT8niMTrc1kMzMVLndpyL2eu5jjQHvj+T7RItVU66R7hd0Hn1iT/SL/cRCn4z6x+FtFueP+sfhnW57enJ6myNs6cnpln4uZveLy5UQdADJtGnKnJwcud1u3223262srCy/x9TV1WnixInq16+fli5dalZTbCOeDvFmyhUA4tONOQM1MW+cb5uKnsnpmpg3LiI1XSW5I5XkSvK7j1WYJo6MDR48WKtWrVJDQ4O6d++uLVu26OGHH/Zdb21t1X333aeioiLNmjXLrGbYSumwXK19o8ZvqjJWD/Gu2La/zSnXim37WZAAADGuI8X54b6u1LFVmPHMtDCWnZ2tuXPnasqUKWpubtb48eNVUFCg6dOna86cOaqtrdWePXvU2tqqzZs3S5KuvfbauB4hi6dDvL0jYuHeDwCAZF7Qi2Wm7jM2evRojR492u++3/72t5Kk/v37q6amxsy3t6V4OcQ7Iy25zeAVi1OuAABYieOQ0CGlw3LVNdH/1ydWp1wBALASxyGhQ+JpyhUAYB125CeMoRPiZcoVAGANduQ/h2lKAABgCXbkP4eRMYfhbEwAgF2YefRSLGFkzEHYqBUAYCfejWXDvT9eEcYcJNhGrQAARBs78p/DNKWDRGOjVqZBAQDhYkf+cwhjDmL2Rq3eaVDv6Jt3GlQSgQwA0CZ25Gea0lHM3qiVaVAAANqPkTEHMXujVs6rBACg/QhjDmPmRq2cVwkAQPsxTYmI4bxKAADaj5Exm4ul1YmcVwkAQPsRxmwsFlcncl4lAADtwzSljbE6EQCA+EcYszFWJwIAEP8IYzYWaBUiqxMBAIgf1IxFiBmF9qXDcv1qxiRWJwIAEG8IYxFgVqE9qxMBAIh/hLEICFZo39ngZIfVibG0vQYAALGGMBYB8VxoH4vbawAAEEso4I+AeC60Z3sNAADMRRiLgHg+BiieR/0AALADpikjIJ4L7Tn8GwAAcxHGIsQOhfZmYHsNAADMRRhDUPE86gcAgB0QxhBSvI76AQBgBxTwAwAAWIiRMQdh81YAAOyHMOYQbN4KAIA9MU3pEGzeCgCAPRHGHILNWwEAsCfCmEPE85FNAADEMsKYQ8TzkU0AAMQyCvgdgs1bAQCwJ8KYg7B5KwAA9sM0JQAAgIUIYwAAABYijAEAAFiIMAYAAGAhwhgAAICFCGMAAAAWIowBAABYiDAGAABgIcIYAACAhdiB30aqqms5rggAAIchjNlEVXWt1r5Ro69aPJKk+pNNWvtGjSQRyAAAiGNMU9pExbb9viDm9VWLRxXb9lvUIgAAEA2EMZuoP9nUrvsBAEB8IIzZREZacrvuBwAA8YEwZhOlw3LVNdG/O7omulQ6LNeiFgEAgGiggN8mvEX6rKYEAMBZCGM2UpifQ/gCAMBhCGOwDPuqAQBAGINF2FcNAIBzKOCHJdhXDQCAcwhjsAT7qgEAcA5hDJZgXzUAAM4hjMES7KsGAMA5FPDDEuyrBgDAOYQxWIZ91QAAIIy1ybv/VcPJJvVixAYAAJiIMHYB9r8CAADRRAH/Bdj/CgAARBNh7ALsfwUAAKKJMHYB9r8CAADRRBi7APtfAQCAaKKA/wLn73/FakoAAGA2wlgbvPtfZWamyu0+ZXVzAABAHDN1mnLTpk264447NHz4cK1bt+6i63v37lVpaalGjBihhQsXqqWlxczmAAAA2I5pYezo0aNauXKlysvL9corr2j9+vX69NNP/R4zb948LVq0SJs3b5ZhGHrppZfMao4jVFXXat7q9zRt+VbNW/2eqqprrW4SAAAIwbQwtn37dg0aNEjp6elKSUnRiBEjVFlZ6bv+17/+VWfPntWAAQMkSaWlpX7X0T7ezWq9W3B4N6slkAEAYG+mhbG6ujplZmb6bmdlZeno0aMBr2dmZvpdR/uwWS0AALHJtAJ+j8ejhIQE323DMPxuh7oejoyMSzrf0BAyM1NNf49IaAiwKW3DyaaY+RnaIx5/plhHn9gT/WI/9Ik9WdkvpoWxnJwc/elPf/LddrvdysrK8rvudrt9t7/44gu/6+Gorz8tj8fofGMDiKXVlL3Skts8JaBXWnLM/AzhiqV+cQr6xJ7oF/uhT+zJ7H5xuRKCDiCZNk05ePBgVVVVqaGhQY2NjdqyZYuGDh3qu3755ZcrOTlZH3zwgSRp48aNftfRPmxWCwBAbDItjGVnZ2vu3LmaMmWKxowZo+LiYhUUFGj69OnavXu3JOnxxx/XsmXLNHLkSH355ZeaMmWKWc2Je4X5OZpalOc7tikjLVlTi/LYrBYAAJtLMAzDvHk+kzFN6Uz0i/3QJ/ZEv9gPfWJPcTtNCQAAgNAIYwAAABYijAEAAFiIMAYAAGAhwhgAAICFCGMAAAAWIowBAABYiDAGAABgIcIYAACAhQhjAAAAFiKMAQAAWIgwBgAAYCHCGAAAgIUSrW5AZ7hcCXHxHmg/+sV+6BN7ol/shz6xJzP7JdRrJxiGYZj27gAAAAiKaUoAAAALEcYAAAAsRBgDAACwEGEMAADAQoQxAAAACxHGAAAALEQYAwAAsBBhDAAAwEKEMQAAAAsRxgAAACxEGJO0adMm3XHHHRo+fLjWrVt30fW9e/eqtLRUI0aM0MKFC9XS0mJBK50nVL+89dZbuvPOO1VSUqJZs2bpxIkTFrTSWUL1idc777yj2267LYotc7ZQ/XLgwAFNnjxZJSUluvfee/m3EgWh+qS6ulrjxo1TSUmJZs6cqZMnT1rQSuc5ffq0iouL9fnnn190zdK/9YbD1dbWGrfeeqtx7Ngx48yZM8bo0aONTz75xO8xo0aNMj766CPDMAzjwQcfNNatW2dBS50lVL+cOnXKGDJkiFFbW2sYhmE8+eSTxsMPP2xVcx0hnH8rhmEYbrfbGDlypHHrrbda0ErnCdUvHo/HGD58uLFt2zbDMAzjscceMx599FGrmusI4fxbufvuu4133nnHMAzDWLZsmfHEE09Y0VRH+fOf/2wUFxcb+fn5xuHDhy+6buXfesePjG3fvl2DBg1Senq6UlJSNGLECFVWVvqu//Wvf9XZs2c1YMAASVJpaanfdZgjVL80Nzdr8eLFys7OliT169dPR44csaq5jhCqT7zKyso0e/ZsC1roTKH6pbq6WikpKRo6dKgk6b777tOkSZOsaq4jhPNvxePx6MyZM5KkxsZGdevWzYqmOspLL72kxYsXKysr66JrVv+td3wYq6urU2Zmpu92VlaWjh49GvB6Zmam33WYI1S/9OzZU7fffrsk6ezZs1qzZo2++93vRr2dThKqTyTphRde0DXXXKPrrrsu2s1zrFD9cujQIV166aV66KGHNHbsWC1evFgpKSlWNNUxwvm3smDBApWVlenmm2/W9u3bNWHChGg303GWLl2qb33rW21es/pvvePDmMfjUUJCgu+2YRh+t0NdhznC/dxPnTqlGTNmKC8vT2PHjo1mEx0nVJ/s27dPW7Zs0axZs6xonmOF6peWlhbt3LlTd999t15++WVdeeWVWr58uRVNdYxQfXL27FktXLhQzz//vN59911NnDhR8+fPt6Kp+D9W/613fBjLycmR2+323Xa73X5DmBde/+KLL9oc4kRkheoX6dw3mYkTJ6pfv35aunRptJvoOKH6pLKyUm63W+PGjdOMGTN8/QNzheqXzMxM9enTR/3795ckFRcXa9euXVFvp5OE6pN9+/YpOTlZBQUFkqS77rpLO3fujHo78XdW/613fBgbPHiwqqqq1NDQoMbGRm3ZssVXWyFJl19+uZKTk/XBBx9IkjZu3Oh3HeYI1S+tra267777VFRUpIULFzJaGQWh+mTOnDnavHmzNm7cqDVr1igrK0vl5eUWttgZQvXL9ddfr4aGBtXU1EiStm7dqvz8fKua6wih+qRPnz6qra3VgQMHJElvv/22LyzDGlb/rU+M2jvZVHZ2tubOnaspU6aoublZ48ePV0FBgaZPn645c+aof//+evzxx1VWVqbTp08rPz9fU6ZMsbrZcS9Uv9TW1mrPnj1qbW3V5s2bJUnXXnstI2QmCuffCqIvnH555plnVFZWpsbGRuXk5OjRRx+1utlxLZw+WbZsmR544AEZhqGMjAw98sgjVjfbkezytz7BMAwjau8GAAAAP46fpgQAALASYQwAAMBChDEAAAALEcYAAAAsRBgDAACwEGEMgKNVV1frhhtu0O7du333NTQ06Lvf/a7eeecd6xoGwDHY2gKA4/3hD3/QmjVr9PLLL6tHjx6aNm2aCgsL9cMf/tDqpgFwAMIYAEiaN2+evvzyS/Xu3VuHDx/WqlWrONkBQFQQxgBA0pdffqkxY8aopaVFmzZtUo8ePaxuEgCHoGYMACR99tlnOnPmjE6ePKnq6mqrmwPAQRgZA+B4DQ0NGj9+vH784x+rqalJK1eu1Msvv6zMzEyrmwbAAQhjAByttbVV06ZNU9++ffXzn/9ckvTggw/q8OHDWrt2rbp06WJxCwHEO6YpATjao48+qsbGRs2fP99336JFi3TixAk98cQTFrYMgFMwMgYAAGAhRsYAAAAsRBgDAACwEGEMAADAQoQxAAAACxHGAAAALEQYAwAAsBBhDAAAwEL/HxFfzZ/6TptTAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 2 0.53\n" ] } ], "source": [ "model12 = TrainModel_medoids(X1, 2)" ] }, { "cell_type": "code", "execution_count": 113, "id": "98d981cc", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHwCAYAAADq0mgNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA8EElEQVR4nO3de3xU5aHv/++EkEA0NCTk4vZCNewSjVCQHk2iQLWVa0RI6BFBgpciVi1KvSAQpVsFvJ2i0mp/bN0brbDVXWIRuwW8vPTXNonsiq2IcFAQ0ZZcSJBwCbnNc/5gz5SBTDJJZs1aM+vz/sfXrDWz1jPzBOc7z9VjjDECAACALeLsLgAAAICbEcYAAABsRBgDAACwEWEMAADARoQxAAAAGxHGAAAAbEQYA6LI119/reHDhwcc+6//+i9dcsklqqioiEgZHnzwQa1YsaLD52zdulVz585t99ycOXNUVlbWrXt//fXXGjx4sP7zP/8z4Pjzzz+v++67r1vXbM8VV1yhrVu3hu16HTl8+LCmTZumiRMnatOmTSG9ZubMmdqwYUO37nfo0CGVlJR067Vd1dzcrAceeEATJkzQhAkT9Mgjj6itrS0i9waiSbzdBQDQfS+//LKeeeYZrVq1Sueff77dxfEbMmSInn76aUuuHRcXp0cffVQjRozQeeedZ8k9Imn79u2qq6vTW2+9FZH7HTx4MGJBc/Xq1aqvr9cbb7whr9erGTNm6M0331RhYWFE7g9EC8IYEKVWrlypsrIyrVmzRmeddVa7z/nggw/0i1/8QmeccYa++OIL9e3bVzfffLN+85vf6IsvvtCYMWO0cOFCSdK7776rZ599Vi0tLerTp4/mz5+v4cOH6/Dhw1q0aJF27NihjIwM9erVSyNGjJAkffbZZ3rwwQf1zTffyOPx6MYbb9TkyZP1wQcf6KGHHtIbb7yh6upq3XfffaqpqdE//dM/qa6uzl++p59+Wm+99ZZ69+6t/v37a9myZcrIyOjwfffp00c33HCD7r77br388stKSEgIOH/ffffpn//5n3XTTTed8viKK65QYWGhKisrdfDgQf34xz/Wli1btG3bNsXHx+vZZ59VZmamJGnNmjXasWOHmpubdcMNN2jq1Kkdfk4rVqzQX/7yF9XU1Gjw4MF64oknAsr19ttv65e//KW8Xq9OO+00LViwQKeffroWLlyo6upqXX311XrllVfUp08f/2tqa2u1ePFi7d69W3FxcZo2bVpAq9bXX3+tq666Sh999NEpj2trazV//nwdOHBAkjR69GjdeeedWrBggY4dO6arr75aZWVl2rNnj5YsWaJvvvlGbW1tmjlzpqZOnaoPPvhAS5YsUVJSko4cOaI1a9Zo0aJF+vLLLxUXF6fc3Fw9+OCDiouL0+zZszVt2jT94Ac/CHjPN9xwg6677jrFxcWpvr5eDQ0N+ta3vtVh/QKuZABEja+++soMGzbMPProo+Y73/mOeemllzp8fmVlpTn//PPNtm3bjDHG3HTTTeaaa64xTU1Npq6uzuTm5pqqqirzxRdfmMLCQlNfX2+MMWbnzp3m0ksvNUeOHDFLliwx9957r/F6vaaurs6MGjXKPP3006alpcX84Ac/MBs3bjTGGFNVVWVGjhxptmzZYiorK83EiRONMcbceuutZvny5cYYY/bs2WOGDRtm1q5da/7+97+biy66yDQ1NRljjHn++efNW2+9FdL7b2trMzNmzDCPPPKIMcaY5557zsyfP98YY8z8+fPNc88953/NiY8vv/xys3TpUmOMMb///e9NTk6O2b59u7+czz77rP95ixcv9r+v/Px8s3Pnzg4/p6efftqMHTvWtLS0nFLuzz//3BQUFJi9e/caY4wpLy83l156qTl06FDAZ3Wy2267zTz66KPGGGMaGhrMxIkTzZ49e8x1111n3nzzTf/ncfLnY4wxv/zlL839999vjDHmyJEj5s477zQNDQ0Bz2lpaTETJkwwn3zyif8e48ePNx999JGprKw0OTk55uuvvzbGGPPaa6+ZG2+80RhjTGtrq1m0aJHZs2dPh/Xl8/jjj5thw4aZ6667zhw9ejSk1wBuQssYEGWOHj2qnTt3auXKlZo3b56GDx+uCy64IOjzzzrrLP/5c845R8nJyUpISFBqaqpOO+00HTx4UP/93/+tmpoaXX/99f7XeTwe7d27VxUVFVq4cKE8Ho9SU1N15ZVXSpL27NmjpqYmjRkzRpKUmZmpMWPG6A9/+IMuueQS/3XKy8s1f/58SdLAgQP95zIzM5WTk6MpU6Zo1KhRGjVqlPLz80P6DOLi4vT4449r8uTJuuyyy0L/8CR/ec8++2wNGDBAOTk5/s/m4MGD/udNmzbNX85LL71UFRUV6tWrV9DPSZKGDRum+PhT/7daWVmpvLw8nX322ZKk/Px8paam6pNPPpHH4wla1vLyct1zzz2SpOTkZL3xxhshv8+RI0fq5ptv1r59+1RQUKC77rpLycnJAe9xz5492rt3r791VJKOHTumTz/9VNnZ2TrjjDN05plnSpJGjBih5cuXa+bMmSooKNCsWbM0cODAkMpy991364477tD999+vn//853r00UdDfh+AGxDGgCjTp08fPfvss+rdu7fmzJmj22+/XWVlZUpJSdFTTz2ld999V9LxQeh5eXmndOO1Fxa8Xq/y8/P15JNP+o/t27fP32VoTtjCtlevXpKktra2U4KEMUatra0BxzweT8DrffePi4vTSy+9pK1bt6qiokJLly7VyJEjde+994b0OZxxxhn6l3/5F82fP1+TJ08Oer+WlpaA1534efTu3Tvo9ePi/jG/yev1Kj4+Xm1tbUE/p7feektJSUntXsvr9Qb9rDoqQ3x8fMDrvvrqK/Xv39//uKP3OnToUL3zzjuqqKhQZWWlfvSjH+lf//VflZKS4n9OW1ubkpOTtW7dOv+x/fv3Kzk5WX/5y18C3s/ZZ5+tt956Sx988IEqKyt1ww036MEHH9QVV1wRtPwffvihUlNTde6556p3796aMmWKHn744aDPB9yK2ZRAlImLi/N/gd98880aNGiQ7rrrLnm9Xt1xxx1at26d1q1bpzvuuCPka+bn5+tPf/qTdu3aJUl6//33NWnSJB07dkwjR47Ub3/7W3m9Xh08eFDvvPOOJOm8885TfHy8fwZgdXW1Nm7cqIKCgoBrjxw5Uq+88ook6e9//7s++OADSdKOHTtUWFio7OxszZkzR9dff32XB5aPGzdOo0aN0gsvvOA/1r9/f33yySf+Mm3evLlL1/R57bXX/GWuqKhQfn5+h59TR/Lz8/XHP/5RX331lSSpoqJC+/bt03e/+91OX7d27VpJx2dBzpo1S3v27PGf79evn1paWvT5559Lkn7/+9/7zz3xxBN65pln9MMf/lCLFi3SoEGD9Nlnn/lDpTFG5557rvr06eMPY/v27VNhYaH/8zvRmjVrtGDBAl122WW65557dNlll+nTTz/tsPyVlZVatmyZWltb5fV6tX79+oBWUwDH0TIGRDGPx6NHH31UU6ZM0ZNPPqmf/exn3brOoEGD9OCDD+pnP/uZjDH+weynnXaafvrTn2rx4sUaP368UlNT9Z3vfEfS8ValZ555Rg8//LBWrFihtrY23XbbbcrLy/MHLklavHixFixYoPHjxysrK8vfLZiTk6Px48eruLhYSUlJ6tOnj0pLSyVJTz31lCSFFChLS0v14Ycf+h/PnDlTd999t8aOHauzzjpLeXl53fpMmpqaNGXKFLW0tKi0tFTnnnuuJAX9nDoyaNAgLV68WLfffrva2trUp08f/frXv1ZycnKHr3vggQf085//XFdddZWMMZozZ44uvPBC//nk5GTdc889mj17tlJTUzVu3Dj/uVmzZum+++5TYWGhEhISNHjwYE2cOFG9evXS0KFDNXHiRK1evVrPPPOMlixZoueee06tra264447NGLEiIA6lKTJkydr8+bNmjBhgvr27aszzjhDM2fOlKSgA/hnz56tpUuX6uqrr1ZcXJwuuugi3XXXXZ1/+IDLeMyJbdwAAACIKLopAQAAbEQYAwAAsBFhDAAAwEaEMQAAABsRxgAAAGwU1UtbHDhwRF6vdZNB09JOV13dYcuuj+6hXpyHOnEm6sV5qBNnsrpe4uI86t8/+BI4UR3GvF5jaRjz3QPOQ704D3XiTNSL81AnzmRnvdBNCQAAYCPCGAAAgI0IYwAAADYijAEAANiIMAYAAGAjwhgAAICNCGMAAAA2IowBAADYiDAGAABgI8IYAACAjQhjAAAANiKMAQAA2IgwBgAAYCPCGAAAgI0sDWOHDx9WYWGhvv7661PObd++XUVFRRo7dqwWLVqk1tZWK4uCKLC5aotK/7RUt717r0r/tFSbq7bYXSQAACxnWRj761//qmuvvVZ79uxp9/w999yjBx54QBs3bpQxRq+++qpVRUEU2Fy1RWt2rNWBpm8kSQeavtGaHWsJZACAmGdZGHv11Ve1ePFiZWRknHLub3/7m44dO6Zhw4ZJkoqKirRhwwarioIo8PquDWrxtgQca/G26PVd/F0AAGJbvFUXXrJkSdBzNTU1Sk9P9z9OT09XdXV1l++RlnZ6t8rWFenpyZbfA9I3/9Mi1t7x9uqAenEe6sSZqBfnoU6cyc56sSyMdcTr9crj8fgfG2MCHoeqru6wvF4TzqIFSE9PVm3tIcuuj39ISUzxd1GefPzkOqBenIc6cSbqxXmoE2eyul7i4jwdNiDZMpsyKytLtbW1/sf79+9vtzsT7jEpe5x6x/UOONY7rrcmZY+zqUQAAESGLWHszDPPVGJioj788ENJ0rp16zRq1Cg7igKHuDjrIk3PKVb/xBRJUv/EFE3PKdbFWRfZWzAAACwW0W7K2bNna+7cuRoyZIieeOIJlZaW6vDhw8rNzVVJSUkkiwIHujjrIsIXAMB1PMYY6wZdWYwxY+5EvTgPdeJM1IvzUCfO5MoxYwAAADiOMAYAAGAjwhgAAICNCGMAAAA2IowBAADYiDAGAABgI8IYAACAjQhjAAAANiKMAQAA2IgwBgAAYCPCGAAAgI0IYwAAADaKt7sAAMJnc9UWvb5rgw40faP+iSmalD1OF2ddZHexAAAdIIwBMWJz1Rat2bFWLd4WSdKBpm+0ZsdaSSKQAYCDEcYcghYN9NTruzb4g5hPi7dFr+/awN8SADgYYcwBaNFAOBxo+qZLx9F9/HgCEE6EMQegRSO83PpF2T8xpd3g1T8xJeJliWX8eAIQboQxB6BFI3zc/EU5KXtcwHuXpN5xvTUpe5yNpYo9Vvx4cusPCADHsbSFAwRruaBFo+s6+qKMdRdnXaTpOcX+v5v+iSmanlPMl3qYhfvHk+8HhO/1vh8Qm6u2dK+AAKIOLWMOQItG+Li9lfHirIsIXxYLd3cwwxQA0DLmALRohA+tjLDapOxx6h3XO+BYT348uf0HBABaxhyDFo3woJURVvP9Ow3XGC8mXgAgjCGmhPuLEmhPOH888QMCAGEMlrJjlhitjIgm/IAAQBiDZdy8zATQFfyAANyNAfywjJuXmQAAIFSEMViGWWIAAHSObkpYhllikFhdHgA6Q8sYLBPu9ZgQfVhdHgA6RxiDZS7Oukh5WSMUJ48kKU4e5WWNoFXERRg3CACdo5sSltlctUWVVR/KKyNJ8sqosupDnZfybcsCGV1izsK4QQDoHC1jsEykW0XoEnMetqcCgM4RxmCZSLeK0CXmPIwbBIDO0U0Jy0R6NiVdYs7D6vIA0DnCGCwT6T33WErDmVhdHgA6RjclLHNx1kWanlPsD0P9E1M0PafYsi9musQAANGIljFYqjutIt2dEUmXGAAgGhHG4Cg93VycLjEAQLQhjKHbrFjTq6MZkYQsAEAsIoyhW3raghUMMyIBAG7DAH50i1VrerFIKADAbWgZQ7dY1YIVbDmMC9NyVPqnpTrQ9I0GJKVq4rfH0G0JAIgJhDF0i1VrerU3I/LCtBxVVn3oD2j7j9aHpUsUAAAnIIyhW6xc0PXkGZGlf1rKoH4AQMwijKFbIrmmF4P6AQCxjDCGbovUml5scwQAiGXMpoTjsc0RACCW0TIGxzu5S5TZlACAWEIYQ1Q4sUs0PT1ZtbWHbC4RAADhQTclAACAjWgZA4AQWbEfKwAQxuAofNnBCdr7O5RkyX6sAEAYg2NYtfk40BXB/g4T4nqz+DAASxDG4BgdbT7Olx0iJdjf4cnHfEJZfJgWXwAdIYzBMVhpH07Q1b+3zhYfpsUXQGcIY+i2cP/aZ6V9OEGwv8OkXn3VYlq7vB8rLb4AOsPSFugW369935eW79f+5qot3b4mK+3DCYL9Hf5o8NWanlPs/3HQPzFF03OKOw1UtPgC6AwtY+gWK37td7T5+ImtcKzADyt19Hd44vlQ0eILoDOEMXRLuH7tt9fV+fClC095zoljbvYfrWfMDSx14o4PPTUpe1zA369Eiy+AQHRToluC/arvyq/9ULs6O2qFA5zu4qyLutW9CcA9aBlDt4Tj136oXZ2MuUG0C2dLG4DYQxhDt3Q2riYUoYaspF59dbSt8ZTnMeYGABALCGPotp7+2g9lYPPmqi1q8jaf8pw4xVk65mZz1RZt+vJ3unvkC3riD7M0ZuBkWjYAAJZgzBhsE8pSFq/v2qA203bKa/vG97EsHPnGsp2XtlVnf+uAzkvb2uNlOwAACIaWMdjm5K7OpF595fF49MKnL+v1XRs0KXtc0K7MI61HLStXespP9PyUzxQfdzwE3nbJu5rzv97Xx/velvSBZfcFALgTLWOw1cVZF+nhSxdq1gXT1GJa/SHLN7MyqVffdl9n5Xix33w8TPuPnK427/F/Hm3eONUeSdZv/jrMsnsCANyLljE4QrCZlQnxvdU7rnfAuYReCWEZLxZsO6fmloF65ZP/pTvy31ZjS7x692rTq598T82tA3t8TwAATkYYgyN01B0564JpAaHpuuFTlJN0fo/u19HmzZOyxykt5bdqau2ttZ+OUPEFH6rgnC+U029Rj+4JhFO494YFYB/CGCzR1S+K0+KT2h0Hdlp80imzNtPTk1Vbe6hH5etojbOHL12o/3vwbi1+Z5v2NrTo433f0+R/zuWLDo7R0Y8J/k6B6EMYQ9h154vCGNOl4z3V2Rpng781XfO/Z8mt0Q5aebrGir1hAdjH0gH869ev14QJEzRmzBitXr36lPPbtm1TcXGxJk2apDlz5qihocHK4iBCurN9UXuLunZ0vKfCsZ0TwiPUbbHwD+xKAcQWy1rGqqurtXz5cpWVlSkhIUHTpk3TJZdcokGDBvmfs2TJEs2dO1ejR4/WI488oueff17z5s2zqkiIkO58UYSyAGw4sXmzc0RTK0+4W/C6e71I/3sBYC3LWsbKy8uVl5enlJQUJSUlaezYsdqwIbBlxOv16siRI5KkxsZG9enTx6riIIK62uq0uWqLmttOXWXfynDE5s3OES2tPOFuwevJ9UJZMBlA9LCsZaympkbp6en+xxkZGfr4448DnnPffffpxhtv1NKlS9W3b1+9+uqrXbpHWtrpYSlrR9LTky2/R6y5bvgU/X//vTogYCX0StB1w6ec8nn+4cvN+o//W3ZKGDu992m6YcT/1siBF7d7j3DUy8T00Zo4ZHSPr4PjulsnA5JStf9ofbvHnfTv7/eVm9ptwfv9nk3d+jvqyfUmpo9Wv3599R8fr1Pd0XqlJaXq2qFXt/vvxUmfIY6jTpzJznqxLIx5vV55PB7/Y2NMwONjx45p0aJFWrVqlYYOHap///d/1/z587Vy5cqQ71FXd1herzUDvKXwzNpzo5yk83Xt4KJTul9yks4/5fN86aPXgraKtfd8iXpxop7UycRvj2m3y3jit8c4qp7bC4y+490pZ0+vl5N0vv4lL3CJl5Nfx78V56FOnMnqeomL83TYgGRZGMvKytKf//xn/+Pa2lplZGT4H+/cuVOJiYkaOnSoJOmaa67RU089ZVVxEGGhbiIeLV1UsM7J22I5dTZlqBvbh/o+GPcFwMeyMFZQUKAVK1aovr5effv21aZNm/TQQw/5zw8cOFBVVVXavXu3zjvvPL3zzjsaMmSIVcWBQ/GFBCn08G6nziZ9dHVJFyaRAPCxLIxlZmZq3rx5KikpUUtLi6ZOnaqhQ4dq9uzZmjt3roYMGaJly5bpzjvvlDFGaWlpWrp0qVXFgUPxhYRo0VkLXldnhUZLiyAA63mMVatqRgBjxmJDV6f3Uy/OE011YtUCs7e9e2/Qc7+64rEeX787oqle3II6caaYHTMGhCoauqgQG6zcRogudwDdZekK/ADgJN3ZHSJUrP0FoLtoGQPgGlbO3mUMWOfYgxRoH2EMgGtY3ZVIl3twVnYRA9GObkoArkFXon2s7CIGoh0tYwBcg65E+7DAMxAcYQyAq9CVaA9mmwLB0U0JALAcXcRAcLSMAQAsRxcxEBxhDCFjWjqAnqCLGGgfYQwhYVo6AADWYMwYQsK0dAAArEEYQ0iYlg4AgDUIYwhJsOnnTEsHAKBnGDOGkEzKHhcwZkxiWjoQCia+AOgMYQwhYVo6YkGkgxETXwCEgjCGkDEt3flohQnOjmDU0cQX6gWAD2PGgBjhCxu+SRW+sLG5aou9BXMIO2YEM/EFQCgIY0CMYPmRjtkRjJj4AiAUdFMCMcKNrTChdMv6nhOMlcGIiS8AQkEYA2JE/8SUdoNXrLbChDIG7OTnnMzqYMTEFwChIIwBMcJtrTChDI5v7zk+kQpGTHwB0BnCGBBGds5mdFsrTCjdsh110T586cLwFggAuokwBoSJE9aUclMrTCjdsm7rugUQnQhjQDed3ArW3NbMmlIRFEq3rNu6bgFEJ8IY0A3ttYIFE8uzGe0USrdsKM9hoVwAdiOMAd3Q0cDwk9ElZp1QumU7eo4TupYBgEVfgW4ItbWLLjFnY6FcAE5AGAO6IVhrV1Kvvv5z/RNTND2nmBYWB3PjQrkAnIduSqAbgg0M/9HgqwlfUYTZlgCcgDAWwxiYbB23rekVq5htCcAJCGMxioHJ1nPTml6xilANwAkIYzEqlK1iABCqAdiPAfwxioHJAABEB1rGYhQDk4GuYYwlALvQMhajJmWPU++43gHHGJgMtM83xtL3A8Y3xnJz1RZ7CwbAFQhjMerirIs0PaeYNa+AELD4KwA70U0ZwxiYDDfpSTcjYywB2ImWMQBRr6fdjMHGUjLGEkAkEMYARL2edjMyxhKAneimBBD1etrNyOKvAOxEGAMQ9cKxlAtjLAHYhW5KAFGPbkYA0YyWMQBRr6NuRhZzBeB0hDEAMaG9bkbfLEvf4H7fLEvf8wHACQhjAGJWR7Ms7Q5jtNgB8CGMAYhZTl3MlRY7ACdiAD+AmOXUxVzZfgnAiQhjAGKWU2dZOrXFDoA96KYEELOcuphrONZFAxA7CGMAYpoTF3OdlD0uYMyY5IwWOwD2IIwBQIQ5tcUOgD0IYwBgAye22AGwBwP4AQAAbEQYAwAAsBFhDAAAwEaEMQAAABsRxgAAAGzEbEoArsDG3ACcijAGIOaxMTcAJ6ObEkDMY2NuAE5GGAMQ89iYG4CT0U0JIOZFYmNuxqQB6C5axgDEvEnZ49Q7rnfAsXBuzO0bk+YLfL4xaZurtoTl+gBiG2EMQMy7OOsiTc8p9reE9U9M0fSc4rC1XDEmDUBP0E0JwBWs3JibMWkAeoKWMQDooWBjz8I5Jg1A7CKMAUAPWT0mDUBso5sSAHrI1/3JbEoA3UEYA4AwsHJMGoDYZmk35fr16zVhwgSNGTNGq1evPuX87t27NXPmTE2aNEk33XSTDh48aGVxAAAAHMeyMFZdXa3ly5drzZo1+t3vfqdXXnlFn3/+uf+8MUY/+clPNHv2bL3++us6//zztXLlSquKAwAA4EiWhbHy8nLl5eUpJSVFSUlJGjt2rDZs+MeaO9u2bVNSUpJGjRolSbrllls0Y8YMq4oDAADgSJaNGaupqVF6err/cUZGhj7++GP/471792rAgAFauHChtm/frvPOO0/3339/l+6RlnZ62MobTHp6suX3QNdRL85DnTgT9eI81Ikz2VkvloUxr9crj8fjf2yMCXjc2tqqzZs366WXXtKQIUP05JNP6pFHHtEjjzwS8j3q6g7L6zVhLfeJ0tOTVVt7yLLro3uoF+ehTpyJenEe6sSZrK6XuDhPhw1IlnVTZmVlqba21v+4trZWGRkZ/sfp6ekaOHCghgwZIkkqLCwMaDkDAABwA8vCWEFBgSoqKlRfX6/GxkZt2rTJPz5MkoYPH676+nrt2LFDkvTuu+8qNzfXquIAAAA4kmXdlJmZmZo3b55KSkrU0tKiqVOnaujQoZo9e7bmzp2rIUOG6Fe/+pVKS0vV2NiorKwsPfbYY1YVBwAAwJE8xhjrBl1ZjDFj7kS9OA914kzUi/NQJ84Us2PGAAAA0DnCGAAAgI0IYwAAADYijAEAANiIMAYAAGAjwhgAAICNCGMAAAA2IowBAADYiDAGAABgI8IYAACAjQhjAAAANiKMAQAA2IgwBgAAYCPCGAAAgI0IYwAAADYijAEAANiIMAYAAGAjwhgAAICNCGMAAAA2IowBAADYiDAGAABgo3i7CwAAAJyjYluVyt7fpbqGJqX1S1TR6Gzl52bZXayYRhgDAACSjgexF97coeZWrySprqFJL7y5Q5IIZBYijAEA4BKdtXqVvb/LH8R8mlu9Knt/F2HMQoQxAABcIJRWr7qGpnZfG+w4woMB/AAAuEBHrV4+af0S231tsOMID8IYAAAuEEqrV9HobCXEB0aDhPg4FY3OtrRsbkc3JQAALpDWL7HdQHZiq5evu5LZlJFFGAMAwAWKRmcHjBmT2m/1ys/NInxFGGEMAAAXoNXLuQhjAAC4BK1ezsQAfgAAABsFDWNPPfWUjDGRLAsAAIDrBA1jlZWVKikpUW1tbSTLAwAA4CpBw9jq1auVn5+v4uJi/fGPf4xkmQAAAFwj6AD+uLg43Xrrrfr+97+v0tJSvfPOOzrnnHP852+44YaIFBAAACCWdTqbMi4uTh6PR59//rmOHTsWiTIBAAC4RtAwZozRr3/9az3//POaN2+eZsyYEclyAQAAuELQMDZt2jQ1NjZqzZo1+s53vhPJMgEAALhG0AH8ubm5+u1vf0sQAwAAsFDQlrEHHnggkuUAAABwJVbgBwAAsBFhDAAAwEaEMQAAABsRxgAAAGzU6aKvAAAAPVGxrUpl7+9SXUOT0volqmh0tvJzs+wulmMQxgAAgGUqtlXphTd3qLnVK0mqa2jSC2/ukCQC2f+gmxIAAFim7P1d/iDm09zq1fNvfKqKbVU2lcpZCGMAAMAydQ1N7R73GumFN3cQyEQYAwAAFkrrlxj0XHOrV2Xv74pgaZyJMAYAACxTNDpbCfHB40awljM3IYwBAADL5Odmadb4HMV5gj/nnmf+5OruSmZTAgAAS/lmTZ44q/JEbp9hScsYAACwnK+FLNgYMjePHyOMAQCAiMjPzdLjt14a9Lxbx48RxgAAQEQFax3raOZlLCOMAQCAiGpvhmVCfJyKRmfbVCJ7MYAfAABElG+QPvtVHkcYAwAAEZefm9Xj8BUrG5ATxgAAQNSJpQ3IGTMGAACiTrANyKNxeQzCGAAAiDrBlsGIxuUx6KYEAMDFonXcVVq/xHaDVzQuj0EYQ8Q0VJZrf9latdbXKT41TQOKitUvr8DuYgGAa0XzuKui0dmnbK8Urctj0E2JiGioLFf1i6vUWl8nSWqtr1P1i6vUUFluc8kAwL2iedzVydsrpfVL1KzxOY4Pke2hZQwRsb9srUxzc8Ax09ys/WVraR0DAJtE+7ircCyP4QS0jCEifC1ioR4HAFiPbYmcgZYxRER8alq7wSs+Nc2G0gBA7AtlYH4sjbuKZrSMISIGFBXLk5AQcMyTkKABRcU2lQgAYpdvYL6vu9E3ML9iW1XA82Jp3FU0o2UMEeEbF8ZsSgCwXkcD808OWrEy7iqaWRrG1q9fr2effVatra2aNWuWZsyY0e7z3nvvPT344IN69913rSwObNYvr4DwBQAREO0D893GsjBWXV2t5cuXq6ysTAkJCZo2bZouueQSDRo0KOB5+/fv16OPPmpVMQAAcJ1YWhDVDSwbM1ZeXq68vDylpKQoKSlJY8eO1YYNG055XmlpqW6//XarigEAgOsUjc5WQnzgVzwD853Lspaxmpoapaen+x9nZGTo448/DnjOiy++qAsuuEDf/e53u3WPtLTTe1TGUKSnJ1t+D3Qd9eI81IkzUS/OE4k6mfT9ZPVL7qMX39yu/QcaNaB/X5WMP1/fH3G25feOVnb+W7EsjHm9Xnk8Hv9jY0zA4507d2rTpk1atWqVqqqq2rtEp+rqDsvrNT0uazDp6cmqrT1k2fXRPdSL81AnzkS9OE8k6yT3nBQ9Oic/4Bh/D+2zul7i4jwdNiBZ1k2ZlZWl2tpa/+Pa2lplZGT4H2/YsEG1tbUqLi7WzTffrJqaGk2fPt2q4gAAADiSZWGsoKBAFRUVqq+vV2NjozZt2qRRo0b5z8+dO1cbN27UunXrtHLlSmVkZGjNmjVWFQcAAMCRLAtjmZmZmjdvnkpKSjR58mQVFhZq6NChmj17trZu3WrVbQEAAKKKxxhj3aArizFmzJ2oF+ehTpyJenEe6sSZ7B4zxgr8AADAcULZWzNWEMYAAICj+PbW9G3p5NtbU1JMBjI2CgcAAI7S0d6asYgwBgAAHMVte2vSTQkAACzR3XFfbttbk5YxAAAQdr5xX75Q5Rv3VbGt81133La3Ji1jAAAg7Doa9+VrHQvWcuY7z2xKAACAbups3FdnMyZPDGWxjm5KAAAQdsHGd/mOu23GZEcIYwAAIOw6G/flthmTHaGbEgAAl4nE6vadjfty24zJjtAyBgCAi/RklmNX7vHA85s0LOcH6pt4RLOvukCP33ppQOBz24zJjhDGAABwEavHavnCXvZZf9I5WV/pvLPK2w17+blZmjU+x98SltYvUbPG57hm0P6J6KYEAMBFrB6rlZ52s1Y/WKH4+FZJ0rxrn1Lrj36lj3bmS3o94LlumjHZEVrGolhDZbl233uXdv74eu2+9y41VJbbXSQAgMN1Nsuxp/59/TWqOZCu1rZekqTWtl6qOZChf1t/TViuH4sIY1GqobJc1S+uUmt9nSSptb5O1S+uIpABADpk9Vit5pZva/XG6Yrv1abGpj6K79Wm1RuvVUvLt8Ny/VhEN2WU2l+2Vqa5OeCYaW7W/rK16pdXYFOpOtZQWa79ZWvVWl+n+NQ0DSgq7lZZa97///XFqpd6fB0AcCOrV7cvGp2tAf0fVlNzol5+639r2pWvatSwcuUO/HFYrh+LCGNRytciFurx9oQrHIV6r+oXV/kDpK8lT1KX7tlQWa6a37wgb1NTj64DAG5m5Vit/Nwsbd87Twt+1awv9iXprzvHqPjyRMaGdYAwFqXiU9PaDV7xqWkhvT5c4ShU4WrJ21+21h/EenIdAIB1zj9njO6fZXcpogdjxqLUgKJieRISAo55EhI0oKg4pNd3FI6sEI6WvHBeBwAApyCMRal+eQXKLLne3xIWn5qmzJLrQ24dinSoCdZiF2pLXrivAwCAU9BNGcX65RV0u2uup92cXTWgqDigW1TqWkveidc5ccxYd68DAIBT0DLmUj3t5uyqnrbknXid7Ntu6fF1AABwClrGXMoXXiI1m9J3z3BcP2P0KHkuGB6GEgEAYD/CmIuFKxwBAIDuo5sSAADARoQxAAAAGxHGAAAAbMSYMQAAXKpiW1W39qjs7uvQPsIYAAAuVLGtSi+8uUPNrV5JUl1Dk154c4ckdRisuvs6BEc3JQAALlT2/i5/oPJpbvWq7P1dlrwOwRHGAABwobqGpi4d7+nrEBxhDAAAF0rrl9il4z19HYIjjEW5hspy7b73Lu388fXafe9daqgst7tIAIAoUDQ6WwnxgTEgIT5ORaOzLXkdgmMAfxRrqCwP2Hy7tb5O1S+ukiRW1gcAdMg32L6rsyK7+zoERxiLYvvL1vqDmI9pbtb+srWEMQBAp/Jzs7oVorr7OrSPbsoo1lpf16XjAADAeQhjUSw+Na1LxwEAgPMQxqLYgKJieRISAo55EhI0oKjYphIBAICuYsxYFPONC9tftlat9XWKT03TgKJixosBABBFCGNRrl9eAeELAIAoRjclAACAjQhjAAAANiKMAQAA2IgxY1GsobI87IP3rbgmAAAIjjAWpazYContlQAAiDy6KaNUsK2Qqv7tuW5vFt7R9koAAMAatIxFqaBbHnm97bZmhdL9yPZKAAA3qdhWpbL3d6m+oUmpNm54ThiLUvGpaUFD0smbhYfa/RjsmmyvBADu4wsqdQ1NSrMxqFilYluVXnhzh5pbvZKkuoYmvfDmDkmK+PukmzJKtbcV0olODFWhdj+yvRIAQPpHUKlraJL0j6BSsa3K5pKFT9n7u/xBzKe51auy93dFvCy0jEUpX4tW1b89J3m9p5w/sTUr1O5HtlcCAEjBg8rzb3wqyfqWo0i0yvmCZqjHrUQYi2K+kHRiF6R0amtWV7of2V4JABAskHiNLO/Ki1T3YVq/xHbfZ1q/xLDdI1R0U0a5fnkFyiy53h+s4lPTlFlyfUCgovsRANAVHQUSq7vyItV9WDQ6WwnxgTEoIT5ORaOzw3qfUNAyFgM6a82Kxu5HFp8FAPsUjc4OaJ06WU+78jrqhoxU96HvfsymRMREU/cji88CgL18geT5Nz6V15x6/uSWs66M8eqsGzKS3Yf5uVnKz81SenqyamsPhf36oaKbEo7D4rMAYL/83CzdVHhBp115XZ152Vk3pJO6DyOFMAbHYfFZAHCG/NwszRqf42+VSuuXqFnjcwJavbo6xquzbshQ7hlr6KaE47D4LAA4h68rL5iujvEKpRuys3vGGlrGwqyhsly7771LO398vXbfe1e394nsaRm+XPxTndZ4pr5c/FNbytATzP4EgOgRbCxXsONu7IbsDGEsjHwDz32tOr6B55EMQ74yJGd/qqRzDin5vE8jXoaeCmW5DgCAM3Q1XLmxG7IzHmNMO/MkokNd3WF525vmESZdnV2x+967gnavnffY/wln0YLyfD5c/YfvkSfeq7h4I2+rR6Y1Tgc++rbMoI8iUgar2T3rBaeiTpyJenGeWK2TaN/H0up6iYvzKC3t9KDnGTMWRk4YeP7lqmwlnVWjxPQjUryRafWoqSZJX67K1jkPR6wYAAAXcdsYr3CjmzKMgg0wj+TA89bmgdq75gJ54o3aGnvJE2+09z8uUGvzwIiVAQAAhI4wFkZOGHg+oKhYA0b+Xd6mXtr7HxfI29RLA0b+ncHvAAA4FN2UYeSEbYf65RXo2Pa79deFm3VsT6Pq/zpUmcWXMPgdABBW0T5OzEkIY2HmhG2HEs+/QeeU3mBrGQAAsauzLY3QNXRTAgCALunqqvvoGGEMAAB0SVdX3UfHCGMAAKBLurrqPjrGmDEAABCgs8H5RaOzA8aMSWxp1BOWhrH169fr2WefVWtrq2bNmqUZM2YEnH/77be1YsUKGWN01llnadmyZfrWt75lZZEAAEAHQhmc7/tvd2ZTMgvzVJaFserqai1fvlxlZWVKSEjQtGnTdMkll2jQoEGSpMOHD+vnP/+51q5dq8zMTD311FNasWKFSktLrSqSIzRUltu69AUAAB3paHD+iaGpO6vuMwuzfZaNGSsvL1deXp5SUlKUlJSksWPHasOGDf7zLS0tWrx4sTIzMyVJgwcP1r59+6wqjiM4YSNxAAA6YuXgfGZhts+ylrGamhqlp6f7H2dkZOjjjz/2P+7fv7+uvPJKSdKxY8e0cuVKzZw5s0v36GjTzXBJT08O27W+XFcm09wccMw0N+vAujJlXzU2bPdxg3DWC8KDOnEm6sV5nF4n6f37qvZAY7vHe1r2+iCBrr6hyfbPxc77WxbGvF6vPB6P/7ExJuCxz6FDh3TbbbcpJydHU6ZM6dI96uoOy+s1PS5rMOHexb2pdn/Q41buFm8Vu7pcw10v6DnqxJmoF+eJhjqZfNm57Q7On3zZuT0ue2q/xHZb2FL7Jdr6uVhdL3Fxng4bkCzrpszKylJtba3/cW1trTIyMgKeU1NTo+nTp2vw4MFasmSJVUVxDCdsJB4udLkCQGzKz83SrPE5/mUq0volatb4nLCM6Soana2E+MDowSxMC1vGCgoKtGLFCtXX16tv377atGmTHnroIf/5trY23XLLLRo/frxuvfVWq4rhKAOKilX94qqArspIbyQeLvvL1rbb5bq/bC0TEgAgynVncH6o15W6NwszllkWxjIzMzVv3jyVlJSopaVFU6dO1dChQzV79mzNnTtXVVVV+vTTT9XW1qaNGzdKki688MKYbiFzwkbi4eJrEQv1OAAAknVBL5p5jDHWDbqyWLSNGYslu++9q93gFZ+apvMe+z+W3pt6cR7qxJmoF+ehTpwpZseMIbYNKCqWJyEh4Fi0drkCAGAntkNCt8RSlysAwD6syE8YQw/0yysgfAEAuo0V+Y+jmxIAANiCFfmPo2XMZdgbEwDgFFZuvRRNaBlzERZqBQA4iW9h2VCPxyrCmIt0tFArAACRxor8x9FN6SKRWKiVblAAQKhYkf84wpiLxKemBV2oNRx83aC+1jdfN6gkAhkAoF2syE83patYvVAr3aAAAHQdLWMuYvVCrexXCQBA1xHGXMbKhVqt7gYFACAW0U2JsGG/SgAAuo6WMYeLptmJ7FcJAEDXEcYcLBpnJ7JfJQAAXUM3pYMxOxEAgNhHGHMwZicCABD7CGMOFmwWIrMTAQCIHYwZCxMrBtoPKCoOGDMmMTsRAIBYQxgLA6sG2jM7EQCA2EcYC4OOBtr3NDg5YXZiNC2vAQBAtCGMhUEsD7SPxuU1AACIJgzgD4NYHmjP8hoAAFiLMBYGsbwNUCy3+gEA4AR0U4ZBLA+0Z/NvAACsRRgLEycMtLcCy2sAAGAtwhg6FMutfgAAOAFhDJ2K1VY/AACcgAH8AAAANqJlzEVYvBUAAOchjLkEi7cCAOBMdFO6BIu3AgDgTIQxl2DxVgAAnIkw5hKxvGUTAADRjDDmErG8ZRMAANGMAfwuweKtAAA4E2HMRVi8FQAA56GbEgAAwEaEMQAAABsRxgAAAGxEGAMAALARYQwAAMBGhDEAAAAbEcYAAABsRBgDAACwEWEMAADARqzA7yANleVsVwQAgMsQxhyiobJc1S+ukmluliS11tep+sVVkkQgAwAghtFN6RD7y9b6g5iPaW7W/rK1NpUIAABEAmHMIVrr67p0HAAAxAbCmEPEp6Z16TgAAIgNhDGHGFBULE9CQsAxT0KCBhQV21QiAAAQCQzgdwjfIH1mUwIA4C6EMQfpl1dA+AIAwGUIY7AN66oBAEAYg01YVw0AgOMYwA9bsK4aAADHEcZgC9ZVAwDgOMIYbMG6agAAHEcYgy1YVw0AgOMYwA9bsK4aAADHEcZgG9ZVAwCAMNYu3/pXOw/UK75/Ki02AADAMoSxk7D+FQAAiCQG8J+E9a8AAEAkEcZOwvpXAAAgkghjJ2H9KwAAEEmEsZOw/hUAAIgkBvCfJGD9K2ZTAgAAixHG2uFb/yo9PVm1tYfsLg4AAIhhlnZTrl+/XhMmTNCYMWO0evXqU85v375dRUVFGjt2rBYtWqTW1lYriwMAAOA4loWx6upqLV++XGvWrNHvfvc7vfLKK/r8888DnnPPPffogQce0MaNG2WM0auvvmpVcVyhobJcu++9Szt/fL1233uXGirL7S4SAADohGVhrLy8XHl5eUpJSVFSUpLGjh2rDRs2+M//7W9/07FjxzRs2DBJUlFRUcB5dI1vsVrfEhy+xWoJZAAAOJtlYaympkbp6en+xxkZGaqurg56Pj09PeA8uobFagEAiE6WDeD3er3yeDz+x8aYgMednQ9FWtrpPS9oJ9LTky2/RzjsPFDf7vHWA/VR8x66IhbfU7SjTpyJenEe6sSZ7KwXy8JYVlaW/vznP/sf19bWKiMjI+B8bW2t//H+/fsDzoeiru6wvF7T88IGEU2zKeP7p7a7S0B8/9SoeQ+hiqZ6cQvqxJmoF+ehTpzJ6nqJi/N02IBkWTdlQUGBKioqVF9fr8bGRm3atEmjRo3ynz/zzDOVmJioDz/8UJK0bt26gPPoGharBQAgOlkWxjIzMzVv3jyVlJRo8uTJKiws1NChQzV79mxt3bpVkvTEE09o2bJlGjdunI4ePaqSkhKrihPz+uUVKLPkev+2TfGpacosuZ7FagEAcDiPMca6fj6L0U3pTtSL81AnzkS9OA914kwx200JAACAzhHGAAAAbEQYAwAAsBFhDAAAwEaEMQAAABsRxgAAAGxEGAMAALARYQwAAMBGhDEAAAAbEcYAAABsRBgDAACwEWEMAADARoQxAAAAG8XbXYCeiIvzxMQ90HXUi/NQJ85EvTgPdeJMVtZLZ9f2GGOMZXcHAABAh+imBAAAsBFhDAAAwEaEMQAAABsRxgAAAGxEGAMAALARYQwAAMBGhDEAAAAbEcYAAABsRBgDAACwEWEMAADARoQxSevXr9eECRM0ZswYrV69+pTz27dvV1FRkcaOHatFixaptbXVhlK6T2f18vbbb+vqq6/WpEmTdOutt+rgwYM2lNJdOqsTn/fee09XXHFFBEvmbp3Vy+7duzVz5kxNmjRJN910E/9WIqCzOtm2bZuKi4s1adIkzZkzRw0NDTaU0n0OHz6swsJCff3116ecs/W73rhcVVWVufzyy82BAwfMkSNHzFVXXWU+++yzgOdMnDjRfPTRR8YYYxYsWGBWr15tQ0ndpbN6OXTokLn00ktNVVWVMcaYJ5980jz00EN2FdcVQvm3YowxtbW1Zty4cebyyy+3oZTu01m9eL1eM2bMGPP+++8bY4x5/PHHzWOPPWZXcV0hlH8r1157rXnvvfeMMcYsW7bM/OIXv7CjqK7yl7/8xRQWFprc3Fzz1VdfnXLezu9617eMlZeXKy8vTykpKUpKStLYsWO1YcMG//m//e1vOnbsmIYNGyZJKioqCjgPa3RWLy0tLVq8eLEyMzMlSYMHD9a+ffvsKq4rdFYnPqWlpbr99tttKKE7dVYv27ZtU1JSkkaNGiVJuuWWWzRjxgy7iusKofxb8Xq9OnLkiCSpsbFRffr0saOorvLqq69q8eLFysjIOOWc3d/1rg9jNTU1Sk9P9z/OyMhQdXV10PPp6ekB52GNzuqlf//+uvLKKyVJx44d08qVK/XDH/4w4uV0k87qRJJefPFFXXDBBfrud78b6eK5Vmf1snfvXg0YMEALFy7UlClTtHjxYiUlJdlRVNcI5d/Kfffdp9LSUl122WUqLy/XtGnTIl1M11myZIm+973vtXvO7u9614cxr9crj8fjf2yMCXjc2XlYI9TP/dChQ7r55puVk5OjKVOmRLKIrtNZnezcuVObNm3SrbfeakfxXKuzemltbdXmzZt17bXX6rXXXtPZZ5+tRx55xI6iukZndXLs2DEtWrRIq1at0h//+EdNnz5d8+fPt6Oo+B92f9e7PoxlZWWptrbW/7i2tjagCfPk8/v372+3iRPh1Vm9SMd/yUyfPl2DBw/WkiVLIl1E1+msTjZs2KDa2loVFxfr5ptv9tcPrNVZvaSnp2vgwIEaMmSIJKmwsFAff/xxxMvpJp3Vyc6dO5WYmKihQ4dKkq655hpt3rw54uXEP9j9Xe/6MFZQUKCKigrV19ersbFRmzZt8o+tkKQzzzxTiYmJ+vDDDyVJ69atCzgPa3RWL21tbbrllls0fvx4LVq0iNbKCOisTubOnauNGzdq3bp1WrlypTIyMrRmzRobS+wOndXL8OHDVV9frx07dkiS3n33XeXm5tpVXFforE4GDhyoqqoq7d69W5L0zjvv+MMy7GH3d318xO7kUJmZmZo3b55KSkrU0tKiqVOnaujQoZo9e7bmzp2rIUOG6IknnlBpaakOHz6s3NxclZSU2F3smNdZvVRVVenTTz9VW1ubNm7cKEm68MILaSGzUCj/VhB5odTLr371K5WWlqqxsVFZWVl67LHH7C52TAulTpYtW6Y777xTxhilpaVp6dKldhfblZzyXe8xxpiI3Q0AAAABXN9NCQAAYCfCGAAAgI0IYwAAADYijAEAANiIMAYAAGAjwhgAV9u2bZtGjBihrVu3+o/V19frhz/8od577z37CgbANVjaAoDrvfzyy1q5cqVee+01nXbaabrxxhuVn5+vn/zkJ3YXDYALEMYAQNI999yjo0eP6pxzztFXX32lFStWsLMDgIggjAGApKNHj2ry5MlqbW3V+vXrddppp9ldJAAuwZgxAJD0xRdf6MiRI2poaNC2bdvsLg4AF6FlDIDr1dfXa+rUqfrZz36mpqYmLV++XK+99prS09PtLhoAFyCMAXC1trY23XjjjRo0aJDuv/9+SdKCBQv01Vdf6YUXXlCvXr1sLiGAWEc3JQBXe+yxx9TY2Kj58+f7jz3wwAM6ePCgfvGLX9hYMgBuQcsYAACAjWgZAwAAsBFhDAAAwEaEMQAAABsRxgAAAGxEGAMAALARYQwAAMBGhDEAAAAb/T8HoAnNSR8LKgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 3 0.7\n" ] } ], "source": [ "model13 = TrainModel_medoids(X1, 3)" ] }, { "cell_type": "code", "execution_count": 114, "id": "bce6689e", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHwCAYAAADq0mgNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA+PklEQVR4nO3da3hU5b338d8MOUAwacjZolINFRRB0G5NokK15SSIkNBLhBLwAFh1o9QiKgjdWjzVp6i02ovqs9EKu7olitjKQb3k2ZogW6FFIxTloKjkDASQHCaznhd0RgYyySSZNWvNrO/nTTtrTWbdmRvKr//75DIMwxAAAAAs4ba6AQAAAE5GGAMAALAQYQwAAMBChDEAAAALEcYAAAAsRBgDAACwEGEMiCJfffWVhgwZEnDtb3/7my699FKVlZVFpA0PPPCAli5d2uZ7Pv74Y82ePbvVe7NmzVJJSUmnnv3VV1+pX79++u///u+A688995zuueeeTn1ma6666ip9/PHHYfu8thw5ckSTJk3SmDFjtH79+pB+ZurUqVq7dm2nnnf48GEVFxd36me7YvHixZo1a1bEnwtEgzirGwCg8/7yl7/o6aef1vLly3XeeedZ3Ry/gQMH6qmnnjLls91utx599FFdfPHFOuecc0x5RiRt375dtbW12rBhQ0Sed+jQoYgFTZ+//e1vWrNmjS688MKIPheIFoQxIEotW7ZMJSUlWrlypc4444xW3/PBBx/od7/7nU4//XTt2bNHPXr00MyZM/XnP/9Ze/bs0YgRI3TfffdJkt555x0988wzam5uVvfu3TVv3jwNGTJER44c0fz587Vjxw5lZWWpW7duuvjiiyVJn332mR544AEdPHhQLpdLN954o8aPH68PPvhADz74oN544w1VVlbqnnvuUVVVlb7//e+rtrbW376nnnpKGzZsUHx8vHr16qWHH35YWVlZbf7e3bt31w033KBf/epX+stf/qKEhISA+/fcc49++MMf6qabbjrl9VVXXaWxY8dq06ZNOnTokG6++WZt2bJF5eXliouL0zPPPKPs7GxJ0sqVK7Vjxw41NTXphhtu0MSJE9v8npYuXaq///3vqqqqUr9+/fT4448HtOutt97S73//e3m9XvXs2VP33nuvTjvtNN13332qrKzUtddeq5deekndu3f3/0x1dbUWLVqk3bt3y+12a9KkSQFVra+++krXXHONtm7desrr6upqzZs3TwcOHJAkDRs2THfeeafuvfdeNTQ06Nprr1VJSYn27t2rxYsX6+DBg2ppadHUqVM1ceJEffDBB1q8eLGSkpJ09OhRrVy5UvPnz9cXX3wht9utAQMG6IEHHpDb7daMGTM0adIk/eQnPzmlv3bt2qVnn31Wt912m9577702+xZwLANA1Ni3b58xePBg49FHHzXOPfdc48UXX2zz/Zs2bTLOO+88o7y83DAMw7jpppuM6667zmhsbDRqa2uNAQMGGBUVFcaePXuMsWPHGnV1dYZhGMbOnTuNyy67zDh69KixePFi4+677za8Xq9RW1trDB061HjqqaeM5uZm4yc/+Ymxbt06wzAMo6KiwrjiiiuMLVu2GJs2bTLGjBljGIZh3HrrrcaSJUsMwzCMvXv3GoMHDzZWrVplfPPNN8ZFF11kNDY2GoZhGM8995yxYcOGkH7/lpYWY8qUKcYjjzxiGIZhPPvss8a8efMMwzCMefPmGc8++6z/Z058feWVVxoPPfSQYRiG8de//tXo37+/sX37dn87n3nmGf/7Fi1a5P+98vPzjZ07d7b5PT311FPGyJEjjebm5lPa/fnnnxsFBQXGl19+aRiGYZSWlhqXXXaZcfjw4YDv6mS33Xab8eijjxqGYRj19fXGmDFjjL179xo///nPjTfffNP/fZz8/RiGYfz+97837r//fsMwDOPo0aPGnXfeadTX1we8p7m52bj66quNTz75xP+M0aNHG1u3bjU2bdpk9O/f3/jqq68MwzCMV1991bjxxhsNwzAMj8djzJ8/39i7d2+b/XXkyBFjwoQJxj//+U9j1apVxsyZM9t8P+BUVMaAKPPtt99q586dWrZsmebMmaMhQ4bo/PPPD/r+M844w3//rLPOUnJyshISEpSWlqaePXvq0KFD+t///V9VVVVp+vTp/p9zuVz68ssvVVZWpvvuu08ul0tpaWkaPny4JGnv3r1qbGzUiBEjJEnZ2dkaMWKE/ud//keXXnqp/3NKS0s1b948SVKfPn3897Kzs9W/f39NmDBBQ4cO1dChQ5Wfnx/Sd+B2u/Xb3/5W48eP1+WXXx76lyf523vmmWcqIyND/fv39383hw4d8r9v0qRJ/nZedtllKisrU7du3YJ+T5I0ePBgxcWd+j+rmzZtUl5ens4880xJUn5+vtLS0vTJJ5/I5XIFbWtpaanmzp0rSUpOTtYbb7wR8u95xRVXaObMmdq/f78KCgp01113KTk5OeB33Lt3r7788kt/dVSSGhoa9Omnnyo3N1enn366evfuLUm6+OKLtWTJEk2dOlUFBQWaNm2a+vTp02Yb5s+fr6lTp+rcc8/VJ598EnLbAachjAFRpnv37nrmmWcUHx+vWbNm6fbbb1dJSYlSU1P15JNP6p133pF0fBJ6Xl7eKcN4rYUFr9er/Px8PfHEE/5r+/fv9w8ZGiccYdutWzdJUktLyylBwjAMeTyegGsulyvg533Pd7vdevHFF/Xxxx+rrKxMDz30kK644grdfffdIX0Pp59+uv7jP/5D8+bN0/jx44M+r7m5OeDnTvw+4uPjg36+2/3d+iav16u4uDi1tLQE/Z42bNigpKSkVj/L6/UG/a7aakNcXFzAz+3bt0+9evXyv27rdx00aJDefvttlZWVadOmTfrZz36mP/3pT0pNTfW/p6WlRcnJyVq9erX/Wk1NjZKTk/X3v/894Pc588wztWHDBn3wwQfatGmTbrjhBj3wwAO66qqrWm17RUWFPvzwQ+3Zs0fLly/XoUOHdPjwYc2YMUN/+tOfgv7OgBOxmhKIMm632/8P+MyZM9W3b1/ddddd8nq9uuOOO7R69WqtXr1ad9xxR8ifmZ+fr/fff1+7du2SJG3cuFHjxo1TQ0ODrrjiCr3yyivyer06dOiQ3n77bUnSOeeco7i4OP8KwMrKSq1bt04FBQUBn33FFVfopZdekiR98803+uCDDyRJO3bs0NixY5Wbm6tZs2Zp+vTpHZ5YPmrUKA0dOlTPP/+8/1qvXr38VZjKykpt3ry5Q5/p8+qrr/rbXFZWpvz8/Da/p7bk5+frvffe0759+yRJZWVl2r9/f7sT2vPz87Vq1SpJx1dBTps2TXv37vXfT0lJUXNzsz7//HNJ0l//+lf/vccff1xPP/20fvrTn2r+/Pnq27evPvvsM3+oNAxDZ599trp37+4PY/v379fYsWNbrWKtXLlS9957ry6//HLNnTtXl19+uT799NOgbc/JydF7773n//M4e/Zs/ehHPyKIAa2gMgZEMZfLpUcffVQTJkzQE088oV/+8ped+py+ffvqgQce0C9/+UsZhuGfzN6zZ0/9+7//uxYtWqTRo0crLS1N5557rqTjVaWnn35av/nNb7R06VK1tLTotttuU15enj9wSdKiRYt07733avTo0crJyfEPC/bv31+jR49WUVGRkpKS1L17dy1YsECS9OSTT0pSSIFywYIF+uijj/yvp06dql/96lcaOXKkzjjjDOXl5XXqO2lsbNSECRPU3NysBQsW6Oyzz5akoN9TW/r27atFixbp9ttvV0tLi7p3764//vGPSk5ObvPnFi5cqF//+te65pprZBiGZs2apQsuuMB/Pzk5WXPnztWMGTOUlpamUaNG+e9NmzZN99xzj8aOHauEhAT169dPY8aMUbdu3TRo0CCNGTNGK1as0NNPP63Fixfr2Weflcfj0R133KGLL744oA8lafz48dq8ebOuvvpq9ejRQ6effrqmTp0qSW1O4AfQPpdxYo0bAAAAEcUwJQAAgIUIYwAAABYijAEAAFiIMAYAAGAhwhgAAICFonpriwMHjsrrNW8xaHr6aaqtPWLa56Nz6Bf7oU/siX6xH/rEnszuF7fbpV69gm+BE9VhzOs1TA1jvmfAfugX+6FP7Il+sR/6xJ6s7BeGKQEAACxEGAMAALAQYQwAAMBChDEAAAALEcYAAAAsRBgDAACwEGEMAADAQoQxAAAACxHGAAAALEQYAwAAsBBhDAAAwEKEMQAAAAsRxgAAACxEGAMAALCQqWHsyJEjGjt2rL766qtT7m3fvl2FhYUaOXKk5s+fL4/HY2ZTEAXqN5Vq9913aefN07X77rtUv6nU6iYBAGA608LYP/7xD11//fXau3dvq/fnzp2rhQsXat26dTIMQy+//LJZTUEUqN9UqsoXlstTVytJ8tTVqvKF5QQyAEDMMy2Mvfzyy1q0aJGysrJOuff111+roaFBgwcPliQVFhZq7dq1ZjUFUaCmZJWMpqaAa0ZTk2pKVlnUIgAAIiPOrA9evHhx0HtVVVXKzMz0v87MzFRlZWWHn5Geflqn2tYRmZnJpj8D0s4Dda1e9xyoa7UP6Bf7oU/siX6xH/rEnqzsF9PCWFu8Xq9cLpf/tWEYAa9DVVt7RF6vEc6mBcjMTFZ19WHTPh/fieuV5h+iPPn6yX1Av9gPfWJP9Iv90Cf2ZHa/uN2uNgtIlqymzMnJUXV1tf91TU1Nq8OZcI6MwiK5EhICrrkSEpRRWGRRiwAAiAxLwljv3r2VmJiojz76SJK0evVqDR061IqmwCZS8gqUXTxdcWnpkqS4tHRlF09XSl6BxS0DAMBcER2mnDFjhmbPnq2BAwfq8ccf14IFC3TkyBENGDBAxcXFkWwKbCglr4DwBQBwHJdhGOZNujIZc8aciX6xH/rEnugX+6FP7MmRc8YAAABwHGEMAADAQoQxAAAACxHGAAAALEQYAwAAsBBhDAAAwEKEMQAAAAsRxgAAACxEGAMAALAQYQwAAMBChDEAAAALEcYAAAAsFGd1AwCET/2mUtWUrJKnrlZxaenKKCxSSl6B1c0CALSBMAbEiPpNpap8YbmMpiZJkqeuVpUvLJckAhkA2BhhzCaoaKCrakpW+YOYj9HUpJqSVfxZAgAbI4zZABUNhIOnrrZD19F5myu26PVda3Wg8aB6JaZqXO4oXZJzkdXNAhClCGM2QEUjvJxaZYxLS281eMWlpVvQmti1uWKLVu5YpWZvsyTpQONBrdyxSpIIZAA6hTBmA1Q0wsfJVcaMwqKA312SXAkJyigssrBVsef1XWv9Qcyn2dus13et7XQYo9IGOBtbW9hAsMoFFY2Oa6vKGOtS8gqUXTzd/+cmLi1d2cXTYz6ERtqBxoMdut4eX6XN9/O+Stvmii2dayCAqENlzAaoaISP06uMKXkFhC+T9UpMbTV49UpM7dTnmVFpAxBdqIzZABWN8KHKCLONyx2leHd8wLV4d7zG5Y7q1OeFu9IGIPpQGbMJKhrhQZURZvNVq8I1xyvclTYA0YcwhpjiC7ROXE2JyLkk56KwDSGOyx0VsDpT6lqlDUD0IYzBVFZsM0GVEdEk3JU2ANGHMAbTOHmbCaAjwllpAxB9mMAP0zh5mwkAAEJFGINpnL7NBAAAoWCYEqbheB5I7C4PAO2hMgbTZBQWyZWQEHCNbSachd3lAaB9hDGYJiWvQMkFl0nuf/0xc7uVXHAZk/cdpK3d5QEAxzFMCdPUbyrV4dL3Ja/3+AWvV4dL31dS3x+aFsis2EoDwbG7PAC0j8oYTBPp1ZS+rTR889R8W2nUbyo15XloX7Bd5NldHgC+QxiDaSK9mpKtNOwn3Oc4AkAsYpgSpon0akq20rAfdpcHgPYRxmCaSB/azVYa9sTu8gDQNoYpYZqUvAJlF0/3h6G4tHRlF083bUI9W2kAAKIRlTGYqjOHdnd2RaTvPaymBABEE8IYbKWrh4t3JvwBAGAlwhg6zYw9vdpaEUnIAgDEIsIYOqWrFaxgWBEJAHAaJvCjU8za0yvYykdWRAIAYhVhDJ1iVgUr2IrIpEGDtPvuu7Tz5un68OZZ7KoPAIgZDFOiU8za06u1FZFJgwbpcOn7/kpcY3VNWIZEAQCwA8IYOsXMDV1PXhG5++67mNQPAIhZhDF0SiT39GJSPwAglhHG0GmR2tOLY44AALGMCfywPY45AgDEMipjsL2Th0QTMzPU69pC5osBAGICYQxR4cQh0czMZFVXH7a4RQAAhAfDlAAAABaiMgYAIdpcsUWv71qrA40H1SsxVeNyR+mSnIusbhaAKEcYg63UbyrVgTf/S+ffU6JPHylUr9HXMzcMEdda6JKklTtWqdnbLEk60HhQK3ccP/6LQAagKwhjsA3f4ePpebuUdNZhJZ/zKTvtI+I2V2xpNXQluOP913yavc16fddawhiALiGMwTa+l3GbfvDnvXLFeSVJP7zzQ/X1bNGBrf8rQ1stbh2c4vVda1sNXSdf8znQeLDdz2R4E0BbmMAP2/hiea4aq5NkeFySJMPjUmNVkr5Ynmtxy+AkoYSrE/VKTG3zvq/S5vtcX6Vtc8WWzjUQQMwhjKHT6jeVavfdd2nnzdO1++67VL+ptEuf52nqoy9Xni9XnKGWY93kijP05X+dL09TnzC1GGhfsHCV1K2H4t3xAdfi3fH++WTBBKu0vb5rbZfaCSB2EMbQKb75Xb5jijx1tap8YXmXAllGYZEyrvhG3sZu+vK/zpe3sZsyrviGnfYRUeNyR7Uaun7W71pN7l/kD2u9ElM1uX9Ru8ONwSptHa3AAYhdzBlDp9SUrJLR1BRwzWhqUk3Jqk5Ptk/JK1DD9l/pH/dtVsPeY6r7xyBlF12qlLwC1W8q9e/A/wU78MNEvnAVbI5XR+d69UpMbTV4tTe8CcA5CGPolNYO7m7rejAnhqy4tHRlFBbprAU3nPKeyheW+8NfY3UNqyxhqktyLgrbBPtxuaMCVmdKoQ1vAnAOhinRKXFp6R263ppQhzrbqsIBdndJzkWdGt4E4BxUxtApGYVFAdUqSXIlJHRofleoQ53hqsIBVglnpQ1A7CGMoVN8YenkIcaODBuGGrJcPXvKOHr0lPd1pAoHAIBdEcbQaSl5BV2asxWXlt5qIDsxZNVvKpXR0HjqD3frZuoqy9bmsjE/DQBgBuaMwTIZhUVyJSQEXDt5qLOmZJXU4jnlZ909epgWjszYtgMAgGAIY7BMSl6Bsoun+ythrp495UpIUMWzy/ybyAYbyvQeOWJau1gwAACIJIYpYSnfUKevGuX9VwjyVaOsmC/GggEAQCQRxmALwapR7oQEKSEh4J47MTEs88WCzQsLZS4bAADhQhiDLbQ1HJlz88yA0HT29J/Ldf6QLj3v5I1kfZU4KTzbdgBm21yxJegpAQCiC2EMpujoakT3aae1Og/Mfdppp6zazMxMVnX14S61r615Yec89n/872E1Jexoc8WWgF39DzQe1Modx+c0EsiA6EMYQ9i1VXUKFmgMw+jQ9a5qb15YV7ftQMdQ5emY13etDTheSZKavc16fddavjcgCpm6mnLNmjW6+uqrNWLECK1YseKU++Xl5SoqKtK4ceM0a9Ys1dfXm9kcREhnViO2Nkm/retdFY7jnBAeviqP7zBtX5Vnc8UWaxtmY60dPN7WdQD2ZlplrLKyUkuWLFFJSYkSEhI0adIkXXrpperbt6//PYsXL9bs2bM1bNgwPfLII3ruuec0Z84cs5qECOnMasRIT5pnXph9RFOVJ9wVvM5+Xq/E1FaDl+/8SwDRxbTKWGlpqfLy8pSamqqkpCSNHDlSa9euDXiP1+vV0X9VPo4dO6bu3bub1RxEUEerTvWbSuVtOnWXfTPD0cl7nMWlpSu7eDpDkxaIlipPuCt4Xfm8cbmjFO+OD7gW747XuNxRnWoLAGuZVhmrqqpSZmam/3VWVpa2bdsW8J577rlHN954ox566CH16NFDL7/8coeekZ5+Wlja2pbMzGTTnxFrjOk/164//FHexu8CljsxUWdP//kp32fVxv+nqj8/H/BeSeqWfJrOmXGTsoYNbfUZ4eiXzGtGKveakV3+HBzX2T7JSEpTzbd1rV6309+/v25a32oF769712vMwGER/bwxmcOUktJD/7VttWq/rVN6UpquH3StruhzySnvtdN3iOPoE3uysl9MC2Ner1cul8v/2jCMgNcNDQ2aP3++li9frkGDBuk///M/NW/ePC1btizkZ9TWHpHXa84Ebyk8q/acyHX+EGVNnXbKakTX+UNO+T73LH/xlCAmSa74xFbfL9EvdtSVPhnzgxEBKwOl41WeMT8YYat+bi0w+q53pp1d/bz+SefpP/LOC7h28s/xd8V+6BN7Mrtf3G5XmwUk08JYTk6OPvzwQ//r6upqZWVl+V/v3LlTiYmJGjRokCTpuuuu05NPPmlWcxBhoa5GZLd7+OZI2X01ZSjztDoyB4x5XwB8TAtjBQUFWrp0qerq6tSjRw+tX79eDz74oP9+nz59VFFRod27d+ucc87R22+/rYEDB5rVHNgUu91DOh7I7Ba+TjYud1SrFTzfPK2O7v3V3ucBcA7Twlh2drbmzJmj4uJiNTc3a+LEiRo0aJBmzJih2bNna+DAgXr44Yd15513yjAMpaen66GHHjKrObApVjUiWrRXwevoqtBoqQgCMJ/LMGtXzQhgzlhs6Ohu/fSL/URTn5i1wext79wd9N4frnqsy5/fGdHUL05Bn9hTzM4ZA0LFbveIFDOPEWIOGIDOMnUHfgCwk7aGEruKvb8AdBaVMQCOYeYGs8wBax9nkAKtI4wBcAyzhxKjYVWoVcwcIgaiHcOUAByDoUTrmDlEDEQ7KmMAHIOhROtEyxmkgBUIYwAchaFEa7DaFAiOYUoAgOkYIgaCozIGADAdQ8RAcIQxhKyjO+UDwIkYIgZaRxhDSOo3lQacIempq1XlC8sliUAGAEAXMGcMIakpWRVwmLckGU1NqilZZVGLAACIDYQxhMRTV9uh6wAAIDSEMYQkLi29Q9cBAEBomDOGkGQUFgXMGZMkV0KCMgqLLGwVYH+cxwigPVTGEJKUvAJlF0/3V8Li0tKVXTydyfuIKpsrtug3HyxUQ0If/eaDhdpcscX0563cscq/2anvPEaznwsgulAZQ8hS8goIXzZHFSY4XzC65IxPdeb3Duic9I+1ckeLJPMOqm7rPEb6BYAPYQyIEb6w4fvH31eFkcwLG9EkM/UXem7CZ4pzHw9gt136jmb920Zt2/+WpA9MeSbnMQIIBcOUQIxoqwoD6c/bBqvm6Glq8R7/n70Wr1vVR5P1538MNu2Zwc5d5DxGACeiMgbECCdWYUIZlv3uPd/TS5/8m+7If0vHmuMU361FL3/yIzV5+pjWvnG5owKqlRLnMQI4FZUxIEY4rQoTyuT4k99TcOYuNXri9d/l/6ZGT7wKztpjajC6JOciTe5f5O+DXompmty/iGFjAAGojAExwmlVmFAmx5/8ntf/OVj/d8vlOtSYpG37f6TxPxxgejDiPEYA7SGMAWFk5WHqJwYQJ6ymDGVY9uT37KrL8v/3eT9abEKrAKDjCGNAmNjhMHUnVWF6Jaa2GshOHJYN5T0AYDXCGNBJJ1fBvE2NQQ9TZ3+28AtlWNZpQ7cAohNhDOiE1qpgwXCYujlCGZYN5T1slAvAaoQxoBNqSladUgULhsPUzRPKsGxb72GjXAB2wNYWQCeEWu3iMHV7Y6NcAHZAGAM6IVi1y9WzJ4epRxEnbpQLwH4YpgQ6IaOwKGDOmHS8CpZ9/RTCVxRhtSUAOyCMxTAr97yKdb7vke83urHaEoAdEMZilB32vIp1KXkFfJdRzmkb5QKwJ8JYjGpttR97XgGnctJGuQDsiQn8MSrYaj/2vAIAwF6ojMWouLT0VoMXe14BrWPzVwBWoTIWozIKi+RKSAi4xp5XQOt8m7/6Vlb6Nn/dXLHF2oYBcATCWIxKyStQdvF09rwCQsDmrwCsxDBlDGO1H5ykK8OMbP4KwEpUxgBEva4OMwbb5JXNXwFEAmEMQNTr6jDjuNxRinfHB1xj81cAkcIwJYCo19VhRjZ/BWAlwhiAqBeOMybZ/BWAVRimBBD1GGYEEM2ojAGIem0NM7KZKwC7I4wBiAmtDTP6Vln6Jvf7Vln63g8AdkAYAxCz2lplaXUYo2IHwIcwBiBm2XUzVyp2AE7EBH4AMcuum7ly/BKAExHGAMQsu66ytGvFDoA1GKYEELPsuplrOPZFAxA7CGMAYpodN3MdlzsqYM6YZI+KHQBrEMYAIMLsWrEDYA3CGABYwI4VOwDWYAI/AACAhQhjAAAAFiKMAQAAWIgwBgAAYCHCGAAAgIVYTQnAETiYG4BdEcYAxDwO5gZgZwxTAoh5HMwNwM4IYwBiHgdzA7AzhikBxLxIHMzNnDQAnUVlDEDMG5c7SvHu+IBr4TyY2zcnzRf4fHPSNldsCcvnA4hthDEAMe+SnIs0uX+RvxLWKzFVk/sXha1yxZw0AF3BMCUARzDzYG7mpAHoCipjANBFweaehXNOGoDYRRgDgC4ye04agNjGMCUAdJFv+JPVlAA6gzAGAGFg5pw0ALHN1GHKNWvW6Oqrr9aIESO0YsWKU+7v3r1bU6dO1bhx43TTTTfp0KFDZjYHAADAdkwLY5WVlVqyZIlWrlyp1157TS+99JI+//xz/33DMPSLX/xCM2bM0Ouvv67zzjtPy5YtM6s5AAAAtmRaGCstLVVeXp5SU1OVlJSkkSNHau3a7/bcKS8vV1JSkoYOHSpJuuWWWzRlyhSzmgMAAGBLps0Zq6qqUmZmpv91VlaWtm3b5n/95ZdfKiMjQ/fdd5+2b9+uc845R/fff3+HnpGeflrY2htMZmay6c9Ax9Ev9kOf2BP9Yj/0iT1Z2S+mhTGv1yuXy+V/bRhGwGuPx6PNmzfrxRdf1MCBA/XEE0/okUce0SOPPBLyM2prj8jrNcLa7hNlZiaruvqwaZ+PzqFf7Ic+sSf6xX7oE3syu1/cblebBSTThilzcnJUXV3tf11dXa2srCz/68zMTPXp00cDBw6UJI0dOzagcgYAAOAEpoWxgoIClZWVqa6uTseOHdP69ev988MkaciQIaqrq9OOHTskSe+8844GDBhgVnMAAABsybRhyuzsbM2ZM0fFxcVqbm7WxIkTNWjQIM2YMUOzZ8/WwIED9Yc//EELFizQsWPHlJOTo8cee8ys5gAAANiSyzAM8yZdmYw5Y85Ev9gPfWJP9Iv90Cf2FLNzxgAAANA+whgAAICFCGMAAAAWIowBAABYiDAGAABgIcIYAACAhQhjAAAAFiKMAQAAWIgwBgAAYCHCGAAAgIUIYwAAABYijAEAAFiIMAYAAGAhwhgAAICFCGMAAAAWIowBAABYiDAGAABgIcIYAACAhQhjAAAAFiKMAQAAWIgwBgAAYKE4qxsAAADsY2tNvTZ8XauDTR6lJsRpeO90DclIsbpZMY0wBgAAJB0PYq99UaVmryFJOtjk0WtfVEkSgcxEhDEAAByivarXhq9r/UHMp9lraMPXtYQxExHGAABwgFCqXgebPK3+bLDrCA8m8AMA4ABtVb18UhNar9EEu47wIIwBAOAAoVS9hvdOV7zbFXA/3u3S8N7pprbN6Yi6AAA4QGpCXKuB7MSql2+4ktWUkUUYAwDAAYb3Tg+YMya1XvUakpFC+IowwhgAAA5A1cu+CGMAADgEVS97YgI/AACAhYKGsSeffFKGYQS7DQAAgDAIGsY2bdqk4uJiVVdXR7I9AAAAjhI0jK1YsUL5+fkqKirSe++9F8k2AQAAOEbQCfxut1u33nqrfvzjH2vBggV6++23ddZZZ/nv33DDDRFpIAAAQCxrdzWl2+2Wy+XS559/roaGhki0CQAAwDGChjHDMPTHP/5Rzz33nObMmaMpU6ZEsl0AAACOEDSMTZo0SceOHdPKlSt17rnnRrJNAAAAjhF0Av+AAQP0yiuvEMQAAABMFLQytnDhwki2AwAAwJHYgR8AAMBChDEAAAALEcYAAAAsRBgDAACwULubvgIAAHTF1pp6bfi6VgebPEpNiNPw3ukakpFidbNsgzAGAABMs7WmXq99UaVmryFJOtjk0WtfVEkSgexfGKYEAACm2fB1rT+I+TR7Db2yp1Jba+otapW9EMYAAIBpDjZ5Wr1uSHrtiyoCmQhjAADARKkJwWdENXsNbfi6NoKtsSfCGAAAMM3w3umKd7uC3g9WOXMSwhgAADDNkIwUje+TpeBxTHrsH3scPVzJakoAAGAq36rJE1dVnsjpKyypjAEAANP5KmTB5pA5ef4YYQwAAETEkIwU3X3h2UHvO3X+GGEMAABEVLDqWFsrL2MZYQwAAERUayss490uDe+dblGLrOXMCAoAACzjm6TPeZXHEcYAAEDEDclI6XL4ipUDyAljAAAg6sTSAeTMGQMAAFEn2AHk0bg9BmEMAABEnWDbYETj9hgMUwIA4GDROu8qNSGu1eAVjdtjRF+LEbXKyitUsnGXausblZ6SqMJhucofkGN1swDAsaJ53tXw3umnHK8UrdtjMEyJiCgrr9Dzb+5QbX2jJKm2vlHPv7lDZeUVFrcMAJwrmuddnXy8UmpCnMb3ybJ9iGwNlTFERMnGXWryeAOuNXm8Ktm4i+oYAFgk2uddhWN7DDugMoaI8FXEQr0OADAfxxLZA982IiI9JbHV4JWekmhBawAg9oUyMT+W5l1FMypjiIjCYblKiAv845YQ51bhsFyLWgQAscs3Md833OibmL+1pj7gfbE07yqaURlDRPjmhbGaEgDM19bE/JODVqzMu4pmpoaxNWvW6JlnnpHH49G0adM0ZcqUVt/37rvv6oEHHtA777xjZnNgsfwBOYQvAIiAaJ+Y7zSmhbHKykotWbJEJSUlSkhI0KRJk3TppZeqb9++Ae+rqanRo48+alYzAABwnFjaENUJTJszVlpaqry8PKWmpiopKUkjR47U2rVrT3nfggULdPvtt5vVDAAAHGd473TFu10B15iYb1+mReSqqiplZmb6X2dlZWnbtm0B73nhhRd0/vnn68ILL+zUM9LTT+tSG0ORmZls+jPQcfSL/dAn9kS/2E8k+mREZrJSUrrr1X9+o7qGZqV1j9eEft9XHmEsKCv/rpgWxrxer1yu71K5YRgBr3fu3Kn169dr+fLlqqjo3C7stbVH5D1pgmI4ZWYmq7r6sGmfj86hX+yHPrEn+sV+ItknuQkJ+tXAHwRc489D68zuF7fb1WYBybRhypycHFVXV/tfV1dXKysry/967dq1qq6uVlFRkWbOnKmqqipNnjzZrOYAAADYkmlhrKCgQGVlZaqrq9OxY8e0fv16DR061H9/9uzZWrdunVavXq1ly5YpKytLK1euNKs5AAAAtmRaGMvOztacOXNUXFys8ePHa+zYsRo0aJBmzJihjz/+2KzHAgAARBWXYRjmTboyGXPGnIl+sR/6xJ7oF/uhT+zJ6jljbDgCAABsJ5SzNWMFYQwAANiK72xN35FOvrM1JcVkIOOgcAAAYCttna0ZiwhjAADAVpx2tibDlAAAwBSdnffltLM1qYwBAICw88378oUq37yvrTX17f6s087WjM2ICQAALNXWvC9fdSxY5cx3n9WUAAAAndTevK/2VkyeGMpiHcOUAAAg7ILN7/Jdd9qKybYQxgAAQNi1N+/LaSsm28IwJQAADhOJ3e3bm/fltBWTbaEyBgCAg3RllWNHnvHUJ9t0wRlXqHu3w/rZ2dm6+8KzAwKf01ZMtoUwBgCAg5g9V8sX9s7q9a6+n7xHZ6VubDXsDclI0fg+Wf5KWGpCnMb3yXLMpP0TOa8WCACAg5k9Vysj9WYt+eFGxbmbJEk3XrhQHu9vVF49TNLLAe910orJthDGolhZeYVKNu5SbX2j0lMSVTgsV/kDcqxuFgDAxsyeq/XKP29Rzmn/VHrSN+qmFnmMONUey9Er/7xFcwaE5RExh2HKKFVWXqHn39yh2vpGSVJtfaOef3OHysorLG4ZAMDOzJ6r1ew5W6s/u0VxLo8aPD0U5/Jo9We3qNlzdlg+PxZRGYtSJRt3qcnjDbjW5PGqZOMu21bHwlXJe/ejfVr+RjkVQQDoBLN3tx/eO13pqRvU2NJDb3x+s8b2fVaXnP6WcntMCcvnxyLCWJTyVcRCvd6aSA5z+ip5vgDpq+RJ6tAzy8or9MLaf6qxuaVLnwMATmbmXK0hGSnadeRO/bYsSV8d+Z62V4/TyDOPMTesDYSxKJWekthq8EpPSQzp58MVjkIVrkpeycZd/iDWlc8BAJgn97ShuvU8q1sRPZgzFqUKh+UqIS6w+xLi3CoclhvSz7cVjswQjkpeOD8HAAC7IIxFqfwBOZo2ur+/Epaekqhpo/uHXB2KdKgJVrELtZIX7s8BAMAuGKaMYvkDcjo9NNfVYc6OKhyWGzAsKnWsknfi55w4Z6yznwMAgF1QGXOorg5zdlRXK3knfs7tP7uwy58DAIBdUBlzKF94ieSmsV2p5J3oxxefqQFnpXa9QQAA2ABhzMHCFY4AAEDnMUwJAABgIcIYAACAhQhjAAAAFmLOGAAADrW1pr5TZ1R29ufQOsIYAAAOtLWmXq99UaVmryFJOtjk0WtfVElSm8Gqsz+H4BimBADAgTZ8XesPVD7NXkMbvq415ecQHGEMAAAHOtjk6dD1rv4cgiOMAQDgQKkJrc9UCna9qz+H4PjmolxZeUVEd9EHAMSG4b3TA+Z+SVK826XhvdNN+TkERxiLYmXlFQGHb9fWN+r5N3dIEoEMANAm32T7jq6K7OzPITjCWBQr2bjLH8R8mjxelWzcRRgDALRrSEZKp0JUZ38OrWPOWBSrrW/s0HUAAGA/hLEolp6S2KHrAADAfghjUaxwWK4S4gK7MCHOrcJhuRa1CAAAdBRzxqKYb14YqykBAIhehLEolz8gh/AFAEAUY5gSAADAQoQxAAAACxHGAAAALMScsShmxlFIHK8EAEBkEcailBlHIXG8EgAAkccwZZQKdhTSc298qrLyirB+ZsnGXZ1uJwAAaBuVsSgV7Mgjr6FWq1mhDD9yvBIAwEm21tTb4sBzwliUSk9JDBqSTj4sPNThx2CfyfFKAOA8dgkqZtlaU6/XvqhSs9eQJB1s8ui1L6okKeK/J8OUUaq1o5BOdGKoCnX4keOVAADSd0HlYJNH0ndBZWtNvcUtC58NX9f6g5hPs9fQhq9rI94WKmNRylfReu6NT3XSnyVJgdWsUIcfOV4JACAFDyqv7KmUZH7lKBJVOV/QDPW6mQhjUcwXkk4cgpROrWZ1ZPiR45UAAMECiSGZPpQXqeHD1IS4Vn/P1ITIRyOGKaNc/oAcTRvd3x+s0lMSNW10/4BAxfAjAKAj2gokZg/lRWr4cHjvdMW7XQHX4t0uDe+dHtbnhILKWAxor5oVjcOPbD4LANYZ3js9oDp1sq4O5bU1DBmp4UPf8+ywSIEw5hDRNPzI5rMAYC1fIHllT6Vai2MnV846MservWHISA4fDslI0ZCMFGVmJqu6+nDYPz9UDFPCdth8FgCsNyQjRRPPzm53KK+jKy/bG4a00/BhpBDGYDtsPgsA9jAkI0Xj+2T5q1KpCXEa3ycroOrV0Tle7Q1DhvLMWMMwJWyHzWcBwD58Q3nBdHSOVyjDkO09M9ZQGQuzsvIKzX36fd34yDua+/T7nT4nsqttWPjceh1rGaCFz623pA1dwepPAIgeweZyBbvuxGHI9hDGwsg38dxX1fFNPI9kGPK1IfeM93VWzj6dc0ZpxNvQVaFs1wEAsIeOhisnDkO2x2UYRuvrVqNAbe0ReYMsuw2Hjq6umPv0+0GH135762XhbFpQn1eM05BzyxQX51FctxZ5WrrJ44nT1p356pvzekTaYDarV73gVPSJPdEv9hOrfRLt51ia3S9ut0vp6acFvc+csTCyw8Tz/1xznXrf+Lmy0qr8YazqQJb+75rr9NCMiDUDAOAgTpvjFW4MU4ZRsAnmkZx43tT8A61YN1lx3Vp0rLG74rq1aMW669Xc/IOItQEAAISOMBZGdph4XjgsV8MGv6/GpkStXDdJjU2JGjq4lMnvAADYFMOUYWSHY4fyB+Ro+5dzdO8fmrRnf5L+sXOEiq5MZPI7ACCson2emJ0QxsLMDscOnXfWCN0/zdImAABiWHtHGqFjGKYEAAAd0tFd99E2whgAAOiQju66j7YRxgAAQId0dNd9tI1vDQAABGhvcv7w3ukBc8YkjjTqClPD2Jo1a/TMM8/I4/Fo2rRpmjJlSsD9t956S0uXLpVhGDrjjDP08MMP63vf+56ZTQIAAG0IZXK+7z87s5qSVZinMi2MVVZWasmSJSopKVFCQoImTZqkSy+9VH379pUkHTlyRL/+9a+1atUqZWdn68knn9TSpUu1YMECs5pkC2XlFZZufQEAQFvampx/YmjqzK77rMJsnWlzxkpLS5WXl6fU1FQlJSVp5MiRWrt2rf9+c3OzFi1apOzsbElSv379tH//frOaYwt2OEgcAIC2mDk5n1WYrTOtMlZVVaXMzEz/66ysLG3bts3/ulevXho+fLgkqaGhQcuWLdPUqVM79Iy2Dt0Ml8zM5LB91mvvlanJ4w241uTx6rX39mjcj38Ytuc4QTj7BeFBn9gT/WI/du+TtO7xqmtobvV6V9veVtCz+nux8vmmhTGv1yuXy+V/bRhGwGufw4cP67bbblP//v01YcKEDj2jtvaIvCcl7HAK9ynu1QeOBb1u5mnxZrFqyDXc/YKuo0/siX6xn2jok5+cntbq5PyfnJ7W5banJsS1GshSE+Is/V7M7he329VmAcm0YcqcnBxVV1f7X1dXVysrKyvgPVVVVZo8ebL69eunxYsXm9UU27DDQeLhwpArAMSmIRkpGt8ny79NRWpCnMb3yQrLnK7hvdMV7w4szLAK08TKWEFBgZYuXaq6ujr16NFD69ev14MPPui/39LSoltuuUWjR4/WrbfealYzbKVwWK6ef3NHwFBlpA8SD5eSjbtaHXIt2biLBQkAEOU6Mzk/1M+VOrcKM5aZFsays7M1Z84cFRcXq7m5WRMnTtSgQYM0Y8YMzZ49WxUVFfr000/V0tKidevWSZIuuOCCmK6Q2eEg8XDxVcRCvQ4AgGRe0Itmpu4zds011+iaa64JuPanP/1JkjRw4EDt2LHDzMfbkh0OEg+H9JTEVoNXNA65AgBgJY5DQqcUDstVQlzgH59oHXIFAMBKHIeETomlIVcAgHXYkZ8whi6IlSFXAIA12JH/OIYpAQCAJdiR/zgqYw7D2ZgAALsw8+ilaEIYcxDfRq2+/cF8G7VKIpABACKurR35nYRhSgdpa6NWAAAijR35j3NW9HS4SGzUyjAoACBU7Mh/HGHMQczeqJVhUABAR7EjP8OUjmL2Rq0MgwIA0HFUxhzE7I1aOa8SAICOI4w5jJkbtXJeJQAAHccwJcKG8yoBAOg4KmM2F02rEzmvEgCAjiOM2Vg0rk7kvEoAADqGYUobY3UiAACxjzBmY6xOBAAg9hHGbCzYKkRWJwIAEDuYMxYmZky0LxyWGzBnTGJ1IgAAsYYwFgZmTbRndSIAALGPMBYGbU2072pwssPqxGjaXgMAgGhDGAuDWJ5oH43bawAAEE2YwB8GsTzRnu01AAAwF2EsDGL5GKBYrvoBAGAHDFOGQSxPtOfwbwAAzEUYCxM7TLQ3A9trAABgLsIY2hTLVT8AAOyAMIZ2xWrVDwAAO2ACPwAAgIWojDkIm7cCAGA/hDGHYPNWAADsiWFKh2DzVgAA7Ikw5hBs3goAgD0Rxhwilo9sAgAgmhHGHCKWj2wCACCaMYHfIdi8FQAAeyKMOQibtwIAYD8MUwIAAFiIMAYAAGAhwhgAAICFCGMAAAAWIowBAABYiDAGAABgIcIYAACAhQhjAAAAFiKMAQAAWIgd+G2krLyC44oAAHAYwphNlJVX6Pk3d6jJ45Uk1dY36vk3d0gSgQwAgBjGMKVNlGzc5Q9iPk0er0o27rKoRQAAIBIIYzZRW9/YoesAACA2EMZsIj0lsUPXAQBAbCCM2UThsFwlxAV2R0KcW4XDci1qEQAAiAQm8NuEb5I+qykBAHAWwpiN5A/IIXwBAOAwhDFYhn3VAAAgjMEi7KsGAMBxTOCHJdhXDQCA4whjsAT7qgEAcBxhDJZgXzUAAI4jjMES7KsGAMBxTOCHJdhXDQCA4whjsAz7qgEAQBhrlW//q7r6RqVRsQEAACYijJ2E/a8AAEAkMYH/JOx/BQAAIokwdhL2vwIAAJFEGDsJ+18BAIBIIoydhP2vAABAJDGB/yQn7n/FakoAAGA2wlgrfPtfZWYmq7r6sNXNAQAAMczUYco1a9bo6quv1ogRI7RixYpT7m/fvl2FhYUaOXKk5s+fL4/HY2ZzAAAAbMe0MFZZWaklS5Zo5cqVeu211/TSSy/p888/D3jP3LlztXDhQq1bt06GYejll182qzmOUFZeoblPv68bH3lHc59+X2XlFVY3CQAAtMO0MFZaWqq8vDylpqYqKSlJI0eO1Nq1a/33v/76azU0NGjw4MGSpMLCwoD76BjfZrW+LTh8m9USyAAAsDfTwlhVVZUyMzP9r7OyslRZWRn0fmZmZsB9dAyb1QIAEJ1Mm8Dv9Xrlcrn8rw3DCHjd3v1QpKef1vWGtiMzM9n0Z4RDXZBNaevqG6Pmd+iIWPydoh19Yk/0i/3QJ/ZkZb+YFsZycnL04Ycf+l9XV1crKysr4H51dbX/dU1NTcD9UNTWHpHXa3S9sUFE02rKtJTEVk8JSEtJjJrfIVTR1C9OQZ/YE/1iP/SJPZndL263q80CkmnDlAUFBSorK1NdXZ2OHTum9evXa+jQof77vXv3VmJioj766CNJ0urVqwPuo2PYrBYAgOhkWhjLzs7WnDlzVFxcrPHjx2vs2LEaNGiQZsyYoY8//liS9Pjjj+vhhx/WqFGj9O2336q4uNis5sS8/AE5mja6v//YpvSURE0b3Z/NagEAsDmXYRjmjfOZjGFKZ6Jf7Ic+sSf6xX7oE3uK2WFKAAAAtI8wBgAAYCHCGAAAgIUIYwAAABYijAEAAFiIMAYAAGAhwhgAAICFCGMAAAAWIowBAABYiDAGAABgIcIYAACAhQhjAAAAFiKMAQAAWCjO6gZ0hdvtiolnoOPoF/uhT+yJfrEf+sSezOyX9j7bZRiGYdrTAQAA0CaGKQEAACxEGAMAALAQYQwAAMBChDEAAAALEcYAAAAsRBgDAACwEGEMAADAQoQxAAAACxHGAAAALEQYAwAAsBBhTNKaNWt09dVXa8SIEVqxYsUp97dv367CwkKNHDlS8+fPl8fjsaCVztNev7z11lu69tprNW7cON166606dOiQBa10lvb6xOfdd9/VVVddFcGWOVt7/bJ7925NnTpV48aN00033cTflQhor0/Ky8tVVFSkcePGadasWaqvr7eglc5z5MgRjR07Vl999dUp9yz9t95wuIqKCuPKK680Dhw4YBw9etS45pprjM8++yzgPWPGjDG2bt1qGIZh3HvvvcaKFSssaKmztNcvhw8fNi677DKjoqLCMAzDeOKJJ4wHH3zQquY6Qih/VwzDMKqrq41Ro0YZV155pQWtdJ72+sXr9RojRowwNm7caBiGYfz2t781HnvsMaua6wih/F25/vrrjXfffdcwDMN4+OGHjd/97ndWNNVR/v73vxtjx441BgwYYOzbt++U+1b+W+/4ylhpaany8vKUmpqqpKQkjRw5UmvXrvXf//rrr9XQ0KDBgwdLkgoLCwPuwxzt9Utzc7MWLVqk7OxsSVK/fv20f/9+q5rrCO31ic+CBQt0++23W9BCZ2qvX8rLy5WUlKShQ4dKkm655RZNmTLFquY6Qih/V7xer44ePSpJOnbsmLp3725FUx3l5Zdf1qJFi5SVlXXKPav/rXd8GKuqqlJmZqb/dVZWliorK4Pez8zMDLgPc7TXL7169dLw4cMlSQ0NDVq2bJl++tOfRrydTtJen0jSCy+8oPPPP18XXnhhpJvnWO31y5dffqmMjAzdd999mjBhghYtWqSkpCQrmuoYofxdueeee7RgwQJdfvnlKi0t1aRJkyLdTMdZvHixfvSjH7V6z+p/6x0fxrxer1wul/+1YRgBr9u7D3OE+r0fPnxYM2fOVP/+/TVhwoRINtFx2uuTnTt3av369br11lutaJ5jtdcvHo9Hmzdv1vXXX69XX31VZ555ph555BErmuoY7fVJQ0OD5s+fr+XLl+u9997T5MmTNW/ePCuain+x+t96x4exnJwcVVdX+19XV1cHlDBPvl9TU9NqiRPh1V6/SMf/n8zkyZPVr18/LV68ONJNdJz2+mTt2rWqrq5WUVGRZs6c6e8fmKu9fsnMzFSfPn00cOBASdLYsWO1bdu2iLfTSdrrk507dyoxMVGDBg2SJF133XXavHlzxNuJ71j9b73jw1hBQYHKyspUV1enY8eOaf369f65FZLUu3dvJSYm6qOPPpIkrV69OuA+zNFev7S0tOiWW27R6NGjNX/+fKqVEdBen8yePVvr1q3T6tWrtWzZMmVlZWnlypUWttgZ2uuXIUOGqK6uTjt27JAkvfPOOxowYIBVzXWE9vqkT58+qqio0O7duyVJb7/9tj8swxpW/1sfF7En2VR2drbmzJmj4uJiNTc3a+LEiRo0aJBmzJih2bNna+DAgXr88ce1YMECHTlyRAMGDFBxcbHVzY557fVLRUWFPv30U7W0tGjdunWSpAsuuIAKmYlC+buCyAulX/7whz9owYIFOnbsmHJycvTYY49Z3eyYFkqfPPzww7rzzjtlGIbS09P10EMPWd1sR7LLv/UuwzCMiD0NAAAAARw/TAkAAGAlwhgAAICFCGMAAAAWIowBAABYiDAGAABgIcIYAEcrLy/XxRdfrI8//th/ra6uTj/96U/17rvvWtcwAI7B1hYAHO8vf/mLli1bpldffVU9e/bUjTfeqPz8fP3iF7+wumkAHIAwBgCS5s6dq2+//VZnnXWW9u3bp6VLl3KyA4CIIIwBgKRvv/1W48ePl8fj0Zo1a9SzZ0+rmwTAIZgzBgCS9uzZo6NHj6q+vl7l5eVWNweAg1AZA+B4dXV1mjhxon75y1+qsbFRS5Ys0auvvqrMzEyrmwbAAQhjABytpaVFN954o/r27av7779fknTvvfdq3759ev7559WtWzeLWwgg1jFMCcDRHnvsMR07dkzz5s3zX1u4cKEOHTqk3/3udxa2DIBTUBkDAACwEJUxAAAACxHGAAAALEQYAwAAsBBhDAAAwEKEMQAAAAsRxgAAACxEGAMAALDQ/wdgdwLtAebSMQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 4 0.69\n" ] } ], "source": [ "model14 = TrainModel_medoids(X1, 4)" ] }, { "cell_type": "code", "execution_count": 115, "id": "5b6502bf", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAHwCAYAAAAB5dMOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB0b0lEQVR4nO3de3xU9Zk/8M9MMpnJ3BIySbgnQDBAkYtQimBV1hIV0eYHCgRqV6t0QaW6+NNi+WnVlVZtXWmVgt1ql64UuShIdwVtgOINy4IXQI2kREgCBnIjTGaSSSaZ8/tjMoeZzDlzSWbO3D7v12tfa8JcTk7nnHm+3+/zfR6VIAgCiIiIiEgx6lgfABEREVGqYQBGREREpDAGYEREREQKYwBGREREpDAGYEREREQKYwBGREREpDAGYEQU0JkzZzBu3DiUlpaitLQUt9xyC8rKyrB79+6Qnr9u3Trs3bs3Ksd21113obm52e/3NpsNZWVlmDt3Lv76179G9D3PnDmDK664os/PP3DgAH7729+G/bzf/va3ePPNN/v8vkQUX9JjfQBEFP90Oh127dol/nz27FnceeedSEtLww033BDwuYcOHcLo0aOjclwffvih5O8rKirQ1NSE8vLyqLxvfxw/fhwXL14M+3kPPPBAFI6GiGKFARgRhW3o0KG4//778corr+CGG27AqVOn8G//9m+w2+1oaGjA2LFj8Zvf/Aavv/46Pv/8c/zqV79CWloaRo8eLfk4rVaLF154AeXl5dBoNBgwYACefvpp5Ofno6qqCr/4xS/Q0tKC7u5u/PCHP8Rtt92Gn/3sZwCAO+64A//xH/+BwYMHAwC+/vprrF69GufPn0dpaSm2bt2KDz74AOvWrYPL5YLBYMDPfvYzTJw4ES+++CI+++wz1NfXY8yYMXjuued8/s6//e1v+M1vfgOXywW9Xo8nn3wSRqNR/PcXX3wRFy5cwM9//nO/n//6179iw4YNUKlUSEtLw09/+lNkZGRgy5Yt6O7uhslkwsqVK7F9+3a89tprcLlcyM7OxmOPPYaioiI88sgjaGlpQW1tLWbNmoWmpiZcdtlluPvuuzFhwgT8y7/8Cz788EPU19dj6dKlWLJkCbq7u/GrX/0K+/fvh8lkwsSJE1FVVYVXX31VoU8GEYVMICIKoLa2Vpg8ebLf7ysrK4VJkyYJgiAIzzzzjPDmm28KgiAInZ2dws033yy8/fbbgiAIwu233y7s2bMn4OO++eYbYcqUKUJHR4cgCILwyiuvCOXl5YLT6RRuuukm4fPPPxcEQRCsVqswZ84c4dNPPxUEQRCKi4uFpqYmv2P7+9//LsydO1cQBEE4efKkMHPmTKGmpkYQBEE4ePCgcNVVVwmtra3CCy+8INxwww2C0+n0e42GhgZh6tSpwhdffCEIgiC88847wt133+1zPl544QXhySefFJ/j/fP3vvc98Tjff/994cUXX/R7zKFDh4QlS5YIbW1t4uNuvPFGQRAEYdWqVcIdd9whvvaqVauEl19+Wfy7X331VUEQBOH48ePC5ZdfLjgcDuG1114TfvCDHwgOh0Po6OgQ7rrrLuH222/3+9uIKPY4A0ZEfaJSqaDT6QAADz/8MD788EP84Q9/wOnTp1FfX4+2tja/58g9buDAgRg7dizmzZuHa665Btdccw1mzJiBkydPoqamBqtXrxZfw+Fw4Msvv8TkyZNDOs6///3vuPLKKzF8+HAAwIwZM5CTk4PPP/8cADB58mSkp/vfCj/55BNcdtll+Na3vgUAuP7663H99dfjzJkzIb3v3LlzsWLFClx77bW46qqr8OMf/9jvMQcOHEB1dTXKysrE31mtVrS0tAAApk6dKvv63/ve9wAA48ePR2dnJ9ra2vDuu++itLQUWq0WALBo0SLOfhHFKQZgRNQnx48fR3FxMQDgwQcfRHd3N+bMmYNZs2ahrq4OgkSbWbnHqdVqbNq0CcePH8dHH32EX/7yl7j66qtRWloKk8nkk3/W2NgIk8kU8nG6XC6oVCqf3wmCgK6uLgCAXq+XfF5aWprP8wRBwIkTJ3yWIFUqlc/f6XQ6xf9euXIlbr31Vnz44YfYsWMH/vjHP+L111/3O7bS0lI8/PDD4s/19fXIysoKeGwAxCDLc4yCIPgFkmo191kRxStenUQUtlOnTmH9+vW46667AAAffPAB7rvvPtx0000AgKNHj6K7uxuAO5DxBDtyj/vqq69w8803o6ioCMuWLcOdd96J48ePY+TIkT4bAOrq6nDzzTeLs1fery1nxowZ+OCDD1BbWwsA+Oijj1BXV4dJkyYFfN6kSZNQVVWFf/zjHwCAffv2iYGSx4ABA/DFF19AEATYbDb87W9/AwB0dXXhuuuuQ3t7OxYvXozHH38cJ06cQGdnp88xf/e738Vbb72F+vp6AMBrr72GO+64I+BxBXLttdfiL3/5Czo7O9HV1YWdO3f2+bWIKLo4A0ZEQTkcDpSWlgJwz6potVo8+OCDmDVrFgD3bM99990HvV4Po9GIadOmoaamBgBw3XXX4fnnn4fT6ZR93IIFCzBnzhzceuut0Ov10Ol0ePTRR5GRkYH169fjF7/4BV5++WV0dXXhgQceEJfmbrzxRvzwhz/Eiy++KM7G9TZ69Gg8/vjjWLFiBbq7u6HT6fDSSy8FnUXLzc3Fc889h1WrVqG7uxtGoxFr1671ecz3v/99vP/++7j++usxcOBAfOc73xFnolavXo2HHnoI6enpUKlU+OUvf4mMjAxceeWVeOihh/DUU0/hsccew49//GPcddddUKlUMBqNWLdund+MXajmz5+PU6dO4f/8n/8DvV6PYcOGITMzs0+vRUTRpRKk1gmIiCjhfPDBB2hqahKD5TVr1kCr1frN3BFR7DEAIyJKEufPn8cjjzyCxsZGuFwujB07Fk888URYOXNEpAwGYEREREQKYxI+ERERkcIYgBEREREpjAEYERERkcISrgzFhQt2uFyplbZmsRjR1GSL9WGkBJ5r5fBcK4fnWjk818qJ93OtVqswYIBB9t8TLgBzuYSUC8AApOTfHCs818rhuVYOz7VyeK6Vk8jnmkuQRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZg3lSAtd2JmgY7rI4uQBXrAyIiIqJklB7rA4gbKqCi5iJe2PYZOpzd0GrScP/CyRhXkAUIsT44IiIiSiacAethbXOKwRcAdDi78cK2z2Btc8b4yIiIiCjZMADr0WLrFIMvjw5nN1rsnTE6IiIiIkpWDMB6ZJu00GrSfH6n1aQh25ARoyMiIiKiZMUArIc5Mx33L5wsBmGeHDCzXhPjIyMiIqJkwyR8DwEYV5CFZ++diRZ7J7INGe7giwn4REREFGEMwLwJgDlTA3OmRvyZiIiIKNK4BElERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZElGjYt5Yo4XEXJBFRImHfWqKkwBkwIqIEwr61RMkhZgHYb37zG7z44ouxensiooTEvrVEyUHxAKy1tRWrV6/Gf/7nfyr91kRECY99a4mSg+IB2L59+zBixAj86Ec/UvqtiYgSHvvWEiUHlSAIMUnb9Cw//uQnP4nF2xMRJSyXS0Bdox3Nre3IMWVicK4BajW3QhIlkqjtgtyzZw+efvppn9+NGjUKGzdu7NfrNjXZ4HKl1lafvDwTGhpaY30YKYHnWjk81/2ToQIGmXUABDQ12QI+ludaOTzXyon3c61Wq2CxGGX/PWoB2Jw5czBnzpxovTwRERFRwmIZCiIiIiKFMQAjIiIiUljMKuEz+Z6IiIhSFWfAiIiIiBTGAIyIiIhIYQzAiIiIiBTGAIyIiIhIYQzAiIiIiBTGAEwpKsDa7kRNgx1WRxfAriFEREQpK2ZlKFKKCqiouYgXtn2GDme32Dx3XEEWkFpdlYiIiAicAVOEtc0pBl8A0OHsxgvbPoO1zRnjIyOihMKZdKKkwRkwBbTYOsXgy6PD2Y0WeyfMmZoYHRURJRTOpBMlFc6AKSDbpIVWk+bzO60mDdmGjMBP7BntHj/ZwNEuUYrjTDpRcuEMmALMmem4f+Fkv5GrWa+RH7lytEtEXjiTTpRcGIApQQDGFWTh2XtnosXeiWxDRuDgC/Kj3WfvncmbLVEK8sykewdhIc2kE1Fc4hKkUgTAnKlBQa7BHUAFmcUKNNolotTjmUn3pDP4zKQTUcLhDFic4miXiHz0YSadiOIXZ8DiFEe7ROQnzJl0IopfnAGLV16j3TZnN/SaNI52iYiIkgRnwOJZz2h3QlEeR7tERERJhAEYEVEiY3V8ooTEJUgiokTFeoFECYszYERECUrR6vicaSOKKM6AERElKMWq43OmjSjiOANGRJSg+txnNkzsQ0kUeQzAiIgSlFL1AtmZgyjyuARJRJSoQqyO73IJsLY70WLrRLZJC3NmelhLh+zMQRR5DMCIiBJZT71AMeerd2ClAj46Xoe1r33S5/wtz0xb7xwwFocm6jsGYEREScza5hSDL+BS/taz984MPVGffSiJIo4BGBFRslC5Ay7vpcaI7ZQMNtNGRGFhAEZElAxkSkUMH2hk/hZRHOIuyEhggUIiijG5UhGubhdWLp4S9Z2SRBQezoD1FwsUElEcCLTUOGPCYAwaMBM2hxNaTTrsDies7V1h74YkoshhANZPcqPOsBJciYj6KVCpCLVaBbNeg7ONbXhh22EOFoniAJcg+4kFCokoHgQryspq9kTxhTNg/cQChUQUF4KUilCsbyQRhYQzYP2kVCsQIqKgekpFFOQa3EGV19KiUn0jiSg0nAHrLxYoJKIEwGr2RPGFAVgksEAhEcU7DhaJ4goDMCKiVMHBIlHcYA4YERERkcIYgMUSK+gTERGlJC5BxoIKsDm68HVdKza8cYxFEYmIiFIMZ8CU1tO66ODn58XgC2BRRCIiolTCAExhnmrULkFgBX0iIqIUxQAsWmTyu7yrUbMoIhERUWpiDlg09Cwz9i54OK4gS6xGvf9IDRaVFGNreSWLIhIREaUYBmBRINf09tl7Z8Ks14jVqHcfPIV5s0Zj+EAjhlr0DL6IiIhSBAOwKAjW9Fa2GjWDLyIiopTAACwKPMuM3kGYT34Xq1ETUaSo3LPuLbZOZJu0MGem855ClAAYgEUBm94SkSIC5JuGdK9JtuAt2f4eSmoMwKKBTW+JSAEB8009M+xy+hu8xZtk+3so6bEMRbT0LDMW5BrcN0LeAIgowgLlmwYjF7wlajHoZPt7KPkxACMiSlCefFNvodYT7E/wFo+S7e+h5McAjIgoQXnyTT1BmE++aRBSwdtgix4GncavgHRAMkWnldafYJQoFpgDRkSUqPqRb9p7s9Bgix4LZxfj0d9/FHoOVRzlXXHzEyUalSAICfXRbGqyweVKqEPut7w8ExoaWmN9GCmB51o5PNfKkT3Xnl2D9k4YdBox+PLQatICJvRb251Ytf5gWM+JKq+/J1abn/i5Vk68n2u1WgWLxSj775wBIyJKVV41CWsa7AELSEsJVnRacayxSAmEOWBERNSnHCrmXRH1neIB2Mcff4zbbrsNpaWluOOOO3D27FmlD4GIiHoJO6FfBUAQcP+iySgrGYPcbF1YmwCIUp3iS5APP/ww1q9fj7Fjx+L111/HmjVrsGHDBqUPg4iIvIWT0C+RfH/PrRMxarAJRh2rzxOFQtEZsM7OTjzwwAMYO3YsAGDMmDGoq6tT8hCIiEhOiAWkpYqebnjjmHuDFIMvopAoOgOWkZGB0tJSAIDL5cK6deswe/bssF4j0I6CZJaXZ4r1IaQMnmvl8FwrJ5Ln+tzJBsnk+zZnN4oKciL2PomKn2vlJPK5jloAtmfPHjz99NM+vxs1ahQ2btyIzs5OPPLII+jq6sKyZcvCel2WoaBo4rlWDs+1ciJ9rvXadGg1aX7lJ/SatJT/35Sfa+XE+7mOWRmKOXPmYM6cOX6/t9vtuOeee5CdnY0NGzZAo2GyJhFRImHRU6L+i0kSfmFhIZ588kmo1ayCQUSUcPpRgZ+I3BQNwL788kvs27cPo0ePxrx58wAA+fn5+MMf/qDkYRARUX+x6ClRvygagH3rW9/CiRMnlHxLIiJKdJ4WQ7ZOZJu0MGey1AUlPrYiIiIiZYUTUMVRw2+iSGIARkREygkzoJKqOfbCts9i1/CbKEKYBU9ERIqRC6isbU7/B6sAW0c3Sq8twsLZxcjN1onPabF3KnnYRBHHGTAiIpIWhdyrFlunZBHXFnun74yWxEzZopJi7D54Cq12Jxt+U8JjAEZERP6ilHuVbdJKFnHtHVBJzZRtLa/EvFmjMTzfyLIXlPC4BElERH7CWioMg6eIq1aTBgC+RVy9yM2UjR6WxQR8SgqcASMiIj8hLxWGK8QirnIzZblmLYMvSgqcAYs3KsDa7kRNgx1WRxegivUBEVEq8gRA3qSWCvtFAKCSvsmFOlNGlKg4AxZPZHIuLDnyzTyJiKIhav0eQ80tY7sjSnIMwOKIXM5F0bBsZHAmjIiUFKUAKKy6Xmx3REmMS5BxRC7norm1PUZHREQprScAKsg1uIOgCARAgXLLiFIJAzAlhJjXJZdzkWPKVOAgiYiiT5HcMqIEwAAs2nryHVatP4gnXjmEZ189gtrGNtQ0+gdjckmng3MNMTp4IqLIYnI9kRtzwKLMO98hN1uHG2eMwC83HpZOPpXJuVCrmQBGREmCyfVEABiARZdXHzMAyDJo8F+7v/JLPl2zfAbsbU6x1QeTTokoqckl10eh9RFRvGIAFi0SW62XzZsAk0GDjpZLCagdzm7UnrfhhW2fRazVBxFRwolS6yOieMUcsP6SSbCX2mr9+53HMXtaoc/TtZo0aDPSxMdEotUHEVGiiVbrI6J4xRmw/ggwYpPbaj0oRy+219Bq0lBWUoz65jafx/S71QcRUYKJWusjojjFAKwfAhUUNGRqUFZSDJcA7D9Sg8YWB7SaNFiydJg3azRcggC1SgVdRhreOHBSfE1uxyaiVCTX+5H3Q0pWDMD6QW7EdrapDS9svTQrtqikGOWHqnH7jeMwNDcTpsx8cfdPQ4sDrXb3FHvEWn0QESWYqLU+IopTDMD6QW7EVnve5jMrtrW8EmuWzYDFlAG4fHf/mPUabscmImJ5CkoxDMD6waxPx+o7p6HidDNcAvD+p2ewqGQMNr1d4fO4Dmc37A4nLMYAU+kCABXrfRFRCmPvR0ohDMD6SgVUVPsm4N972yQMtOjEJUUP2TwGbrsmInJjDTBKMSxD0UdSCfjrXz+KL6qaUVZSHFKbDW67JqKUEKwfbq+Wbat+9yEqai7K9s0lSgacAesjuQT8DqcL+4/UYN6s0SgaloU8s1Y2j4Hbroko6YUw0x9oRznvhZSsOAPWR54EfG9aTRogAI0tDmwpP4Hubpf75iEzjS73Gtx2TUTJIpSZ/kCDUaJkxRmwPpLaMr2opBi7D54C4A6kLGZd0Nd4aMkUVH1jFeuCFQ0xc+cPESWNUGb6WQOMUhEDsHB5JYoOH2gUt0y7BOAPbx4XC64unz8BFrO77EQgnV0u7Dxw0mdqnogoIUkk0ocSXLEGGKUilSAICfXxbmqyweWK0SH35DJsersCV08eBrUaGDciB8Pz9O5js3aiyepAtkkLweVCplYTcCePtd2JVesP+t2Yeuc95OWZ0NDQGtU/jdx4rpXDc60cRc61XK5XYZbfjnHJ3d6e4C3Ba4Dxc62ceD/XarUKFotR9t85AxYGa5sTm96uQMn0QmwtrxRvJisWTML4wmxYTBloae3AZ5WNPkuKRUNMTMInoqQWKJF+eL4Bj909HY7OLuSaZDYmsQYYpRgGYGFosXXi6snDxOALcN9k1m0/imfvnQm1WoUzDTafJcWykmIMzMmEUet/qpn3QETJItTWbA8tmSI+nvW+KJVxF2QYsk1aqNWQnbWytndhS6/gbEt5JaztXZKv58l7CKVmGBFRPJPb1e3dms1k0OBMg431vojAGbCwmDPTMW5EjuysVaO1QzI4c3RIB2DsfUZEyUIqkf6eWyf6tGa7bmqBOEjNzdbhuqkFqK1vRf6ATHev3Gjc+1hhn+IUA7BwCMDwPD1WLJiEdduP+u/WUakkg7MsQ4Z7hCd10TPvgYiSgcSAUp2m9m3NpoIYfN00c6SYzrHzQFV02rCx3RvFMS5BhssFjC/MxrP3zsQTS6fj2Xtnihez1JLiopJiPP/aJ9LT7MHacxARJRIBMOs1yDZkoMXmLqLqfU9U9wxSr5ta4JdLG402bGz3RvGMM2B9ITdr1TMCXLNsBj4+UQ+XC9h98BQaWxz+bTU4MiOiZNPrvjbYosd9CyaJOyDzs3QYnm9EbX1r/3aAh7isyJ3mFM8YgEWaANjbndhSXunz694XPXufEVGy8b6v5WbrUDK9EE+98r9+dcHyB2Ri54Gqvu0AD2Pwyp3mFM+4BBkFofR49B6Z5WbrsPB7xSi9tgj2jm4uRRJRQvK+r8kuM9qdsJgy+rwDPJxlRe40p3jGGbBI8ZoSz8nSBW2r4QnSTAaNTzLqrnejlIxKRBRlPjNOKvmSPeZMTeg7wHstNza1Su82P3ehHVCpfJcjudOc4hgDsEiQmBJ/aMmUgBe9Z2RWW2+THCVyKZKIEo13KQoAgZf/QtkBLnFvfXDJFMnX7XYJ+PsX5y61h/P04Y3UTnOWs6AIYwAWAVJT4s9t/gTP3jsTBbkG94Mk2m6MK8iCNiNNfpSo18Da5sS5kw3Qa9N5wRNRfPOacbI5nBieb5Qu2RPifUzq3vrmgX9g+fwJeGnHcfF1l5Zejk17KlDX1ObTHi5i90tumqIoYAAWAX3eaSMAuVk6v9HcYIsexkwNKmovova8DXsPV6PV7uQFT0Txz2vGaUiOvl/Lf73vrbnZOkwbPxjb9lai9JoiqNVAccEAbN97AnVNbQB828NFahWBm6YoGpiEHwGhJN1DDTTZOlH5jRVN9k7xzPdOEh1s0WNRyRj8v5c+wq83fYydB07ippkjYTJoWL+GiBJLTzBWkGtwByphDh5731s9if11TW3Ytq8SW8or8ex/HcGE0fk+z/MMgCMlUJ9LbpqivmIAFgFBd9qogaNVzXj09x/hmf86gkdf+ghHq5rdZ99ryv6JpdPx4OIp2PDGMZ+R1tbySlw3tQAdzm40WjtYuJWIkotMUere91a5XrzqXt9kkS41EajPJQfF1FdcgoyEIDttmqydYr4C4L5hvLTjONYsmwGLMcNnyr6mwS55g4HKfcGfPHMRW8pPMAeBiJJDkPwq73urQaeRrB82tvBSj96+5JoFY85Mxz23ThQHx54uJ7sPnsLYwmwuQ1KfMACLlAA7bVrbO1F6TZE4qtt/pAaNLQ40WR3uAMyLXOFAtUqFpaWXY+veEwCYg0BEySFofpX3vVUFyRI/Bfn9yzULSgBGDTFj3qzRcAkCILi7nLTanSzqSn3GACza0oDWNid2vVflM3IqP1QNi1nn93CzPt2v2ffS0vEYbNHjT7sr0NjiEB/LlhpElOjC2sQkt9rgilCpiQCM2jQMzzcGrO9IFA4GYNGkAmrOt2H96/45XY/c8W1YzBmXatX0PL6i+iI2v/MVFs6+DANMOliydMjP0cPp7EbNOZvPy7OlBhElurDbBfWlrlc4NbzkHsuirhRhDMCiyNrmxFfVzZKju/aOLr8L13sq/tU9XwFw34h+++AsGLVpQavrExElGu/irVG5t4VTwyvYYyNV1JUIDMCiqsXWCZcgXQ265pwNQ3L0PlPsclPxza3tGGTWcfRFRMknyjNL4dTwYr0vUhLLUERRtkmL9z89g0UlxT4lKu7+/njsPVztV6dGbqtzjinT/UM/a+oQEcWlKN7bAuWY9eexRP3FACyKzJnpuP3GcSg/VI3Sa4pQVlKMn94+Fd0uF2ZPK0SOSev3eKl6YoM97YyIiCg0PbXFulwCykrGIDf70qYnuRyzkIpqE0UIlyCjqWdqfdUPp+JsYxvS1Gq8/JfPxX5lw/ONvnkIAjCuMAtrls1wl6gw62AxZ0CtZsVVIqKQSeRylZUU462e0hFyOWZRz0cj8sIALNp6EjfPN7dha3ll4NyCnl2QvS9+ywBj7I6fiCjBSOVybSmvxGN3T4dRmyYfUHGnIymIS5AKaLF1wtHZHTS3QC4BtK7R7v+iMq07iIhSnVwul6OzK3hAxVxbUghnwKLFq5aMQa+BWqUKWusm2C5I79cOeVs1EVE8Cqc2V5jkaoudrL2Ijo5u3ispLig+A3bkyBHMnz8ft9xyC5YvX46LFy8qfQjR1xMgrVp/EE+8cgjPb/4EwwcaUNZrN6RPw26EsAuyh9xMGZvCElFC6HWPXPW7D1FRczH8mfwQm3h7OpDsPVzNeyXFDcVnwH72s59hw4YNGD16NJ577jm88sorePDBB5U+jKjqHSDVNbVh056v8NAPpuKyggFwdHQh16z1mwqXSwAdnGtAU9OlKvhhte4gIoozEam3FUIT78funo5jJxvF3o2eVm68V1I8UDwA2717NzQaDZxOJ86fP48xY8YofQhRZ2t3+jXfrmtqQ2tbJwq8S0r0ngKXSABVq1X44utG6LXp4hR92K07iIjiSCQGkaE08Tbq0rHr3SreKykuKR6AaTQanDhxAj/60Y+Qnp4e9uyXxRLfOwJdLgFf1l6UbL49yGJEXp708btcAuoa7Wi+2I4ccyYmDcnGoS/OYe1rn4ivs3LxFMyYMBgWACsXT/H7t5HDBgQtWSG+j9X9PoNzDSxz0UteninWh5AyeK6VE0/nulOQzokNdI/s7dzJBskgrs3ZjaKCHACAxSUEvVdG454YT+c62SXyuVYJghCVVMQ9e/bg6aef9vndqFGjsHHjRvHnLVu24M0338SWLVtCft2mJhtcrjjKnuyVSKpWAQ+v+9DvxrL6zmkYnquXTvyUmEpfsWASNr/zFeqa2nxeRxzded43nK3STN4PKi/PhIaG1lgfRkrguVZO3J3rvtyLet1rAWDV7/zvtX7LmD3Pszmc0GrSYXc4kW3sSfpHkOPow0aBuDvXSSzez7VarQo4aRS1AExKR0cH3n//fcyePRsA0NbWhquuugqffvppyK8RVwGYxE3knlsnYtPbFWKugccTS6f7Lj96sbY7sWr9Qb8bSek1Rdi2r1L+dcK8Oci9D/ucXRLvF3Qy4blWTlye63AGkWqgtqENFaeb4RKA9z89g7tuHo/OLle/mmwPzzeIA+bcbB2um1oAtRqYOjYf2nQ1ahvsqD1vw97D1WIB12AD1rg810kq3s91sABM0SXI9PR0PPnkkxg0aBAuv/xy7NmzB1OmTFHyECJKKgdhwxvHMG/WaGwpPyE+LljOgVw+hLrXHlWf1+nDCJLJ+0QUN3rqbYn3ngAzX1+cbsG67Ud90jr++D9f4Gf//O2QiqbK5YutvnOaGHzdNHOkWCx754Eqn8r5i0qKsfvgKTbmpohStAxFWloa1q5di5///OcoLS3FO++8g1/84hdKHkJEyQU0wwcapctNyGyZlis/MW5EjmzZir6UomCfMyJKNNY2pxh8Ae573dbySlw9eRiaWztCKpoqd69uuuiAVpOG66YW+HUq2VJeieumFojv5/lvNuamSFE8Cf/b3/42duzYofTbRoXcbsShuXq/fo4Q3DNWm96uwNWTh0GtBsaNyMHwPL1s+YnheXo8e+9MtDm7odekwWzQwGp3otHagW6XEPZsFvucEVGiCbRCEOrgUe5efaHVgUUlxeh0Sncq8QySPf/NAStFEivh94NcQNNwwYHnNn8Ck0GD2dMKMXygEfnZmdj0dgVKpheKIy1Psv34wmzp/mMu9xR9UUEOGhpbffpElpWMCV6KQiJHjH3OiCiRyAVP40bkhHz/krpXezY6ObtduOvm8ZLv4XltrSYNapWKA1aKKEWT8CMhrpLwAb9EUrVahYfXfQiTQeOTU1BWUgyXC2J5Co9QkuDz8kyoqmn2SaDPzdZh7syR2OIVzPXevcMdj+GL96TOZMJzrZyEPNde91aVSoWXdhxDXVPbpYHriGzAFfrr2Nqd0Gb07II0ZMBs0IiDWpNB43c/9c4Bu+fWiRg12ASjjrsg40m8n+u4SsJPSr0SSWsa7OhwdqN0apFPToFLANRqSE5zn21qg3l4gG3P8J+Gb2xx4K2Dp3D/oslIU6swaECmz8gsIpWmiYhiQWIAee9tE5FtykBW5qUVgr68zv0LJ6MgzwC4fAtf55i0uOKyXJ/B9MghZt+VAg5eKYIU7wWZ7HKydCgrGYOBOXqUXluE3Gx3E+39R2owYkiWZBJ87XmbO3lepj+ayyVIJtC32p2oPW9zB1+9ElAD7XgkIopnUgPI9a8fQ8WpFpxtbAvybIgbnr4+Z0NtvQ0mg0Z8HZ/NSj0D6IJcA4zadJ+EfqMuHdmGDLTYOmFtv7RpiihSOAPWH71nq/TpqD1vw84DJ322S3t6kO068A/ce9skrH/9qN+/jy3MBgDJWauiYdmSOQxlJcUYlmeUzElguyIiSlRyA0iXIASeyVcBNkcXvq5rxYY3jkneh0MqvcMUDlIAA7C+krhAV985zS+A2lpeidJrirDrvSrc/N0iFAw2Yt6s0XAJgtggttXuFEdaUjed5tZ2DDLrxOnyRmsHdD29IeVyErjjkYgSldwAEkKA3d499+Ta+kuDYMD3PrxtX2VIA1GmcJASGID1kdQFWnG6WTKAGjXU7L5we2p4Dc83SgdGKun+aDmmTACCf+FCQD6YkmjszeCLiBKB1ADSM4slF0B57sml1xbJlpQIdSDKotWkBAZgfSR1gboESDeY7ZWjNa4wy79OmEt+1mpwrgFNTbbwDzLUStNERPHEawB5tqkNtedt4mqBXADlfU+Wug9PHJ2LmeMHhjQQjUoKRx/6SlJyYwDWR1IX6PufnsE9t03Ehtcv5R4snz8BZoPXjh0VfLY+e+qEDc01yNbpUquZ/UlECS7cAMQzgByehaEWPcYWZsvP5KsAQ6YGZSXFyNCoccfccfjTWxU+A9khA3TyOxkl8nkjmsLBnDKSwDpgfSVxQa1YMAm7P/waE0bnu3fMCMD7n53BqtunirNQ1nYnnt30MWZ/pwA55kycb24L2ug13mudJBOea+XwXCsn5uc6mgGIxGsvuWEMACA3OxNDLfrAgZPcsRVmwWoPsVm4F6lzbW13+tRxBEKrAUmBxfxzHQTrgEWLRI6Vrd2JiuoWVFS3+DzUO2/A1u7EjTNGYPM7J3xuFv/9wddM8iSipBTNpHap1978zgmsWTYDFlNG0PpdwY4tEikczCkjKawD1h9eNWTMmRoY9RlBm11rteli8AVculnMmTGCdbqIKClFsy6h3GvbHc6QgiYlaiZK1XFkWSBiABZBniR6z4XmkzfQ46LMxZ5t1PGCJKKkFM0AJOzX7inSWtNgh9XRFdljUwFn623ia3uKt4by3UCphzlgkdarN2TvvIG6Fgf+7ZVDfrkADyyaDE2aGnnZOr8k1ZDWubnDJiLiPacgmfBcKyfm51rhHDDZ1/Z6rGcT1OhhWcjUpuOr6mZ0OF14/9MzuP3GceEfW7DjCPLdQOGL+ec6iGA5YAzAFGbr7MbHX9X7NX2dXJyHbxrskhevJceIU2cuoNHagUxtOkx6DYzatEsXL3fYREy8X9DJhOdaOXFxrqMZgIT42p5keJNBg5tmjkT5oWqUTC8U+/aG1ei716BXrQIeXvchE+0VFBef6wCYhB9njNo0DMu7VA1frVJhWJ4Rqp4WG1KJoJVn67D2tU/8WhAVDTEBAqs2E1EC6E9dwmAz/N6vHeCxnnyv0qlFYnX88kPVKL2mSFwu3PzOVz471+WOp/eg955bJ8Jk0MAEDa6bWiC+ns3h5H2YJDEAU5oAFA0xuZcavUZrNfV2ydywRmuHGHx5frelvBLzZo1GXrYO5kwNd9gQUfLq4xKj1GPFfC+V+x6ZqUvzmwFbVFIcNGiSGvRueOMYFpUUA4DP6w3PN2JIjp6rEeSHSfix0Gv3pM+NwYtWkwZNulq2Ka1nlw532BBRsrI5ulBbb0PptUVYOLsYJoMGL2z7DNY2p99j5VYDPI/1JMOre9q+5Q/Qi8GS5/FbyysBlTrgt6PcoHdIntHv9dZtPyp5rEScAYsHKqCltQNLSy/Hy7s+98lFOF1nlWyJoVapxAAraONtJugTUSJSAV/XtYrNtb17QkrN8AddDeip3zg834BBFj1aWh1YOPsyZBt1yNSl4XxzG9768BROVDdDm54Li1F6ECvXqsis13A1gkLGACxWvIIig16DuiY7/vL+1yi9pghqNTBicBb0OjX+tPtLLCop9pnSXlo6HtkGLdRqFWoa7Mg2aTGuUKbxNhP0iShBWduc2PDGMb8ZqnmzRkvO8Aft4eh13x0xyIRzzW1Y+9qnPvm1t84aDUdnt7tXr0wAJjXoLSspRqu9E4MtetQ1tUm/f28cHKc0BmCxIBEUlZUUw9ntwrZ9lQDcF+3jP74SrXYndh88JSaJqlUqjBqSheaLDnHHjXdQ1TvBlQn6RJSo5Ga0hg80Su50lFsNUKtV+Ka5DRdsnVi3/ajPfddk0KCjpdsnvzZDo4bFrJM/MAEYnm8QN1NBAN7qaRb+/370HfziP/83eA9JDo5THgOwGJAKirb07MjxBGAdzm44nV3izWTbvkrxAtWkqfDc5k9CCqqYoE9EiUpuRmuoRSapvVeLOINOgxZbBw5+fh6adBW27f1H0PuuSxCQPyATFnNGwFIUzdYObCk/4ff7tDSV9GpELxwcEwOwGJALijzblgH3TSZLn4HhuQb89sFZONdkC7pjUiqoCjolT0QUp4Lmt0oRALNeg7ONbXj6T0fE5y2fPzGk+667NJAhaB0wuXurxZyJDJUQtNwGB8fEACwG5C5ctUol/ve9t02E2aABXMDQfCMyVD1XsRBeUNWnGxgRUTzoNaMVagFXqdml881tQe+7nhqLnoT9QOTurYNzDWhqsgX90zg4JlbCjwWJtf8lN4yByyWgvbMbEABDZhomFeXCnKnxr/Ybbu4AW2CELN4rKycTnmvlxP25jnAyek2DHU+8csjnd7nZOiz8XjFe+csXPvfNgkFGtNg60eboQo5ZC4sp8NKj5HF73VvzckM818wB67d4/1yzFVG86rlwG1s7cLL2IvYerkZjiwOAexRUek0RvjVyAApyDdIfMgZVURHvF3Qy4blWTlyf6ygEIlZHF1b9zr8t0JIbxmDEYDMEQXDfNw0aVFRH9r3DOte8j/dLXH+uETwAYyHWWOnJUxC6BWg1arTa3YX6tJo03HXLt6DTpqGrW4DV0SUdcEoUcyUiSjTBiqf2hWd50FOg2tMq6IrLcjE8Vy/eN632EN5b5e4hWdNgh9XR5ZMz1m+8j6c05oDFkLXNiec2fwKTQSOWmTDo0pGWpvap+7Vy8RQUDzPBandP0edk6eDqdrF2DBElvKgkowfKHfO6VwZ9by4TUhQxAIshz8Xf0dItboNe+L1ibH7nBDqc3cjN1uG6qQU429AKXUYafr/zGJzdLsydORJbvAI03hCIKFFFLRk9hObfwd6bpSIomrgEqTSv6WyDXuPXw9GQ6c7/uv3GsVhaOgHvf3YGr+75Ck//6TBKphf6BF9AZKbriYhiRWq58KElUwAgOst+Qd77/oWTYTZoYG134tyFdtkZMqL+4gyYknpNZw+26LF8/gS8tOO4+HOWUYfN7xzz63vW2OLA1vJKrL5zGkqvLQIA7D9Sg8YWB2vHEFHi6rVcmGPSorbejlXrD0Z2ll9mp6XfUqVXYn7ptUUsFUFRwwBMQb2ns+ua2rBtbyXWLJsBu8MJnTYdj//H3/36nnkqNXc4u1Fxuhnb9rqr4t8xdxzaO7rg7HLBoHPnK3AZkogSjtdyobU9xGW/cEpXSORyPbRkCvKydeLzC/IMgACfxPz9R2r8evGyjiJFCgMwBUklfNY1tcHucKIg14DKb6wBKzVrNWlw9dSnMRk06OjsFltr7DxQxVwwIkp4ISXlh5kc33vwazJocKbBJrZ0835+o7VDfFxji0PsxTtyqBmDB2Qy+KKIYQ6YgjwJn97E6WwVMEDm3yFAXI7c/3ENAOC6qQXMBSOipBPwPtkj3NIVvYO666YW4H+/qMP9iybjJwsm44GyyfifD6pgbXMiU5vu8/6NLQ7seq8KJn1G+KUiolnCghIeZ8AUJNsWqCfnYNPbFX7T3ffcNhGDcvSYdFku1m3/TCzWChXYR4yIkk4o7dPCLV3Re7fjAHMGrptWiBe2XnqPpaWXo93ZBZM+A2UlxT47zctKit1LnOGQzPmdiK5uF3QZ6TDpNTDq0sTyQiwplHoYgCmpJ+Hz1yuugrW9C46OLuRm6XxyDjzT3Wo1MLk4D/lZWuRZTGhoasWSG8Zi3faj6HB2Q61SMTmUiJJPCP0fQypd0StH7KElU8QlxyG5Rvxy42GfGbSXd32OJ//lShi1aRiWZ8S8WaPhEoSe5txGGHXhBUfes3S52TqUTC8U39NdlX8scrO1eGHrUZYUSlEMwGKgtt7uO7pbNNkn58BTE+yy4dmwpqvRYG2EGiqY9Bo8/uMrcaK6GRCAJTeMEWuGMTmUiJJGkBpeQWfJZHLEfr3iKtS3ONDa5pSeQWvtQL5Ji6IhJneCfj9aBHnP0l03tUBc2fC81+Z3vsK8WaNZYyyFMQBTmFTuQu15m+Roztkl4NlNH6NkeqHPsmRZSTHeOngKAMTZsqlj8t1NZBl8EVGyCzJLFqiAaoezG2o1JO+5FrNOfP1gRVyD8Zmlk0kZcfVqxcw0ktTCJHyFSeUu7D1cjXtunehTDPDu74/Hn976AldPHuY3ctpSXonZ0wrF5NDh+SYGX0SUvKSS2QP0UZTLEWu0dqD2vA3//V4VlpZe7nPPXT5/AizmyKVwSBV59abVpEGtUvn9jmkkqYMzYAqTyl1otTuRm63DY3dPx7GTjYAA2B1O1DW1yY6cLhuehSeWTu/z9DgRUUIIp+RET96XRpMmOcOl06Zj7+Fq3PLdUdh/uNqd/tHZjdzsTKghRPY+6jVLZ3M4MTzfKObweueAeY6TaSSphwGYwsyZ6VixYJLPhbiopBi/234UDy6egl3vVqHD2Y2Fs4t9Rk69byTpaWoMz9X7NZclIkomIfdj9ArUTAaN305GT3DTanfC5RIwqXggqs+1AgKw+a9fodXujHz+lddS5pAcPZ69dyYarR3QadNhzkyHMTM94GYDSm4MwJQmAAOMGSi9pkicRve0GupwduH+hZOx6e0KaDVqLJ8/EVZ7h1+y/aKSYry04xhW3T4VZr0m9GrQREQJJtSSE96BWkdLN946eArzZo3G6GFZyDVr3cENgPsXTkZtfSu2lFf6vZfN4RTfM5Tq+mHde3vnlQGAq/+5ZpS4GIDFgFGfgV3vVfnNahl1Ggyx6H3KTWg1aXigbDJWLp6CM/Wt6HS6xICtxd6Js41tIVeDJiJKNCGVnIB/oNbY4sCW8hN4Yun0SzliKmBorh4ZGjXKSsZg7+FqsbbiYIseF1o78dQfD4e01Cm7LEoUIibhR5NMFWSp5EzP9LjV7hSDL8A90vvtls9wus6KTW9/hW37KtHY4oBWkwaDThNWNWgiokQT6H7pLWgF/Z6gadX6g/jFxsPYeeAk5s4cidxsXU8S/kS/e6/c/dQz22YyaLDwe8UovbYItfU22BxdUTgDlKw4AxYtQRJH/bZQG9zB17kL7ZLT7cMHGn2SNVcsmIQOZxer4RNRcguhMCsQvDaYVC7ZlvJKPHb3dBi1aWixh15dv8XWCZNBg5tmjvQpETTIokfhkOxong1KIgzAoiRo4qh3PoAKqKh2B2ul1xZJTrcPzdVj9Z3TUHG6GS4XsPmdr7B8/kRWwyei5BdKXa4ggZpcLllXVzfM2TogjO4i2SYtZk8r9CsRtOGNYxhbmIMM9nykEARdgvzJT36CgwcPKnEsSSVQ4mhv1jYnNr1dgdJripCpddcA855uX7l4CtQqFV7acQwuFwAVcPUVw7Dlr19hxYJJQafmiYhSQoDaYMGWKENd6vQ8dvhAo+Q9vq7RxqbbFJKgM2AlJSVYv349nnzySSxcuBC33norsrOzFTi0OBPmjhe5xFGVSiXufvSwtTt9qt0PtuixcvEUqFTAwGwdRg4bgOP/qPeriL+opBi52VpuYyYiktNz77a1O/1KAPnU3QpxqRNwP3ZorkHyHn+ipgVtji5uhqKgVIIghPQRqaqqwhtvvIG//vWvuOKKK/DDH/4QEydOjPbx+WlqssHlUvhTHU4hQK/nfFHd4lfvq/xQtbt8hFdOQZOtE4/+/iO/C3nNshmwGDOQl2dCZXUzDlfUi60r9h+pQavdKT6GIiMvz4SGhtZYH0ZK4LlWTsqe61737sEWPZbPnwhBEPo/YJX4Xrj7++NhdzjR0enCzMsHwqiNYpZPuGUwklC8f67VahUsFqPsv4f06XC5XKiursbp06fR3d0Ni8WCJ554ArNmzcL9998fsYONVyEXAvQWoN5X76ROu8MJk0GD0qlF4tT1/iM1sDucsBgz4HIJqK23YeeBk+JNZOn3J7jLUnS5/GbUiIjI/95d19SGX2487JOL22cCMK4wC48vvRLnm+2wZGXitXcqUFHdIibkTxw5wPc9IhU09WVSgOJO0ABs7dq12LFjB4YPH44lS5bgt7/9LTQaDdra2vBP//RPKRGAhVoIsDe5el+9kzpzzDrMnTnSp2rz0tLxMOkzABVQ12jHhjeOocPZjdxsHUqmF2Lta5/0/8LjCIqIklhf790h8do85b3K0XDRgcYWBza8ccx3kB7BoKlPkwIUd4Im4Tc3N+MPf/gDNm/ejJtvvhkajft/XL1ej3//93+P+gHGg6D1ZWSEmtTp6naJwRfgvphe3vUFzje3o6quFY0X27Hge5fhp7dPxZ03fQudThdMBo342Be2fYam1k6/emMBedXEeeKVQ1j1uw9RUXORyaNElDT6eu8OhVQQtLW8EtdNLRB/9t50JRc09aVuYzibvCh+BZ0Be+qpp2T/7bvf/W5EDyZeBasvIyvEpE7viyk3W+e+gFVAhkaFsw12vzZE735Si5tmjvRqYdSNj0/UY0t5ZcijKo6giCjZ9fneHQK5IMgziO0d6EVyNi7U7gAU31gHLBTh7I6ReG6w+jWei6l3Yb+ykjFi3hdwaYRVek2R+P/3f1yD2dMKkZediYWzi7H/SE1IgVRUp+aJiOJBf+7dQMA0DbkgCAIkA72wgqYg6SHRDCxJOQzAQhVKIcA+8lxMtfU2n8J+LkGQHWF1OLuRqUvzyx1bVFKM3QdPBQ2kOIIiopQQ6r27d9CjT/fL8VqxYBLGj8juaaLtHwTdc+tEDMkz4LsTB8Go62PQFEquWH8DS4oLDMDiQc/FpM1I8wu4Ao2wxhQMwJMvH/KbIZs3a3TI+WkcQRFRypMIelYsmITN73zlc39dt/0oVt85DcNz9T5B0NmmNtSet2HT2xVotTulG3OHGDSFnB4SxUkBUkbMArAvv/wSCxcuxOeffx6rQ4gvApCbpfMJuPYfqUFZSbHfDFf5oWosnz8Rnc5u2b6R4oUtN5XNERQREaACmlo7UVvfitJri7D/SA0aWxxYt/0oSq8pwrZ9leJDO5zdqDjdjCy9xqeMxQtbP/O5F8umgYQQNHnSQ7zzgQHA5nAyPSTJxCQAa29vx1NPPQWnM/zdH0lLBTRcaMeSG8aKo65WuxODcvVYVFIMl0vA4FwD6i+04dopw2HK1EAl07tsqEUvBl8Bp7I5giKiVCZxj/SkcTS2OKDuVSdAq0mDywWfFI+I5dP2DJY1mjQMtuhxy9WjYLU74RIEqFUq2Nu7gBzwPp1EgpahiIZnnnkGd9xxRyzeOrZUgLXdKVkuwtrmxB//5wto0lWYN2s0Fs4uxrxZo2HUpWOASYft+/6BX2/6GFv+WglLlg5b953ASzuO4Z7bJvqUuVg+fwLMPSUqIrntmYgo2QQqJaHVpGFsYY7P/XVRSTHe/+yMT4pHREpdeJUFWrvlEywtnYCOzm7sPHAS2/ZWYueBk/im0Q6bo6v/fzTFDcVnwPbt2weHw4Ebb7yxT88PVNY/nrlcAj46XudTQHXl4imYMWEw1GoVzp1swNWTh+FPb1X4lKQAgMuLBuCJH1+Jc012ZGjS8Oa7J/GP2osAgIutDp9q+9v2VmLciBkYmm/EuZMNkiOzNmc3igpyFP37E0leninWh5AyeK6Vw3PtT+4eqVYDKxdPwYSiXPy/H30HX55qgssFlB+qxh1zx2PksAFQq90jaItLwMrFU/zu7d6PAdzfAXWNdjRb25FjzsTgXIP472frbWIg2NHSjc6ubr/akFvKKzF2RA5GDhug0NlJDIn8uY5aALZnzx48/fTTPr8bNWoUbDYbNm7c2OfXjUkvyAiwtjvFCxRwX1BrX/sEgwa48wT02nSo1fAJvjwlKbaUuy/qspJivNUzNQ5cmg4XqQBntwvnmmzIUAnQa9Mllyj1mrS47p8VS/HeWyyZ8Fwrh+damtw9cuqYfFhMGbh4sQ3DLJkwZw5Ei70TMy8fCLNeg6Ymm8/rFA81ifm0gyxGZKgF92M8Obj2TqhUKry04xjqmtr80kHONdp9jsHRIZ3f2+Zw8n9HL/H+uQ7WCzJqS5Bz5szBe++95/N/c+fORUtLC37wgx+gtLQUAFBaWgqbzRbk1RJAgOVFIHjlYnNmOsaNuDTdfd3UAp+SFJ4R0OxphQCAwRY9/t+PpmGAWQe1WoX9R2qw690qzJ05EjkmrfiaoVTiJyJKRXL3SIspw6fkgzlTg4Jcg2//SO97fnsXzHr3Y4bmG31ycFetP4gnXj6EX248jJLphcjN1vmlg/RexszUpkkua5r1LBOUTFSCIMRsOmnMmDE4ceJEWM+JyxkwuWT3wixY7e4diAa9Bs9v/gR1TW3i07SaNN+dMmrgi9Mt7t031xZh295Kv7d69EffgS5DjQutnVi3/ahf4mir3enXf8wzAuNOx+DifUSVTHiulcNzHUBf7pEBNjjl5brPtbXdiVXrD/rNrnnvrHxi6XQU5Br8Xu9HN49DtwviINxzjy8enoUhA/RRPBmJJd4/18FmwFgHLAKkEjk3vV2BJTeM9QmSls+fgG17K32moH0udhcwvjAba5bNQMPFdsmp8Vyze3brqT8elqyQv21fpe/uG+50JKJUF6iyfB/ukYFqdeX1PCbkVkU9x5Zl0GDNshmwO5ww6DR4/rVPfPJ7yw9VY8plU8P72yiuxTQAC3f2K15JXWhXTx4mBl+A+8J7acdx8QITR1pwT2N7XzwWUwZaWjv8aoB5AraaBrvshc1q9kREXkKpLB8mW7vzUnAEiLXDvJthh9SqyKDxq7Z//8LJKMg34PYbx0Wmaj7FLc6ARYDUheadUO/R4eyG3eF0Tzn3kLt4ioaYMDAnE5cVDIDT2Y0BxktT4wadRvLCVqtUrGZPROQl5MryoVIBF2yd2PVelV+BbO/Br1S3kRULJmGAKQPTxuWjo7MLTdZOyWP79YqrkJGuxrxZo8U6YBnp/inbEf/bSFEMwCJA6kLzJNQH6rUod/E8dvd0GHXpMOvT4XIJaFMBUF3K6u/o7MKikmKf/IC7vz8ewweZMNCsZfBFRNQjYoVSe1jbnH6rG1vLK7H6zmm+G5ykuo2IM17uFJKykmKfY/NUv69rbsepb6zYe7jaZ9d77/zeRmtHRP82UhYDsEiQudCC9VqUuzEcO9mIXe9W4Z7bJuKdg6dQUd3iMztm1Geg/FC1T37AzgMnser2qQy+iIi8yC0F9jVVQ+6+LQiC//23V36Z1X5p0J2brcPwgSaUlRTDJQCfnjiPGROG+CXee6ry+wRWPUuPtfW2iP5tpCwGYJHSO5HTFbzXYqAcgQ5nNza8fgwrF09Bw1+Oo7HFcWlqWa8JLT+AiCjFSa1Q9Od+2Z+AzrvP400zR4o9JD3FW3vXivTeXOX9Hp7VE5NB47cawu+CxMEALJqC7K6RujF4RjyA+wI8XXcRP7p5PKrPtWL/kRpxBMRG2kREIZBZofCUCAp352B/AjpP8CZV5/F03cWAm6u838MTyHW0dGP3wVPiasjE0bkYMkDH74IEwQAslrxuDOdbHDj1jVWcbgYuVbqvPteKXe9WoaykWCyy6hfcwX83JS9CIiL43i9VkNx5GPLOQa/7dqO1AzptesjFrT3BW219q1+w5erZHdl7Zm3i6FzMHD/QJ8DznoVrbHGIM2Qzxw/kfT+BMACLtZ4bgzpNDau9E612d2Vk7501V08eJlbCv+KyXP/XCKEQLIMyIqLI7Rw829gmHcQF0hO85Q/IxLufnMHVk4eJpSyO/6MeKxZM8qkdef/CyZdmtLzu3ZFeVqXYYAAWJ4zaNORl6bBy8RScrrsoNn4tmV7osyQptbsl1EKwrA9DRKkuErsi5e65D/1gKs61NMLe3glDpgbGTA2M2jTfe64AWMwZWDi7GC/tOO5TqHv8yOzQUkukllUZfCUcBmDxQgAK8g2wObrE/AS1WuW3JCmV6BlqIVjWhyGiVBeJXZG977m52TrccvUoHDvZ6FM8e8kNYzHEokfREJNPcGS1O8Xgy1N64nxzG5ouGmExZYRWlZ9dThJe1JpxUx8IgFGbjkFZOhQPM2FonsFnSVKukXbvRq6AfCFY70rNRESpRq4Bd6h5XID/PXfOjBGw2p1i8AW477eb3/kKVd9YxabbHr13Q+56rwpbyivx6O8/QkXNRXFZkpIbZ8DilQDoNGnylZC9+n9ZBujw2N3fgdXWifaObljbOjBysFlylGfQcfaLiFJYBJbvvHOwTAYNcsyZqGuSbhHnEgT38qZeI96zDXoNBlv0uHryML/dkFypSB0MwGKhd/NUfbpvsrw+HU3WTjy3+RO/AMpTB8yTdG8yaHDrrNFwdHb7TH3/ZMFELLlhDDa/c8KnxEWHswsAi/QRUQrr7/KdVxBn6+jG51VNUKtUsi3isg0Zfhulls+fgGarg5XsUxgDMKVJ7FhcPn8Ctu2tRF1TGwZb9Fg4uxjnm9tkL0y1WoXaehtKry3CqCFmnK5rxc4DJ31GUS9uP4YlN4zxqZZffqgaUy6bGoM/mogoSfQaQHd1dePjr87h5qtGoqykWDIHTK1W+SXtv7TjOJ748ZWsZJ/CGIBFU++Zrsx0yd0zL+04LlY7vnryMPfP1xZJXpgmfQa+9gq4PG0svJM5PfkDedmZ2PwOtykTEUWExAD6sbu/g5kThmBLeSWun16IlYuvgEqlglGvgUmXDqMuHTX10suTlTXNfpXsVyyYxPt0imAAFi09F+qmtytw9eRhUKuBcSNykCaTHC8mXarcP+8/UuNTB0ytBkYMycJX1c34r91fia/hEgC1SoXBFj1Kphf6XMj33jYRv/7JVWi2dvS7+jMRUaqTGkBX1rSI990/7a4AcCldxKh132Pldl7a27ux/+Man5WKAaYM3pdTBAOwKLG2ObHp7Qq/oOi+BZMw2KJHXVOb+FhP/0fvnxtbHPjo+DcStWIm+lzE+4/UYP6s0bhj7ni/PmLrXz+G1XdOQ0GeAUA/qz8TEaU4qZI/js7uoHlcUoVTVyyYhM3vfCVWsgfc9/6Zlw9U5o+hmGMZiihpsXVK7nD53fajWD5/os8W6OXzJ+D9z84AAN7/9AyWz58ArSYNVxQPFIMvz/PPN7f5bH9ubHHgv9//GoIgSN4EKk43w9rmlK3+3Ht7NBERSZMs+dOTfO/NL49LAMYVZmHNshl45J+/jTXLZmD8yGzcfuM48bmDLXqsvnMaWuydsDq6WIoiBXAGLEqyTVrZWlyCIPg1hh05aKrPz8/eOxPnLrT7PX/v4WosLR2Pl3d9IY6kbr3uMmjS1ZJT3C4X3LW/BPm6YNxtQ0QUnDkzHQ8tmYKqb6xieaCxBdnB2wLJ9Z8s7NlJ6XDiQmsnfrnxMFcoUghnwKLEnJmOcSNyZEdG5kyNuDRYc94OqFQoyDO4g6GeCy49TY2ykjHIzdaJz2+1OzFsoBGr75yGspJilF5ThDf2/wMNF9qw5IYxPjNri0qK8f5nZ5BtyJAcuXG3DRFReDq7XNh54CS27a3EzgMnYXd0iYHUE0un47cPzvILnORaFzVZO9Fi64RWky7ZuSQmKxQqwNruRE2DnTNxUcYZsGgRgOF5esnmqp6Ky3INtHuPlMpKivHWwVNotTuxYsEkZGrS8MR/HPKZ0dr4VoUYkKnVwPCBJmzaU4Hbbxwnvh+btxIR9V2wRt7mTA3y8oxoaGj1eZ535fvrphYgQ6PGsIEmPP/aJ3B2u7Dk+rHxsUIhscuTM3HRwwAsmlzA+ELp5qrWdqdYSLV0qnsHTG29DXk5mX4X+JbySjx293QYtWkw6zWyW5rbO7vFZM5V//xtrLp9qk+AxeatRER919dG3tkmreRO9SU3jIEmXY36C+2h1QOTKG0UyXt4sACTIotLkNHWU3G5INd3ebHF1gmTQSP2Adt/pAYAUN/chkUll/ksO3Y4u9HV1S0+X2450fPannph3u8X6FiIiCi4sFI5vJby1GoVls+f6Lcpa/M7J2C1O7H3cDUWlRQHTsjvmZ1atf4gnnjlEFb97sOI940MFGBS5HEGLEayTVrMnuYeDXkCMe+R0aKSYuw+eAqNLQ53D8dMDWoa7GKrot7LiZ5lSs9/mzP5Py0RUb9ItI0LKZVDYinvX8uukAxu8gZk4rpvF+Cj49+g9JoiZOrSkGPW+STkr1gwCbkD/FdHfGanIjA7JlevjLnC0cFv6RgxZ6ZjWL4RHc5ulE4t8hsZbS2vROk1Rdj1XhXKSorx5alm/Of/fOm3e6bF3ok0tRq19a1YXDIWmdo0mI0ZMGamA64Y/5FERIlKLh+qMHgqh9RSXvW5Vsng5nxTG3a9VyUOumdPK8T614/5PHfd9qO4f9FkyQDubFMbzAX+ucN9yd2SqlfGXOHoYQAWKwIwMCfTPeWski4RMXyQEQtnXwYAMGZmYOHsYuw/UuOX9Ak10GLr8Ev2Z+IkEVHfeAdRnuT52vpW5A/IhMWUIc462RxdsLZ3wdHRhdwsHSwuQXIpb+/hatxz60RseOOY30qHZ9A9b9ZoDB9olPw+cHR2SwZwtedtyM8OMjsWKoG5wkpiABZDFlMGls+fgPPN0gmYLa0dUKlUPs1dPResd9Kn1e7E5ne+utTOAsCmtyvcSfhMnCQiCpv3zkXvFJGdB6rEmbCqs60402DzuUevXDwFQ3L1fvf0VrsTowabxBqPX5+1imkmgDtoGj0sC7lZOpnvA4df30jP98GIwabI7aLsyRUWn8fgK2oYgMWSC5hUlIMLA50YmKPHSzsujYx+OGcsBubo8dyffdsLeUZJ4pq8CmjvcmHerNF45S9f+FyYNoeTARgRUR948qGum1rglyLywrbPsGbZDFR9Y8XOAyd9/m3ta5/g2ftmYvWd01Bxuhkuwd3h5PYbx8Go68nLUqmw9rVP/YKsXLNWchnQE2gBwLxZo5GXnYkWmwMqALOnFWAAc7cSEgOwWHMBA/QaDBg1QJz21es0aLK2o+rsRemlyYFGn1pitfU2v5vA1vJKrFk2Q/E/h4goGXgCodr6Vsn7cJPVAZdMC7izjW14Yatv38dxhVliXm6wXCvvZUCVSoWXdhwTN2QNzMnEX/9+GtPGD8ZfD1Xj6snD8PnXTXjkn7+N/3jzOOqa2pi7lSAYgMULATAbNWi2deJMvQ31F9qRoZFuLzTUovepJVZ6bZHkTcDucMJi5AiIiChsPYFQ/oBM7DxQ5Xcftph1OF0nnVhfe97ml0Tvk4/l1RuyyeqAxayDxZxxaeOU9zKgClh1+6VWdWnpamivHo1X93zpV1fsvgWTkGPKgFGnYfCVAFgHLF6ogM9PteDZ/zqCF7Z9hp0HTkKXke7XXsi7kr53oifbDBERRZjgztW9f+Fkv/uwxZyBoiFmlHnV79Jq0nDvbROx93C1z8v41dLq6Q356O8/wjP/dQSP/v4jVFTL1PTqVb+xqcWB0+esuHryML+l0d9tP+oOvljnMSFwBizWemq32DrcF4/3xfSnXu2Fpo7Jh8WUIV5YnhyF/Udq/JIzOf1MRBQBcjsDXUDREBMG5mTisoIB7l2QZi30+gzMnlYIl+C++e4/UoNWu9Mnb7eptRO19a0ovbYI+4/UoLHFEfKuxWyTFmqVClBJL38q3r6I+owBWCx51ZmRW0Zs7+zGrvfcu268gy8AMOvTxV6Tuw+ewrxZozEwR48LrQ5kpAeY3IxyOwsioqQitzNQAIzadBi1PV+lKqDy7KXEfE9h7GF5RtkewN5Ft0MJnsyZ6SgaYoYLYOJ9gmMAFkO9i/VJXUzfGpmDf5o6DB0OJ2rq7ZcCJrinsDe/8xXuXzQZtedb4XIJ+PM7FWKypuRoKpRmqwzQiIjCZm1zYu1rvjvXt5RX4tl7Z/rk7coV3Q4peBLcM2/2zm7ce9tEsWgrVz4SDwOwGPLO4ZJaRrxvwSQUDNSjsqYVa1/7BCaDBrOnFWL4QCPyB2Ri09sVqGtqQ/W5VmzbW+nz2nJT0UGbrYYSoBERkZ9gzbo9PYBLp16q2bj/SA3UaoQdPHV3uZBlyMCaZTPQ4exi4n0CYgAWQ959txpbHOIy4oghZgzK1sGs18Da6hSDL7l+kUDoU9HBbhBBAzQiIpIk10vRoHMPbnOydJg7c6RP4daykmJMHJ2LAYYQgyeZQfKQHD2DrwTDXZAxZM5053B5dtC02p3I0Kjxp//5wv0A4VLAJFUMcGt5Ja6bWiDOnsntlvTmuUF48w7WAgVoREQkz5yZjpWLp/jcixeVFOP51z5BRc1FuFwuMfgCLi1RpqkQcvAkN0j+5oIDVkeX9E5KlXv5s6bBLv8YUhxnwGJJAAYYMy61EBKAj45/g6snD8O5C+2ASnUpYOrpF+npSea5gAy6NDS2OFB+qBqr75wGQRAC9u8KVgBQbgTHxE4ioiAEYOQQMx5YdAVqzlvhckFMsH9h22d4+PapgXcuhpB/KzdIPnayEbverZLM6WVaSXxiABZjRn0Gdr1XJQZXt3x3FDa/c0K8UB5aMgUrF0/B6TorBlv0koX31iy70n/9X+7CCtJsNViARkRE8poutuP0OatkXm6mNl1+gBtioCQ3SIYgnTLCtJL4xSXIGDPr07H6zmkoKynG0u9fjrc/Ou1zoTy3+RMUDjZh5uUD8S/zJkSm8F6vwn4+z/MK0J5YOh3P3juTIyUiohDlmDOhVqn8Uj0GW/TI0Khx/6LJKCsZg9xsnc8AVy5QsrY5fV7HM0juvcy5/+Ma8XnnLrSLS41MK4lfnAGLpZ5qyHI1YYCenmMX2mDM1KDD2S15ITW2doQ3QxVsmluu5g0REQU0ONcgVsj35HsNtuixcHYxHn3pI/Fef8+tEzFqsEls0B1sg5TIa5Dc2NqBk7UXfb4ztJo0fH3WirWvfYr7F07G0DwD00riFGfAYkhqxONJrPcYbNGjqbUTq9YfxNdnrZIJ9CdrL6KiRqaNhYcnCbPRjtrGNjy76WM88cohrPrdh8GfS0REIVGrVSgaYsLUMXl47O7pePRH38GDi6fgpR3Hfe71G944BpdL8Ots4k02UOoZJI8aaMTwfCNa7U7x8Z7ZMM8MmloFyVZKUpu0SFmcAYsVFdBo7ZAc8ah7wmKtJg13zB0vFvaTqhW2fP4EtNg6sOntCqy6far0mr5EboH3TBvzAYiIIqhXhfyaBnvQ2a0+5d96zYadu9COr89a/VZQmls7Aub9RgwLeIeNAVgs9AREtfU2yanhgoFmLJxdDLVKBUG41O/LUyus9JoiDLTo0XChHS2tHdhSXolFJcWwOZySQZTcTFvpNUXYtq+S/cOIiKIopN3lQTZIyeqZDYNKhbWvfSr9HtFOK+FOyz7hEmQMeAKivYerJet3DcvT41sjBuDKb+VjsEXvMy3d2OLArveqcL6pDXsPVyM/R4/Sa4vQ6XQhU6uRrPcil1vgWXZkPgARUfRIJc77LQN6zyAZtWHPUnlv6Fo4uxiDLXrFlhpD3UBAvjgDFgOegKijpVuc0YIKmDg6F0MG6MTpawCwdXRhyQ1jsfmdr3yWDz86/g3mzhyJF7ZeGnEMsujRrE3Hc5s/8RmFDB9olN22zDITRERRFmx2K5wZJKmlPvhv6FqxYBLGFWYBriDHFs7SocxjQ95AQD4YgMVA7xZE2/ZVQqtJw8zxA/0++M3WDnxw9Az+7w+mwNnlgkqlws4D/8DUsYP8KipveOMY5s0a7fO7TW9X4MHFU3oadtuw93A1Wu1OrFgwCQNMGZh5+UAGX0RE0RZgGTDkWl0ygdrQXL3f89dtPxo8t1fi9e65dSJGDTHDqE3z/V4IECSygHffMACLgXCSLXOydJg5YQj+/c+XZrWWll4Oo14jOeJwCZdeIDdbh5LphXj09/Jbnz2s7UyeJCKKhVBnkOQCtaAV9mVIvZ5nID883+gzA+f9WE9Hltr6VuQPyITFnMEC3n3AACwWwki2dHX79w57edfnWLn4CskRh1p1qZ6EVP/IDW8cw5plM2DU9TyIyZNERDEV6gySd6Dm3ZbOkKnBYIsedU1tAZ/fm1zg5xIEvxk4z2Nzs3W4aeZI8btl54Ge9keFCuy0TDJMwo+VQNXovchdIHVNdskE/pGDTeLv1GpIPvfjE/Vi7S8mTxIRKSBAQ+yQkvRxKVDzBEG73qvCtr2VeOIPfxcT7z3PLyspRkOLA1DLv69c7TFPWyPvavmex0oN7F/Y9hmsdmdI32l0CWfA4pzcyKij04W9h6vdU8UDjRiaq0fDBQf++D9foPSaIqjVwISiXOw8UOX3XJcL4uiGyZNERFEWbKUhxFURT6BWW2/zC4Je2nEcDyy6AqfPWQEBeOvgKWjS1Fhyw1is235U8n2l0mE8NSJ7z6Bdeu9WfmdECAOwOGfOTMfKxVPEYqzizsZ8A8YWZosXqrXNKe5+3LbP3QT23U/O4L4Fk/A7r4vPc3F5LhgmTxIRRVdISfa9k/TRKzdXnw6r3YksgwYZQ82SQZCnCbhnebJwsEncKS/5vl6B39mmNtSet2H3wVNotTv9c7h6Hps/IFNyYM/vjPAxAItHvbb6Th8/SHJk5ClVIbcNuK6pDRes7eKM2IjBWXjjb5VobHGIF0yfqi8TEVHIwl5pUANfnG7xmblaPn8Ctu2tRF1TG8pKxsjmAHvnaJVeWxT8fT2B3/AsDLXofQb2ft8BAmAxMeE+UhiAxRuJqeqVi6egeKgpYBVjuZkse3s39n9cg+umFuB03UXMu3Y0Xt1TgdtvHCdeMIq0qSAiSiVeA2mDXhP6SoMKqG1oE4Mv4NIS4/2LJqP6XCs+/uqcT7NvTxCUka4GphX6LE9Kva9KpXLngnnf54PNwHl2x/M7I2IYgMUZqanqta99ErSei9xa/kfHv/HZsSJZoC/abSqIiFJJr4H0j27+ll/AVFZSDLVa5fdUa5sTFaebJWeuqs+1Yte7VVhUUoyDx7/BY3dPR1dX96UgCIBKrRKfK9U/eFFJMV7acUy+d7DE8UvlrPE7o/8YgMUZualqm8Mp/rtkra5eoxKDToPnX/sEV08e5pesGVKBPiIi6pPeA2m7owv7j9SIXU88SfIjh5gvpZL0aLF1wiVIz1xBAEwGDTqdLsyZMRLadLXYPcXzfZCbpfMp9L374CnMmzUaedmZON/cJjbrDpQ0H3JhWOoXBmBxRmopcbBFjwutnXjqj4cD1+ryHpWogNtvHMcdK0RECmu0dvjdd1vtTnGDFCC/BJlt0uL9T89IzlxJrWj0/i7ovRrSandCq1HjtfKv0NjiCPjeHtwdrwzF64Dt3LkT3/3ud1FaWorS0lKsXbtW6UOIa1L1YO65dZJfPoCnVpdcfRfPjNjUMfmSdV64Y4WIKDoytek+9939R2pQJlG3UapRtjkzHbffOA7lh6pRek0R7l84GfNmjcbug6dwRfFA6Rpc3nUbvVZDnlg6Hc/eOxPD8oxotTuDvreHXH0wfm9EluIzYJ9//jkeeeQR3HzzzUq/dWKQSHC0d3RLjkbONrX5NOP2mxXjjhUiIsWZ9BqfnK9WuxO6jDSsWT4D9nZn4MT1nu+AVbdPRYu9Ezk9wVCr3QmopItr+81M9crRMhs0WLNsBpqsDljMOljMGQGbdHN3vDJUgiAoejoXLlwIk8mE+vp6jBkzBo899hiysrJCfn5Tkw0uV2p9AjoFFR54/oBfPsC8WaOxpfyEz+8k1+g9u3G4YyWovDwTGhpaY30YKYHnWjk818rJyzOhobEVVd+0ouobK1yCALVKhaIhZhQNMfXt3ttzD7d3dOPfXjnk910QMDerr+3mEuB7I94/12q1ChaLUfbfFQ/A7rvvPtx1112YMmUKnn/+eXzzzTf493//dyUPIeG4XAI+Ol7nU4z13tsm4tU9FeKavscv752JCUV5MTpSIiIC3PftukY7mlvbkWPKxOBcg+Sux3Bfs/d3wcrFUzBjwmDZ1z5bb5McwP/2wVkYmm/0PVZrO3LMkTlWCi5qS5B79uzB008/7fO7UaNGYePGjeLPS5cuRUlJSVivm4ozYHl5JhQPNfksS6rT1OKavodWkwa9Ji2uRwTxLt5HVMmE51o5PNfK8T7XGSpgkFkHQEBTky0ir9/7u8Cs1/i/tlcNsi6XILlsea7JhgyV0PcZsjgQ75/rYDNgUQvA5syZgzlz5vj8rrW1FRs3bsSdd94JABAEAWlpaRLPJj+9666owDV6IqJUI1WDq1f3lIYL7WJrOrmq+Z6EepaciB1Fk/D1ej1efvllXHHFFZg0aRI2bdoU9gxYSuh1MVmkZvzkqhFDpnoxERElH4kZrLKSYpgMGnS0dGPv4WrJqvmewbqn5ISnf6RnN73N4WQAFmWKBmBpaWn4zW9+gyeeeAIOhwMjRozAr371KyUPIf4FaEUk1Zerd+uIRJ1KJiKi8EnNYG0pr0TpNUXYts/d+/etg6f8q+b3fCdkm7QYbNGjZHqhT32x4flGDMnR87sjihSvA/btb38bO3fuxJ49e7BhwwaYTCalDyGuybUi8qnzEsZz/WrEEBFRfFJBvrajDLmiqd7PbbU7YdSmoSDX4B6wewVV5sx0LJ8/UbJjirXN2adjotCwEn6c6U8FYk4lExElqFCS4Xulp5gz0yW7p2g1aVCrVOJ/S+YHe71WtyCdqG9zOHG2sY2rKlHCACzOyF1MoVQg5lQyEVFiCpoMLxegFWZJbsganm/A2MJs6RpePa+16e0KXD15GAZZ9CgrGYO9h6t92hVpNel4YdthJuhHieJLkBSYVCuilYunBGwb4f3cgFPJREQUlwKtfgABUkzsTr/WQ+MKsmDUpksuOXpea9PbFSiZXohd71XhhW2fYeeBk5g7cyRys3ViEGd3OAMeE/UPZ8DijcTuxpHDBoRWQ0Zwl/ZgE1UiosQSbPUjWHqKX2mKAFpsnbh68jC/wfqW8ko8dvd0GLVpMOs1sLZ3SR6TSqVyp7hwVaVfOAMWj3p2N3pGL+FUJM42KthElcmZREQRIbX64d00O5INsrNNWqjV0n0lu7q6xVkzc2Y6ViyY5HNMi0qK8dKOY1xViQDOgCWDXomZj939HXxe1QSXALz/6RncfuO40Aq0SiR4yj4ngasnExHFnWC1He2dWH3nNLy04xjqmtr6VXzbnJmOcSNygucbC8AAYwZKrykSZ7x2HzyFxhYHV1UigAFYopMpwrf3cA1a7U6sWDAJ4wqzEKjzvdzrBAqoWD2ZiCjCQqjtuGLBJAwwZcCo01wKvtRAk7UTTVYHLFk6WEwZge/5AjA8T48VCyZh3fajAbupGPUZ2PVeVZ82hlFgXIJMcHJF+K6bWnApAd8e+RpiwRJGiYiof6Tuy+u2H3UHX5mXgq+jVc149Pcf4Zn/OoJHX/oIR6uag3+7u4Dxhdl+yfu9B9zBlkap7zgDluCCFeELt4ZY79eRe25/ymUQEVEvEikgcvflRmuH+Dhnlwsv7TjuE6S9tOM41iybAYspI3BaiVRfyd7klkaZatJvDMASnFwg5Lk4PEFRsP6Q4QZUnlERm4ETEfWTTArI8IFGyfvyyTMXsaX8hPtxiyZLBmnNrR2ov9De/zzdcHKDKSxcgkxwUtPDZSXF2P9xjXjBNbQ4sGr9QTzxyiGs+t2HqKi56LdjMexpZq9RUaDpayIiCkwuBcTV7ZK8v+89XC0+TqVSSe6OzDJm9L81XU9g6P39cezUBdg6u7nrPQI4A5ZIZEYivaeH1WoVRg4xi//98LoPgyfL92WaOZTpayIiCihQCoj3fTk9PQ2/2fKJWK0eAHYe+AeWzZ+A3/csQ2o1aVg+fwK6urr7XRNSKjDc8MYxzJs1GsPzjRx09xMDsEQhMUW9YsEkDDBmwKh3B0veF5VR6/6ftqbBHvpFyICKiEhxAVNAvO7LVkcXNGlqLPxesTgD9f6nZ3DZsCysWTbDvQvSrIPFnAFrm3QR1ZDydHsG++cutKP02iLsP1IjBn0dzm64BIG73iOAS5AJQm43zLGqZtllRSCyxfuIiCjyQk0BMevTsXB2MXa9V4Vteyux690qLJxdDIM2DRZjBoqHmGExuktQ9Hn3otey4zP/dQS73q3CTT0tijyvA4G73iOBM2AJItBux0A1uJgsT0QU50JMAbHanZI7HiVnovq4e1FqsL+1vBKl1xRh13tVWFRSjN0HT/VtIM+Efh8MwBJEsN2OPsuKvT7k4wq5hZiIKK6FkAISbrmgvqSVyL1H4WAT5s0ajd0HT6HV7gx/IM/uKX4YgCUIqZksz0gE8FpWDPAhZ24XEVHiUqL+otx7DLXoMdSix9jC7D4N5Nk9xR9zwBJFr7IPq++chvJD1WhscfgsK4Zb0Z6IiBKDElXpA72HOVODglzDpSr8YWD3FH+cAUsk3tPJKmDV7VP9lhXDnqImIqLEoERV+ii9B7un+GMAlqhk1va9P+S52TpcN7UAajVg0GnEbvZERJSglCgXFIX34IYwfwzAkoznQ77p7QqUTC/E1vJKdDi7sfNAVconPBIRURgiuWuRPSX9MABLNj0f8gcXT8Gjv/+ICY9ERBS+aOxaZLFvH0zCT0QqwNruRE2DHVZHl38BVgGwtzuZ8EhERH3CDV3RxxmwRBPiqIQJj0RE5COMJUVu6Io+zoAlEhXQ1NoZ0qhEie3KRESUILxaDD3xyqGALewAtrFTAmfAEkXPxVNb3xraqIQJj0RE1CPcQqjctRh9DMAShOfiKb22KPSlRSY8EhER+tbGiIP46OISZILwXDz7j9RgUUkxlxaJiChkfVpS7BnE97X6PQXGGbB45ZUs2SmoxIunscWB3QdPofSaIqjVwNQx+bCYMnhhEBElokjW2gqAS4rxRyUIQkKd+qYmG1yuhDrk8EnsdHxoyRR0drnYST7K8vJMaGhojfVhpASea+XwXCsnrHMdjVpbQd7P2uZMmiXFeP9cq9UqWCxG2X9nABaHrO1OrFp/0C/P69crroLLJSTNxROP4v2CTiY818rhuVZOOOda7l4fVwWzFZqh64t4/1wHC8C4BBmH5JIlm1s7Lq3FA3FzERARUfjivtaW0jN0KYZJ+HEo4vVXglXOJyIixcV7rS1Ww48uBmBxKKJFVMMsvkdERMqI94LZgWboqP+4BBkLwdbUe9VfGWQxIkMtSE/5BnmtcIvvERGRQuK81hZb2kUXAzClhbqm7lVENS/PKJ1oGMJrxX2OARFRKovjgtksXRFdXIJUWCTX1EN5rbByDJgrRkREHl4zdE8snY5n750ZegK+CrB1dOGbFge+Pm/jd4oEzoApLJIzUqG8lloFlJUUY0t5pTiCKSsphlrd60oIZ7dLHG9LJiKiCOrLDJ0KqPqmFWcabD7fPdxB6YsBmMIiuaYeyms1WzvwVk/lfKgACMBbB09h5BAzjNpL//OHnCvGbclEROQhMSC3tjlR9Y0VOw+cZP5xAFyCVFgkd72E8lrZJi1a7U5s21eJbXsrsW1fJVrtTr+AL9TdLtyWTEREAGR32dvanXAJAndQBsEZMKVFctdLCK8VahJlqDNzTOonIkoxMmkncgPyNctmQK1ScQdlEAzAYiGSu16CvZZXkGZzOKHVpMPucMLa3uWTuxXpQI2IiJJAgLQTuQF5k9WBy4tykKkdi83vfMUdlDIYgCW6UBLiBcCs1+BsYxte2HZYOncrxJk5bksmIkodgfKD5QbkX5+1Ytd7VXhw8RV4fOl0tDm6kGvW8nuiFwZgiSyMhPiQkuxDmZmL88KBREQUOYHSTgryDH4D8kUlxdh98BQ6nN14/rVP8ey9MzEoS+d+Ir8nfDAAS2ByQdWvV1wFl0vwmRWLaO5WHBcOJCKiyAmYduI1ID93oR1fn7Xio+Pf4LqpBWLNL5vDyfxgGQzAEphUUGUyaPB1XSs2vHHMZ1ZsaJ6BuVtERBSWoGknPQNyqFT401tfomR6IbZ61f4anm/EkBw9B+oSWIYigUlVuZ89rVAMvoBLs2JqFeK66SsREcWhEKvhmzPTsXz+RDH4AtzfP+u2H2WZIhmcAUtgUiOT4QONkkuNza0dzN0iIqLwhZgfLASo/cVlSH8MwBKZREI8AtVeYe4WEREF0o9Wc9lGlikKBwOwRNc7qOpZanxh22cwGTSYPa0QwwcaAZVKbEXUZ+wBSUSUvNTAF6dbsG770T61mmOZovCoBEFIqNPS1GSDy5VQh9xveXkmNDS0hv4EFWBzdEkm4/tdSKEGVSnSAzLsc019xnOtHJ5r5STsuVYBtY1t+OXGw34zWGH1b/R8pyiQ6hLv51qtVsFiMcr/u4LHQkoRAJdLkEzG90mGlOnj5dk+7I09IImIkpe1zYmK083979/YsypTkGtwB21JNECPNAZgSSqU5trhBFWhNusmIqLE02LrhEuA38565nBFDwOwJCVVoqL3hRROUBXK6xERUWLKNmnx/qdnsKik2Kdc0YoFk1iuKEoYgCUpTzJkoLpf4QRVobweERElJnNmOm6/cRzKD1Wj9JoilJUUY/Wd0zB+RDaXEaOESfgJoM+JhsGSIcNNrFcwuTJW4j2pM5nwXCuH51o5CX2uE+weH+/nOlgSvuJlKOrr6/Hoo4+ivr4eOp0Ozz33HIYNG6b0YaSGYHW/wm2szTpiRETJq/c9HoC1naWHokXxJcif/vSn+Kd/+ie8+eabKC0txXPPPaf0IZA37lghIqLewtglT32jaADW3NyMr776CmVlZQCAW2+9Ff/6r/+q5CEQERFRECw9FH2KLkHW1tZiyJAheOaZZ3DkyBHk5eXhscceC+s1Aq2nJrO8PFNM39/lElDXaEeztR055kwMzjVArU7OoVCsz3Uq4blWDs+1cpLhXJ872SC5S77N2Y2igpwYHZW/RD7XUQvA9uzZg6efftrnd4WFhfjyyy/xk5/8BD/72c+wfft2PPLII3j11VdDfl0m4cdAilTBB+LgXKcQnmvl8FwrJ1nOtV6bLtnXUa9Ji5u/L97PdbAkfEV3QdbU1GDevHn4+OOPAQDt7e248sorcfTo0ZBfgwGY8qztTqxaf7B/7SkSRKzPdSrhuVYOz7VykuZcJ8DAO97PdVztgiwoKMCgQYPw7rvv4tprr8Xf/vY3jB8/XslDIG8h9oEMVLA12QIwIiJC+LvkKWyKl6F48cUX8fjjj+PXv/41jEYjnnnmGaUPgYCwRjeegq29Z8BYBZ+IKInJlR4KcfBOgSkegI0aNSqsnC+KDrkdLlLLip4q+L2DNY6GiIhSTAIsTSYKxQMwig9hLStyKpqIiBDe4J0CYwCWosJeVmQVfCKilMec4MhhM+4UFXZzbZV7N2RNgx1WRxerIRMRpSDP4N0bc4L7hjNgqSqcZUWu+RMREZgTHEkMwFJZiMuKXPMnIkpBMrsdew/e1WoVaurt3BEZJgZgFBTX/ImIUkyQlQ9zpgZmvSb01RGWrvDDHDAKimv+RESpJZRm3CE37O4J5latP4gnXjmEVb/7EBU1F1M+l5gBGAUVdsI+EREltEArH+E8BggjUEsxXIKk4FgHjIgopYRSqijUckZMY5HGGTAKTc+af0GuwX3BMPgiIkp8MiWGQln5CHV1hGks0lSCICTUV2lTkw0uV0Idcr/Fe8f3ZMJzrRyea+XwXCsnoc51sBJDnsT5QCsfIT4mGqWM4v1cq9UqWCxG2X/nEmSi484SIiLqg6AlhkIpVRTiY5jG4o8BWCJjgVQiIuojRXOz2M7OD3PAEhh3lhARUV8xNyu2GIAlsFC3ABMREfXGEkOxxSXIBBbqFmAiIiI/zM2KKc6AJTCOXoiIqF+StcSQTHmNeMIZsETG0QsREZGvBNmgxhmwRJesoxciIqI+SJQNapwBIyIiovjXU/fS1u6ENiMddS0NMOjS/epfJkrrIwZgREREFN96lhU3vV2BkumF2FpeKbu8mCgb1LgESURERHHNs6x49eRhYvAFSC8vJsoGNc6AERERUVwTlxVVCL68mCAb1BiAERERUVzzrtof0vJiArQ+4hIkERERxTXPsuL7n57BopLiuF9eDAVnwIiIiCj+9Ox6bLF1ItukxbjCLKy6fSpsDifWLJuBzm4XDBlpcbm8GAoGYERERBRfAhRT9Swr5uWZ0NDQmpDBF8AlSCIiIoozgYqpeloMna23xWWLoVBxBoyIiIjiilwx1bNNbXhha3y3GAoVZ8CIiIgornjvevTQatJQe94W9y2GQsUAjIiIiOKKVDHVe26diL2Hq30e56kBloi4BJkqeu0m6d07i4iIKG5IFFNVp6nRaved7YrHFkOhYgCWCgLsJmEQRkREcal3MVUVcP/CyX7fZSxDQXFLbjfJs/fOjKvO8ERERLJ6zYoNshiRoRYSMvgCmAOWEuR2kyTqujkREaWonlmxglwDhuYbEzb4AhiApQS53SSJum5ORESU6BiApQCp3SSJ2juLiIgoGTAHLBVI7CZJ1KRFIiKiZMAALFX03k3C4IuIiChmuARJREREpDAGYERERJQ6VBAbelsdXTFr6M0lyFTBSvhERJTq4qgwOQOwVBBHHzgiIqJYiafC5FyCTAFyH7hE7SBPRETkJ4SlxXgqTM4ZsBQQ6APHVkRERJTwQlzp8RQm9/5OjFVhcs6ApQBWwiciomQW6kpPPBUm5wxYCvB84JKlgzwREZG3kFd64qgwOQOwVBBHHzgiIqKIUgGGTA3KSorhEoD9R2rQ2OKQX+mJk8LkDMBSRZx84IiIiCJGIvdrUUkxyg9V4/Ybx8X1ZAMDMCIiIkpIUrlfW8srsWbZDFhMGXEbfAFMwiciIqIEJZf7ZXc44zr4AhiAERERUYJK5F3+DMCIiIgoIcVTWYlwMQeMiIiIElMC7/JnAEZERESJK0F3+XMJkoiIiEhhis6ANTU14a677hJ/bm1txYULF/Dpp58qeRhEREREMaVoAGaxWLBr1y4AgMvlwh133IGVK1cqeQhEREREMRezJcg33ngDmZmZuOWWW2J1CEREREQxoRIEQfF0te7ublx//fVYv349xowZo/TbExEREcVU1JYg9+zZg6efftrnd6NGjcLGjRvx/vvvY8SIEX0KvpqabHC5EmSLQ4Tk5ZnQ0NAa68NICTzXyuG5Vg7PtXJ4rpUT7+darVbBYjHK/nvUArA5c+Zgzpw5kv+2d+9e3HTTTdF6ayIiIqK4FpMcsM8++wzf/va3Y/HWRERERDEXkwCstrYWgwYNisVbExEREcVcTCrhHz16NBZvS0RERBQXWAmfiIiISGEMwIiIiIgUxgCMiIiISGExyQHrD7VaFetDiIlU/btjgedaOTzXyuG5Vg7PtXLi+VwHO7aYVMInIiIiSmVcgiQiIiJSGAMwIiIiIoUxACMiIiJSGAMwIiIiIoUxACMiIiJSGAMwIiIiIoUxACMiIiJSGAMwIiIiIoUxACMiIiJSGAMwIiIiIoUxAEswX375JS6//PJYH0ZS+/jjj3HbbbehtLQUd9xxB86ePRvrQ0o6//3f/42bbroJ119/Pf785z/H+nCS1rp16zB37lzMnTsXv/rVr2J9OCnh2WefxSOPPBLrw0hq+/fvx/z58zFnzhysWbMm1ofTZwzAEkh7ezueeuopOJ3OWB9KUnv44YexZs0a7Nq1C7fccktCX+Dx6Pz581i7di02b96MN998E1u3bsXJkydjfVhJ5+DBg/jggw+wc+dOvPnmm/jiiy9QXl4e68NKah999BF27twZ68NIarW1tXj88cexfv16/OUvf8GXX36Jd999N9aH1ScMwBLIM888gzvuuCPWh5HUOjs78cADD2Ds2LEAgDFjxqCuri7GR5VcDh48iCuvvBLZ2dnQ6/W44YYb8Pbbb8f6sJJOXl4eHnnkEWRkZECj0aCoqAjffPNNrA8rabW0tGDt2rVYvnx5rA8lqZWXl+Omm27CoEGDoNFosHbtWkyaNCnWh9UnDMASxL59++BwOHDjjTfG+lCSWkZGBkpLSwEALpcL69atw+zZs2N8VMmlvr4eeXl54s/5+fk4f/58DI8oOV122WWYPHkyAOD06dPYs2cPrr322tgeVBL7+c9/jpUrV8JsNsf6UJJadXU1uru7sXz5cpSWlmLz5s3IysqK9WH1SXqsD4B87dmzB08//bTP70aNGgWbzYaNGzfG5qCSlNy53rhxIzo7O/HII4+gq6sLy5Yti9ERJieXywWVSiX+LAiCz88UWf/4xz+wbNky/PSnP8WIESNifThJafv27Rg8eDBmzJiBHTt2xPpwklp3dzeOHDmCV199FXq9Hvfccw927tyJ+fPnx/rQwsYALM7MmTMHc+bM8fnd9u3b8fvf/x4/+MEPxN+Vlpbiz3/+M4xGo9KHmDSkzjUA2O123HPPPcjOzsaGDRug0WhicHTJa9CgQThy5Ij4c0NDA/Lz82N4RMnr448/xv3334/Vq1dj7ty5sT6cpLV79240NDSgtLQUFy9eRFtbG375y19i9erVsT60pJObm4sZM2YgJycHADB79mwcO3YsIQMwlSAIQqwPgsIzZswYnDhxItaHkbTuvfdeWCwWPPnkk1CruUofaefPn8fixYvx+uuvIzMzE2VlZXjqqacwceLEWB9aUqmrq8O8efOwdu1azJgxI9aHkzJ27NiB//3f/8UzzzwT60NJSkePHsWqVauwbds2GAwG3Hffffje976HBQsWxPrQwsYZMCIvX375Jfbt24fRo0dj3rx5ANw5Sn/4wx9ifGTJY+DAgVi5ciX++Z//GU6nE7fddhuDryh45ZVX0NHR4RMIlJWVYfHixTE8KqL+mTRpEpYuXYolS5bA6XTiqquuwq233hrrw+oTzoARERERKYzrK0REREQKYwBGREREpDAGYEREREQKYwBGREREpDAGYEREREQKYwBGREREpDAGYEREREQKYwBGRClp586dmD17Nux2O9ra2jBnzhy8+eabsT4sIkoRLMRKRCnr//7f/wuTyYTOzk6kpaXhqaeeivUhEVGKYABGRCnLZrOhtLQUOp0OO3bsgFarjfUhEVGK4BIkEaWspqYmdHR0wGq1or6+PtaHQ0QphDNgRJSSnE4nysrKUFZWBpfLhe3bt+O1116DRqOJ9aERUQrgDBgRpaTnn38eubm5WLBgARYtWoQBAwZg7dq1sT4sIkoRnAEjIiIiUhhnwIiIiIgUxgCMiIiISGEMwIiIiIgUxgCMiIiISGEMwIiIiIgUxgCMiIiISGEMwIiIiIgU9v8B7mS3K0V2ZxQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAHwCAYAAAAB5dMOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABxEElEQVR4nO3de2BU1bk3/u9MMpnJ3BJIwp0EDAQochHqQbAipURU2qaoQKD2YCstajl46FvF8rPVvlKV6ltapKinUj1HVC4WxB4VjaJWjaUCKoiBCELCJZAbw2Qmmckks39/TGZnLnvPJZnZc8n3809NmMys2c2sPPtZz3qWShAEAURERESkGHWiB0BERETU1zAAIyIiIlIYAzAiIiIihTEAIyIiIlIYAzAiIiIihTEAIyIiIlIYAzAiCunMmTMYN24cysrKUFZWhu9973soLy/H66+/HtHPb9y4EW+//XZcxvaTn/wEzc3NQd+32WwoLy/HvHnz8NZbb8X0Nc+cOYMrrriixz//3nvv4U9/+lPUP/enP/0Jr7zySo9fl4iSS2aiB0BEyU+n02H37t3i12fPnsVtt92GjIwMzJ07N+TP7tu3D6NGjYrLuD766CPJ71dVVaGpqQkVFRVxed3eOHz4MC5duhT1z919991xGA0RJQoDMCKK2tChQ7Fy5Ups3rwZc+fOxcmTJ/F//+//hd1uR0NDA8aOHYs//vGPePnll/HFF1/g97//PTIyMjBq1CjJx2m1WmzYsAEVFRXQaDTo168fHnnkEQwYMAAnTpzA7373O1gsFnR2duJHP/oRbrnlFvzqV78CACxduhT/9V//hcGDBwMAvv76a6xZswYXLlxAWVkZtm3bhg8//BAbN26E2+2GwWDAr371K0ycOBFPPPEEPvvsM9TX12PMmDF4/PHH/d7nu+++iz/+8Y9wu93Q6/X47W9/C6PRKP77E088gYsXL+I3v/lN0NdvvfUWnnzySahUKmRkZODee+9FVlYWtm7dis7OTphMJqxatQo7duzASy+9BLfbjdzcXPz6179GcXEx7rvvPlgsFpw+fRqzZs1CU1MTRo8ejdtvvx0TJkzAz372M3z00Ueor6/HsmXLsGTJEnR2duL3v/899u7dC5PJhIkTJ+LEiRN4/vnnFfrNIKKICUREIZw+fVqYPHly0Perq6uFSZMmCYIgCI8++qjwyiuvCIIgCO3t7cJ3v/tdYc+ePYIgCMKtt94qvPHGGyEfd+7cOWHKlCmC0+kUBEEQNm/eLFRUVAgul0u48cYbhS+++EIQBEGwWq3CDTfcIHz66aeCIAhCSUmJ0NTUFDS2f/7zn8K8efMEQRCE48ePCzNmzBBqa2sFQRCEyspK4eqrrxZaWlqEDRs2CHPnzhVcLlfQczQ0NAhTp04Vjhw5IgiCILz55pvC7bff7nc9NmzYIPz2t78Vf8b36+985zviOD/44APhiSeeCHrMvn37hCVLlgitra3i466//npBEARh9erVwtKlS8XnXr16tfDMM8+I7/v5558XBEEQDh8+LFx++eWCw+EQXnrpJeGHP/yh4HA4BKfTKfzkJz8Rbr311qD3RkSJxwwYEfWISqWCTqcDANxzzz346KOP8Je//AWnTp1CfX09Wltbg35G7nEDBw7E2LFjMX/+fMycORMzZ87E9OnTcfz4cdTW1mLNmjXiczgcDnz55ZeYPHlyROP85z//iauuugrDhw8HAEyfPh39+/fHF198AQCYPHkyMjODp8KDBw9i9OjR+MY3vgEAuO6663DdddfhzJkzEb3uvHnzsGLFClx77bW4+uqr8dOf/jToMe+99x5qampQXl4ufs9qtcJisQAApk6dKvv83/nOdwAA48ePR3t7O1pbW/H++++jrKwMWq0WALBo0SJmv4iSFAMwIuqRw4cPo6SkBADwi1/8Ap2dnbjhhhswa9Ys1NXVQZA4ZlbucWq1Glu2bMHhw4fx8ccf4+GHH8Y111yDsrIymEwmv/qzxsZGmEymiMfpdruhUqn8vicIAjo6OgAAer1e8ucyMjL8fk4QBBw7dsxvCVKlUvm9T5fLJf73qlWrcPPNN+Ojjz7Czp078de//hUvv/xy0NjKyspwzz33iF/X19cjJycn5NgAiEGWd4yCIAQFkmo191kRJSt+OokoaidPnsSmTZvwk5/8BADw4Ycf4uc//zluvPFGAMDnn3+Ozs5OAJ5AxhvsyD3u6NGj+O53v4vi4mIsX74ct912Gw4fPoyRI0f6bQCoq6vDd7/7XTF75fvccqZPn44PP/wQp0+fBgB8/PHHqKurw6RJk0L+3KRJk3DixAl89dVXAIB33nlHDJS8+vXrhyNHjkAQBNhsNrz77rsAgI6ODsyePRttbW1YvHgxHnjgARw7dgzt7e1+Y/7Wt76F1157DfX19QCAl156CUuXLg05rlCuvfZavPrqq2hvb0dHRwd27drV4+ciovhiBoyIwnI4HCgrKwPgyapotVr84he/wKxZswB4sj0///nPodfrYTQaceWVV6K2thYAMHv2bPzhD3+Ay+WSfdyCBQtwww034Oabb4Zer4dOp8P999+PrKwsbNq0Cb/73e/wzDPPoKOjA3fffbe4NHf99dfjRz/6EZ544gkxGxdo1KhReOCBB7BixQp0dnZCp9PhqaeeCptFy8/Px+OPP47Vq1ejs7MTRqMR69ev93vM97//fXzwwQe47rrrMHDgQPzbv/2bmIlas2YNfvnLXyIzMxMqlQoPP/wwsrKycNVVV+GXv/wlHnroIfz617/GT3/6U/zkJz+BSqWC0WjExo0bgzJ2kbrppptw8uRJ/OAHP4Ber8ewYcOQnZ3do+ciovhSCVLrBERElHI+/PBDNDU1icHy2rVrodVqgzJ3RJR4DMCIiNLEhQsXcN9996GxsRFutxtjx47Fgw8+GFXNHBEpgwEYERERkcJYhE9ERESkMAZgRERERApjAEZERESksJRrQ3Hxoh1ud+Rla3l5RjQ12eI4IgJ4nZXEa60MXmfl8Forg9dZOXl5Rly8aEe/fgbZx6RcAOZ2C1EFYN6fofjjdVYOr7UyeJ2Vw2utDF5n5YS71lyCJCIiIlIYAzAiIiIihTEAIyIiIlIYAzAiIiIihTEAIyIiIlIYAzAiIiIihTEAIyIiIlIYAzAiIiIihTEAIyIiIlIYAzAiIiIihTEAIyIiIlIYAzAiIiIihTEAIyIiIlIYAzAiIiIihTEAo+SjAqxtLtQ22GF1dACqRA+IiIgotjITPQAiPyqgqvYSNmz/DE5XJ7SaDKxcOBnjCnMAIdGDIyIiig1mwCipWFtdYvAFAE5XJzZs/wzWVleCR0ZERBQ7DMAoqVhs7WLw5eV0dcJib0/QiIiIiGKPARgllVyTFlpNht/3tJoM5BqyEjQiIiKi2GMARknFnJ2JlQsni0GYtwbMrNckeGRERESxwyJ8Si4CMK4wB+vumgGLvR25hixP8MUCfCIiSiMMwCj5CIA5WwNztkb8moiIKJ1wCZKIiIhIYQzAiIiIiBTGAIyIiIhIYQzAiIiIiBTGAIyIiIhIYQzAiIiIiBTGAIyIiIhIYQzAiIiIiBTGAIySlwqwtrlQ22CH1dEBqBI9ICIiothgJ3xKTiqgqvYSNmz/DE5Xp3gm5LjCHHbGJyKilMcMGCUla6tLDL4AwOnqxIbtn8Ha6krwyIiIiHqPARglJYutXQy+vJyuTljs7QkaERERUewwAKOklGvSQqvJ8PueVpOBXENWgkZEREQUOwzAKCmZszOxcuFkMQjz1oCZ9ZoEj4yIiKj3WIRPyUkAxhXmYN1dM2CxtyPXkOUJvliAT0REaYABGCUvATBna2DO1ohfExERpQMuQVLyYz8wIiJKM8yAUXJjPzAiIkpDDMAoqQX2AzMZNDhdb4M2KwP5OTqYszMZiBERUcphAEbJQ+UJuCy2duSatDBnZ/r1A8vP1eHGGSOxraKa2TAiIkppDMAoOcgsNQ4tMECryYDT1YnZUwvF4Avo7o6/7q4Z3YX6REREKYBF+JQU5I4eanN1YsWCSZ5+YCqwOz4REaUFBmCUFOSOHvr0WANefPMo1tx2JSaNymd3fCIiSgsMwCgpyB09BAGoa2rFw899ApNPd/z8XB3KS8dg5aLJgErF1hRERJRSWANGScF79JBvDdii0hK8XnkSgCcb1tzixLjCHDy24mp8XdeCJ/92iMX4RESUkhiAUXLwOXqoscWJ46cv4fXKk2i0OAD4LDUKgNstiMEX0F0v9uvbp8Goy2RrCiIiSnpcgqTk0XX00GUDjRg+wIgWuwtA8EHccvVih443YvWfP0JV7SUuSRIRUVJjBoyST5iDuL31Yr5BmLdejK0pqM+Q6JvHzC9R6mAARskpxEHckdSLWeztDMAoffGILqKUxwCMEi/aO/lI68WI0pRc37yYZn6ZYSOKKwZglFg9vZP3Zsj0GjidndL1YvxjQWlKrg4yZplfZtiI4o4BGCWUtdWFLXuqUDazWCyc37KnCqtvnRr+D0nXHbohOxNrl0+H09UBo07D4IvSnlwdZKwyv4pk2Ij6OAZglFC2NhdKpxX5HbC9qLQENocr9ESvBo6csmDjjs/97tCH9Ncz+KK0J1UHGcvMb9wzbESU2ABs3bp1uHjxIh599NFEDoMSSJuVGXTA9raKaqxdPj34wd6aFHs7NJkZYvDl/TneoVPa86nLGlpgwGMrrkZzizNop3BvxTXDJlVbpiTWtlGSSFgA9vHHH2PXrl2YNWtWooZAScDucEneadsdLuQZfSb7gJqU8tKSnt+hcwKmVBSuLiuGv8Nxy7DJvIe8/saYjb0nr8/aNkqEhARgFosF69evxx133IGjR48mYgiUJHKN0nfamZkZsDo6xOAosCbFLaBnd+icgClFKVqXFaYXX0/JvYfiYbnIUqB5MmvbKJkkJAD7zW9+g1WrVqGuri7qn83Li/5OqaDAFPXPUPR6cp3z3AJWLZ6C9S8dFAOi8tIS/HHrQbTYXVi1eAqmTxiM8183+gVbnx67gGVll+OZ3V+IP3fHTRNQNCQXmZnyBzycrbdJTsB/+sUsDB2g0F14DPB3WhnJdJ3PH2+QzPq2ujpRXNg/Lq9ZEOPnk3sPzS1tmFAc+tXcbgF1jXY0W9vQ35yNwfkGqNXRRW2JuIbJJpl+p9NduHhF8QBsx44dGDx4MKZPn46dO3dG/fNNTTa43ZHfhhUUmNDQ0BL161B0enOdS4aaPD29rE4cP3MJr/n09Fr/0kEM6jcDem2mX8bripKB2PnuV927JwVg+9vVGDnI1H0nK7HUeL7RLjkBn2+yIUuVGikw/k4rI9muc+BnAPBkffWajPiMMw5L9XLvob8pO/R7iFHmWvFrmGSS7Xc6nRUUmNDUZAsZhCl+FuTrr7+Ojz76CGVlZdiwYQP27t2Lhx9+WOlhUDLp6umVqVZha8UxMfgCfOq69JlYsWCS58ghAGo1UNfUiu3vVGP729XY/k416ppaYbG3e36wa8JevakSD27eJ54R2T9HJz6HFxu3Uirw1mV5f38Dz0iNKZnPT2/PWJV7D4PzDSF/Tm7p0Nrqisnrx+UaEoWheAbs2WefFf97586d+Ne//oU1a9YoPQxKlBB31aF2XlXVXMKLbx5F2cxiqNXAhOJ87HrvhGwNWKhaj3hu3yeKmzjVZUkJWSul1/Q8MybzHsItJcasLYaC15AoHPYBI+WEWUaQ23mlVqvE721/pxoA8P7BM1ixYFJQHzDvZBpqwuYETCkrxBmpsRT4+cnP1WH21EKcv9iGS60uPLXzEOqaWnu2FNiD9xDTthgKXUOicBIagN1000246aabEjkEUlDYHUgBd6f9TVq43QLONbWi7Npi7N1fKy5P1jW1op8pSzaQCjlhRzIBs1UF9WG+n5/8XB1unDEyqFmy9/xVJXYRxrvxLFEiMANGioloGcHnjMfAbJnvpK/VZHiOHZIJpHo1YbNVBfVxvp+f2VMLJZsll80sxvZ3PN9vbHHGNxji0iGlIcWL8Knv8t5V+/JmpaxtLtQ22GF1dIjZp8Bs2baKasyeWhhZ4awAjCvKwdrl03Hfv38Ta5dPx7ginwBKhaDX9H7v6/M2nK63wWTQiK/dk4JfopTlE/BcNtQseeM0ME+PhXNKMDhPj+OnL8WkSD/cmMzZGhTmG8SMOVEqYwaMFCOXlbLY2nG01gK3IECtUqF4iBkajVpy0r9sqFksBA45AauAqppL2LKnCtdMHoZTdVaMG9Efwws8Z0VKZbiyMtV4/MWDkhk3noNHKSNWy+ddAQ9UKsnl/AtNrdj9jxNYVnY53tp3Crves0W2FJnoo4iIkgR/80k5EssIGZlq7K+qx673jvs1Yr28OE9y0h/ULzuiu19rqwtb9lQFHfS9YsEkFA00StaizZ81SnaZha0qKCXEYflc6sbJe3PidHXimd1foGxmMb46fSn8TYoaOHLKErR5RrGjiIiSCJcgSVkBywiX7C5sDagv2VpRjQ630Kt+PRZbO66ZPCyodmXjjs9xUaYWzS0IQd+Dir2CKHXEql+WH58bp/v+/Zsom1ksZoa9r+H9nIS8SVEBpxtaxeDLd3x1jfaej48oRTEDRgnlcHZIH8bd6upV0W2uSQu1GpLP3XTJIZldU6v8C1i0mgxMHJWPGeMHsuCXUkLM+mUF8lmOXP/Sp5KfnXCbXKytLlSdapY9imiQWdfz8RGlIGbAKKHyZTrT53TdSfe06NacnYlxI/pLPvfFFgcWlZb4ZdfuumUiioeYgzJuQ/rpWPBLKSPURpdYkOokf+fNEzHj8oFhlzkttna4BUiOr78pOybjI0olKkEQUupPC8+CTE49vs4SNSuLSktQsa8Gt14/rnetHyTqTVYsmIQX3zwKV6cbs6cWAipArVJhxuUDYdRleoqDk3ybO3+nlZGS17m3NWCRFPB7HxPl58Tq6MC65/dL1mXOvGIYmppsPXnHFIWU/J1OUZGcBckAjGKiV9dZBTS1tOPAsXq43cDeA7Vir69eN3gM/GNh0KCqJrV7fPF3Whkpe517GCDFvf9d1/N7dyar1RB3Jhfkpei1TjEp+zudgiIJwFgDRsqTuMu2t3mK8X3FsnZFfA43GzpSmuvhUTthT6qIwbjGFeZg9a1T/T977t4/NVEqYgBGypK5yx4+0Bibs94iWULhWXBEQaIq4O9pr7Fwn72u5220OpGtzYRJr4FRm8HPKKUlBmCkqFB32T06OsjnD0H/HB1OX7Cl9PIiUaKEOj/V2uYTbOkzceJsC06cs/o1Ty4eYurd50zi5qy8tATDCoy9f26iJMQAjBQV6i476qXBgAm7vHSM2NDV+7xb9lThF4unwN7mivxOnQdxUx8kd1JFg8Xhd0LELxZfgfPNbUHNkwf2z4ZR2/M/KVI3Z1srqjF/1igU5OqiWwblZ5hSAAMwUlSou+xolwYDJ2y3IPg9b36uDqXTinD/0x9HnhHjQdzUV0gEKYE3QWq1Cvds/MgvKDpZ1xJ0o7O1ohqjC/v1KgCTuzlzC0J0taAKbCZgcEexwD5gpCipPkI97TIvNWH79hiaPbUwqBN+uK7gcekkTpRsuoKU1Zsq8eDmfVj95488h2nDv/des9UZ9BkLvNEBPJ8Th7OjV0OS62GmVqm6a0FVgLXNhdoGO6yODsnDv6P6DHufr9GOJls7zjW3yj6v9/GS1y2eh5BT2mIGjJQlcR5kT3chBmbT9u6vRXlpiXi0kVwn/FB303HrJE6URCLd8SiVsVbLHM6db9b2akxSS6DeGjCzQQNbWwe+rmvBk3875J/ZKsqB1d6dkbLYI/wMS/QJlOxB6JPxMmRrsGVPVfx2ilKfwgCMlNebXYgB6f9fLpki1qdoMtQYXZiLX98+DY72DuTos7DrvRNBfygMOo3njlXidUMukRKliUhvNKSCouIh5sg2zIRaqlMBNkcHrG0dnuPI3IA2o/vmrNHqhE6bCXN2JozZmaiquYTT9bagpc8N2z/DmtuuxMPPfSKOZc1tV4b/DMucS7mtohplM4u7gyq9RrJRdOBZmEHBHZcpKQIMwCh1qD2TZtWpZrgF4INPz+DW68fhsRVXw9rajost7Xho879gMmgw58oiFA81Y8WCSUF3uH946aBsl325QmT2CqN0EvGNhlzGGgidxQ5VhwXgxLkWnGmwidlq33/3uzkDYLV7snVl1xZLBo2+50s6XZ14auehoM+9b5mDt82FVSZTBpXnf89fbIOrUwjKFHqDtO3vVPtft66gy9bmwkVbe9Drs46UAjEAo9Sgkl4u2LKnCqtvnQqjToOH/voJTAYNbpwxUqz9Gpynx29un4bDJxrhdkO8c5VdNhAk7sJ7UJ9GlMyiutGQyViHymKHWuIEgBPnrJLZLKnPpG+2TipodAc0cq1rakU/U5Zk0Bi4a1rq+dB1XuXXZ604VWeVDNLU6u7Hr1w42e+EjbKZxdj9jxMRvTfq2xiAUUqwtrpklwss9nZAAEwGDX783fHYsK174q9rasXhE43hu+wHLBkEbr3nHSyllRjWYkoJtcQJQb6QX6rW0put27u/FotKS4LOkXz9o6+x8DslYiH8B5+egVHnCQ7Neg2srS7U1tuD6rfe/qTGr2bUtwZsydwx+PuHX2P2Nwslg7SpYwZgbFE/8bp5s3S+GbRI3hv1bQzAKCXITehqNTzb5TPUmDdjJE5faJHYtSV95+y7s0qqAaTJoIHT0sk7WEpPcTwRIuQSp0olW8gvVWvpm617vfIk5s8aheEDjRiap4fZqEFH5wg8tfOw+Nm946YJMBs8wWSo+q1GiwOVh8/hvqXfRIu9HZkZGbhw0Y5rpwyHLsuzG1Mq6Fu5cDLyTFnIM2aJ1y1wfpJ6b5mZGbA6OlKzHow1bXHBAIxSgtyEPm5Ef/Eud2tFNcquLQ563AefnsGyssux892v/A4BNhs859DJNYD0rfPgHSxR5HyDJm9N5vCBRkClglmfieIh5qDsU6glULlsndXmEoMvwFsDdlhc6gxXvzV17CAcq7H4LYcCnrnF+7iKfTV4YNlVaHd1yGYKfecnqaCtvLQEf9x6EC12V+pl09kbMW4YgFFKkKpZWbFgEoYX6AF39x2o1OR33bQi7PviHObPGoXNrx4JmkTksmu+vX24E5IoCl1B02MrrpZtHTGwfzZGF/aDw9mBIQVG6DIg/wddJlsXbqkzXP3W8IFG1JwPzpo7XZ3I0qhRXjoGA/vroclUYVCuwfO6EmP0nZ8aLQ5U7KvBmtuuhKvDjeNnLuE1n12TPTqdI4Hifkh7H8YAjFKD3F1wVwGu9w600eLA65UnUTazGGo1MP6yPPxp26eYPbVQDL6A7klk7fLp0GgyJLNrapVK/G/uhCSKkgC43YIYfAHBf7y9nfMLCkxoaGiJ+iXCLXWGq9+CSoXTF2ySjxs52IzfbzkQWdZHZn6qrbdja8Ux8WE9Op0jwdgbMX7YCZ9Sh+DfpRvo7ooNAL9cMkUMwnb/4wSGDzBBl5WBFrtLtjD2wLF6rN96EOWlJX7d+VcsmIRxI3Lxuztm4LEVVyf1BEmUrEJmqGIg1Mkacv+WZ8oS5xBzdvdyqO/jfr5gEp559YugwDHkiRiB85MQ3N1/3oyRaHe5UXZtMRbO8dSZJvtJG3InFHBFoPeYAaPUJFOX8PjKb+GS3QWHswNaTQb++uoXWFRagnaXW3YLe6PFgde6intHD89BZoYaT+08hLqm1qD+RZGMi8WqRB6BGar8XB3mXFmEjk6h5wXp3s+YvR0GnQb9zVlYu3w67A5XUI1W2J2eAlA8xOS3HJpv1sLW5kJdU6vfy/Yk6xNYC2fUa7B1d3cZhHdTQDJnk9gbMX5UgiCk1CVsarLB7Y58yD1NbVN0lL7O1jYXVm+q9AuoBufpsWTuWL9eYUvnjUOnW4AxOwtmgwbP7P5CDKwCO1oDwNo7ZuChzfuCArWw9Q5dfxTONrXi9AUb3v6kJm4Ft/ydVgavcwz43CiZDBrMmzFSsvlqQb7MtQ68odFniv22AltHyDVXjna8NkcHbI5OHDreALfg2QnZaHFgcJ6+Z7Vb3gatzk7JuWX+rFG46hsDFAnAevw77RP0xrplSboqKDChqcmGvDyj7GOYAaOUJLW0cc3kYX69wkwGDZztnX4T/h03TYDF5sTAfgY8/8aXfsGXVpPhORYl2noHiWycN7hjsSr1aT61UYEBiG89WIHUz0p8rlYsmIQX3zwqubMxqs+aqrsjfrY2Eya9BkZdBk6c9XTof2tfjbhjelnZBLz7SQ2umjDEr3ZrxYJJ6GfMglGfBbM+0+88Sr/grGtpUm45dvhAY/IHNHFsWdKXMQCjlCR5SHDA4duzpxaKwRfQvUX9wZ9eBbdbwK03jAvKVuXn6KI+C1Jql5DvdvdkXl4girswAYhcPZjN0YHT9TaUXVsMwJOJ2rjjc782Et7n8NZ4ep8rZAmATN+/0YW5OHHOivcPnkbptCK/ndT3Lb0Sj/73J36fce9Ydv/jBO64aQK2v10NV6dbbLkxNN/Q/foqwJCtkZxbhubpe74My1KHlMYAjFJSYF3C4Dw9JhTn+x++LVN4f6GpFU/u7N4Wf+fNE3HZYBOM2ZmwtXXgrlsmYtPLh/wm5waLQ/YuNVQbCxarEnlEddC9Cvi6rkXsz+WbVVYHbB3zPT5IpVKJpQlyOwzl+v7dvWgy3IKAayYPE4Mv778fq2mW/Yx7b+zKS0sgAEFNW8cV5aCq5hK27KmSbOoadfaLfbnSBndBUmryWdpYu/yqrtqvz7DIZzeTt9u2L60mA+ebWwOyVcfgdLlRVXsJlV9cQGubC/NnjcLCOSUom1mM1ypP4vEXD8ruVJLbJTRikBm/XDKFZ0kSIfSOxUDWVldQ+4ptFdWYc2URxo3o7/cci0pL8MFnZ7BiwSQ8tTO45UXg51buhqmtvRNqlSookw50n6bhyxv4eX9+QH99UOC2YftnaLK2Y8P2z1DX1Cq2yCkvLcHa5dN7FDTJ9eWKyU5KVffOcqujw68XIsUeM2CUugTArNfA1SngbEMzrrliGD4+fE7sATZ1bAGytZlizYhWk4Hbvz/eb/lCqi/P7d8fjwNHz+OKkoGACpj9zULs3V8ru5QotUtoUWkJnn/jS9x6/TglrwhR8ori/MlQ9VLDC/Ticxh0GjhdHZgyemrEOxflMnGXbE6MHGyS7B/2waeeAM93g483Iwd4NgBlZ2X6LZc2WhxwujrRZHWIz9VocYjzz9iift3HGUmRWWaMWV+ugDo4s1GD2jobM2sKYgBGqStE8XujxYGRQ3Lgdrvxn4uvgOAWYDJk4euzlzx9wbrMnloYdNe6+dUjWLV4Cta/1H0Yd3lpCfqbtNLj6PrDsnb5dBw4Vg+3G+IYWIRP5CPCYm65IGlonufkC7/ngPdM18jOl5S6YSovLcGwAiOKh5pgd3YGlSHcev04jCvqDh5VKhWe2nlI3B254DslWPf8/qB5qMXuQp65u640P1eH2VMLoVYDBp3Gk2GSugYhlhmjWsqVI/H8qxZPYcd7hTEAo5QVqvh99z9OQKvJ8NsBuWTuGJj0Gvz0B5fjL698AZNBg0F5esm7yVN1l4JqRK4YnS8/GAGwt3nOowx8LhbhE0WnJ72npOpC77hpoqcwX6XqLlT3ycRdam2HJjMTbU5PoAQBMGgyMGFEP8lTN8TATwWsvnWqmIXzZtCB7nlo/qxRGD7ACJ3WE+C9ta/Gr7h/13snZDNMIY//0Wt63ZdL6vl95zwvzl/xxQCMUpZcKl6tBlYsmISnd/nXg7z45jEsnDMaJcNzsWTuGGRrM1F/sU22QWvg84abiGJyZ0pEniCpyJNVbrI6kGfWIc+cJR49Jvsz3pYXDhcutrTj4ec+CV5OQ1dfrjYXrHYXNu7YH/yYcJk6n3+vbbBLzkOjhuXgskFG1Nbb8VrlSfz4u+OxYVtkGabAuc2bOTt/sQ1QqfyycT3pyyU1d3rr3Dh/KYdF+JSy5Irfp44ZgH7GLMl6EKfLjfqLDtjbOrD51SN4+5Mav8J9rSYD/7l4MnTaDCycU4KFc0qQn6uLaCKKpsiYiEJQAVU1l3D/0x/j0f/Zj/uf/hhVNZfCF4V3BUZGncavJ6BvoXpV7SWs3lSJQyeaZR8TDbl5KN+sFY8jarG7ZA/9lmrD4fuc+bk63DhjJHb/4wQe/Z/9WP3nj1BVcwlmvf+xR70d8wefnsGysss5fymIGTBKWWZ9Ju64aQKe2nlYvIO946YJyDNnwdqqljwCpSA3G0a9Bg2WroDM0inuTIIKuGJMARotbX5bxctLS6DLykBmlhpNtnbPHXmODnmmgDvyKIqMiUheyCW4CJbD5LLjjVZn9/PKtKnpzXFDUkuC3n8/XS996LfUjZ33Z7bsqerqV9iCsmuLxeL+3tZmSY35umlFKMjRcf5SEAMwSllWuwvb364WgycIwPa3qzFy0FS/OonAI1AG5+nxsx9MECdD784krSYDV44dgI3b/e+Kt1ZUY1nZeFTXXsLTAcHepOL+QUEYO0YT9U7UO/0CdgzKlQPotJlB3+v1klu4G6+ufx8+wIBBeXqxvYZs7VbXe8kxarD4urHismXgJqOwgaLULkqJMTdandBpM2HOzoRRlynOYd7HUfwwAKOUZbG1o66p1a+tBABxYhpXmIO1d0yHrc2FR/97vzjR1jW1Yvvbx/DzBZPwZ59t5SsXTobd4ZKc+PNysrHuf/b7BWZP7TyMtcunh95KTkRRi7Zpa+COvl8umSKblfI+7979tbFpjApEVDNm1GZi4kif4n5jFjrdQPVZa3dGXeh+L97NRHKbjEIGijK7KPP6+5xLGDhmqXFTXDEAo5QVdpIWAKfLjVqJ2ouqGgt+eH1W0F2rta1D8jnbXZ2SgVmT1cEAjCjGotkFKbVc+fiLB/HYiquDs1KA+LyNFgcq9tXg/h//G5yuTk8WqKf1TpEeDeQNegwaVNVacPqCHW5BwKm6FgwfaMDQfEPYJVK1GmEDRbkl3OJhuchSRTFeiisGYJSyIpmkHc4OjBhslgyqMjMzgu5apZ5zxYJJyJM5IzLPrFPyLRP1DTFo2trc4uwuUu96TsD/efubtDhdb+9d89EeHA100eZCfXOb31FL5aUlXY1lQy+RTh0zQMyWyZG/Jm0YlKPjUUZJgrsgKXV1TdKPrbgaa++YgXtunYqhBQa/h+Tn6NDS2h6003FRaQnsbRK7nXwm/geXTcO6u2ZgfFEu8kxZuOOmCX7P4S34J6I46MoWhdvpJ7cLUXaJzud53W4h8mN9ZI7p6cnRQHaHS6xJ9f7M1opqaDQZ4nvxLpH6zjl33jwReTme9xXqyCC5a9LflB3fo4woKsyAUcoLdQdrzs5EP5MOL+w56lesX7GvBr9YPEX6CaXqOQRgUnH/8H2JmNonUlRPmrZ6RVzsHyLLFfY5JOYEp0xJQ5ujI2iJ9N4ffdPTJLXdjW0Vx5ChHgudJgOPv3hQNoMl15S26VIbBEFA4SCjeNQa0HV0ktUZXNTP+SyuGIBRSotku7pBl4EfXj8WZ+rtePuTGrTYXd3Zq1CNHQO5gTxjVnfNl0TwxdQ+kcJ60f4l0mL/UPNMyOeQmROGDjBI/kx+jhbmbA3W3TUD5y+2odMt4Jndh/16Gm7c8TnmzxoVukVHiKa0g/P0uPnbo/GX3V/4L38G1r9xPos7LkFSSrPYpe8+m1qcONfciiM1Fqz+cyUef+Egdr13HD+6YRx+tfSbGDnYHPNJhKl9ogSJcLkyUKTNk0NnueSfQ25OUAPSP+OTgTLps3D6QotkQ2m3IAR9z3Pkks/SZFsHzPrgprTXTB4mBl/en91aUY1Mtf86Juez+GMGjFKaQaeRvJN0trtxrMYStI1708uHsHLRZBytsaB4iBnFQ0wxC8Si7l1ERIkVYfYsZJZL7jkA2JydKLu2GADEJqreDQJyP+PNOpkMGvy0bILk66pVKvF4IqgAtUqF/iYtqmovYcueKlwzeRjUamDciP4QBMF/XpLZXWlvcyHPJ/MX1XzGpcoeYQBGKc3Z3hHUy2dRaQkuXLTLTjQ151uw+/0TWFZ2OU432pFj0EKtAqz2dmizMmF3uJBrjGASCZh0+svslORZakRJLILmyWHrzCR6agUu33mbqLbYXWLgFvi61rburJPT0omX91ZjWdnleMZnuXDlwskw6DKh1ajFQn6tJgOD8vRwtnfg+ukj8OKbx8Tv/2rpldI3qWHmqYh7sXGpssdUgiCk1CVqarLB7Y58yAUFJjQ0tMRxRAQk7jpbHR1Y9/x+XDN5mFhg/8FnZ8Svd79/ImgCKZtZLHa+9zY1vG3eOLR3uP0mrpCTiMykk5WpFotjvYWvgiBEFtBFiL/TyuB1Vk5KXGvvDVcEdWbWNhdWb6oMmnvmzxqF4QOMsvNKbYMdD27e5/e9/Fwd/rN8Cjo6Orv7FbZKP//di67An7Z96vf9wXl6LJk7VlyGHJynx8I5JX5HuPnNdT7vU6VS4amdh1DX1Co7J8q9194clZQOCgpMaGqyIS/PKPsYZsAopZmzM3Hr9eP8AqHy0hK8VnkSACSzY693/Ztvs8NLdpfYk8f7b6HOWwtVlCtV+Mq7QqIUF8UxY3K1qaOG5eCywUZY7dLLdVJZpxa7C0ZtBsy5OvF15ZYH29o7gr5f19SKfiZP0+lWVyf0mgyYDRrpZVeJG8s7b56IQXl66LMyxKOK/N4rSy96jAEYpTaJ+osGiwMtds+RQhX7avCb26eh4WIbzje3iueoAZ67NO9k4g6sk0DoSSTUpFOY7+lF9tBfP4k4oCOiNKECVCqV9C5HsxZVNfLLdVJLnb9c4mmXU9tgFwM22bMuszIkv2/UeQLH4sL+nkyjWzqYlLqxfPJvh/wzdwGiOjaK/HAXJKW+gB1QxUNMYiPV1bdOxeD+Ohh0mcjWZqLF7tnB482G7T1QC8BTxBpNM8dwzR/lArSzTa1BTROJKH1YW114auehoCaqKxZMglqtCr2zMKAR9GMrrkZ7hxurN1Xiwc37sPrPH6Gq9hLM+uCdl4tKS/DK+8dRHvC6Yq2aCjhbb5Nt3grIz1tuQZDdAWnWZ2LFgklhd5JSMGbAKP0ELhW4geIhJgzsn43iYdPgbO9AZoYaT+08hEaLA1pNBnIMGiyZOyaoBkyuzkO2KNeggdXuEjtaB94Vnr5gw9A8PbNgRGnKYmtHXZMn2+7b/LmfKQvNVmf4TLvP/OVblO99rDeT7g3Uzja14vQFm1jgv3C2MeTuylAlEXLZLM+5ujINamsu4cU3PY2uvTsvhxfoo+ux2EcxAKO+QQCM2kwYtV2/8ipg9a1TxUlKrVbB2tqOtcune3ZBBhbZSmyzDtpGbtCIywsmgwbLysbjmd1HxAnv9u+Ph93hgs3hYgBGlMpCtF3wBjGNFge2v1MNwBPEfGviIDhdbpSXlsAtdLelCJVpD1dfZc7WwDw8B0Pz9BhblOs3b3mL9Wvr7TBka8I2rAakbyy9dbPhGtT6vleWWkSGARilP5nJMnDbuDc4Ezvd+wRfcnePvs9htftvIbe1ubCotAT9TDpcaG7F9neq0WJ3YcWCSRjSX89ifKJUFKbtglwdV+CRaYtKS1Cxrwa3Xj9ONtMeUX2V1OaAgDGWl5ZEVuPqswQamFmTWhFgAX7vMACj9BaDHjWBhakmgwan623QZmUgP0cnBnSBk9FrH53Esu9PwPqXDvp9f+OOz3mHSJSiwh5/JrExCIBfqwanqxPbKqqxdvl05JmyZOcitQooLy3x6/dVXloCtTp0IWngGN1CZL2/AHQHdDKZNV8swO8dFuFTWovFcRq+gVV+rg43zhiJXe8dx9pn/yUWxUIVXJjfaHHgbEOL7B0iEaWeUFkfUcDGILmfsTtcIW8Em61OvNZVS7ZwTgnKZhbjtcqTaG5xRjXGvftrgzYFhC2Uj+B4p0iPciJpzIBRWotFitz3Lm/21EKxr5j3ucS7X70maOlh1LBc3iESpZGeZH16minKNWnRYneJ9VXR/Fzg6wHAykWToVIBDRfbMHyAofdlEF3ZvsdWXA1rWwcczg7k5+h6+aRxkKRHJTEDRmktZLsI34NrpbZld/27rbW9e5u1zPFGFnt70BbydXfNwPACPe8QidJIT7I+Pc0UxeLn8nN1mDdjJLZVVOOxLQfwp62fodMtwNoauyz86Xo7Htq8L2hVICl0laEEtvJIhvHxKCKKiaS9znI1YEU50g0Ri3I8XaoDjuHwHiuUmaHG/928L7pjN6I4wiQSSXut0wyvs3JS7lr35DPd03mglz/X4ujA2r/+K2jOWrt8eveGo15I9qOIEjU+HkVEfVvXBGTIzsTa5dPhdHV4OkLrNX47FoHuwvqMDBVO1bXg7U9q0GJ3iVuw65pa8fBzn+CxFVeHPpRXShRHmMi9B7/UORElVk8+0z2dB3r5c3LHItkdrpgEYMm+EzKZx8fZnNJPV9Di3UbtDaZWLpwstn+QKqyXOjNyW0U1Vi6ajJrzLdi7vxbNLU6MK8rB2uXT0WR1IM+sQ545Kz5NB2Wyd3n95e+oiIh85Rp7uFMxwrqpZN8JmczjYw0YpRef9f7HthzArveO48YZI2EyaPx2P/rWhkkV1m+rqMbsqYVwujpRc74Fu98/gXkzRiIvR4eqmku4/+mP8ej/7Mf9T3+Mqpr41BPI7eCsa7TH/sWIKC31qI4sirqpZN8JKTc+tVoV8lgmJTADRmlFKmjZVlGNspnF2P5OtU8H6e5miXKF9VD5H8OxtaIal1+WJxkUhevn0xNyqfPmljYMMifhTiMiSj4+m4NaXZ3QazJCl0yogKaWdpyub0HZtcVix36pzvmBzx+rOteYkhhfg8WBezZ+1OPekLHCAIzSilzQ4g2mxLSzz4fS7uzE7vdPBKWo1SqVuBTpfZ4mqwNOVyfyc3WYPbVQvHP68lQT8nP0Mf0Qy6XO+5uykTyzGxElTKTtFbrqwYoL+3s2O4QIvgLLHrxzYKPFIV831Zs6VyUEnK/5+IsHg26iE7FpgEuQlFbk2k6oVargtHjXh3JwP11QivrOmyciW5shTjze7+eZdRicp8eNM0Zi9z9OYPvb1dj9/glkazXYsqcqqgav4cilzgfnG2L2GkSUouLQXkFuBWH21MKkqZvqrYga6SqEGTBKK1LnsN1580RcNtgEo06++d7wAQb8+vZpcLR3IN+kFQ/WbrF7AiqxAN6chTtumoiHn/vEb5La/OoRlM0sju3OGpnUfrhjSIgohUWY1Qp7JFIPyAUnajXC7/ZOEclUlJ+QAGzjxo144403AADXXnst7r333kQMg9JRqHoEqYlDZqehWZ8j/TxuQBAE2Ukq5h/iZE/tE1HsRHF2bTzaK8gFJ1PHDIh5jWuiSN2kJyq4VHwJsrKyEh9++CF27dqFV155BUeOHEFFRYXSw6B0FsEZZl4hz4qUeR7vtm7A08Ji4XdKUF5aggnF+TAbepj9CteVn4jSXjRn14Y85aOH5Moe0iX4AiB5YkkiCvCBBGTACgoKcN999yEry/NLUlxcjHPnzik9DCIAPbuL9E5SW/ZUoXRakdjCYtd7J7By4WQMH2BAs9UZ+ZljUdz1ElH6imY+iksmJ9l3NMZKkqwsKB6AjR49WvzvU6dO4Y033sBLL70U8c+Hausvp6DAFPXPUPRS8Tq3CyrJlPugPCMKCoxwuwXUNdrRbG1Df3M2BucboFarkNffiEH5BqzZ9FHQ3er8WaOwteIYtJoMrFo8BdMnDA5Zt3W23iZ51/unX8zC0AHSv++peK1TEa+zcnitw89HgfL6G1E8LBfNLW3ob+qen0KJ5DoXRD90khAuXklYEf5XX32F5cuX495778WIESMi/jmeBZmcUvU6Z3UVlwbeRWapBTQ0toTMTLXYnJJ3q5kZKvG/1790EIP6hS6KPd9ol3ye8002ZKmEoKLckUNz0dRki/3FID+p+judinitPULORzLXJ0uFrr6AQth5gddZOUl7FuSBAwewcuVKrFmzBvPmzUvEEIg8QqTcrW3S9RiPrbgabreADreA8tIxePuTGr9WFcMGmJCfq0OjxRFRUWzIXTkSy5OrFk9ByVBT+i0LEPV1fWUJkAAkoAi/rq4OP//5z/H4448z+KLkIFNsL1WPYTJo8HVdC1ZvqsTaZ/+FXe8dx7wZI5GfqxObFv73a0c8TVoRWVFsqKM8pIpy1790MKb9xogoiUSxiYhSm+IZsM2bN8PpdOLRRx8Vv1deXo7FixcrPRSikHwzU97O9yMGm/D8G1Uom1ks7lR8a18Nfvzd8aipa+lu3KpC5EWxIe5647HVnIiIEk/xAOz+++/H/fffr/TLEkVNardj+XUlfjsfvVmv+out2P5ONQBP4DVxVD5mjB8Y9fJBR6cAu7MT6gw1jNqMpGoaSEREscOjiIjkdGWmfrF4ihhwDeinF/8b6D6qY2A/z/FA3qzXkH66yJcPfI4UWfvsv/B/N+/DgaP1OHGuBWZ98PLkqsVT/I9UIiKilMOjiIhCEQB7m0sMuOpkdixqs9R4cNm0HhXNStV5ba2oxvxZo1CQqwtanhw5rB93QRIRpTgGYJT+IjxbTY7vMmB7h1tySTDPpI2+qV/XuM5fbJMM6tyCINZ6+TYN5FmQRESpj0uQlN58lvce3LwPq//8EapqL0V11I/vLsW9+2tRXloiuWOxp+P6+pxV8kgRtUrFWi8iUg6PRFMUM2CU1uTOVlt3V+jmqH4Cdin2N2lxxej8XvXp8R3X3v21WDJ3DF5885hY2F9eWoJhBUb2ACIiZfBINMUxAKO0FrM2DoFnhwG9OkfMd1yNFgf+/uHXWDhnNIYNMMGQrYE5OxNGXXRLpUREPRWTm1WKCpcgKa1567d8JUMbh8BxNVoc2P72VxiYq8OQXB2MWgZfRKScUDerFB8MwCitheoyz3EREXkk681qOuMSJKW3ZD1bLVnHRUR9kvemMLAGjPNS/DAAo/QXWL+VLJOJRF2Zta3n7TKIiHqMN4WKYwBGlAy4A4mIEi1Zb1bTFGvAiJKA3A4ka6srwSMjIqJ4YABGlAS4A4mIqG9hAEaUBLgDiYiob2EARpQE2JaCiKhvYRE+UTLgDiQioj6FARiRl8pTDJ+wNhDcgURE1GcwACMC2AaCiIgUxRowIrANBBERKYsBGBHYBoKIiJTFAIwIbANBRETKYgBGBLaBICIiZbEInwhgGwgiIlIUAzAiL7aBICIihXAJkoiIiEhhDMCIiIiIFMYAjIiIiEhhDMCIiIiIFMYAjIiIiEhhDMCIiIiIFMYAjIiIiEhhDMCIiIiIFMYAjIiIiEhhDMCIiIiIFMYAjIiIiEhhDMCIiIiIFMYAjIiIiEhhDMCIiIiIFMYAjIiIiEhhDMCIvFSAtc2F2gY7rI4OQJXoARERUbrKTPQAiJKCCqiqvYQN2z+D09UJrSYDKxdOxrjCHEBI9OCIiCjdMANGBMDa6hKDLwBwujqxYftnsLa6EjwyIiJKRwzAiABYbO1i8OXldHXCYm9P0IiIiCidMQAjApBr0kKryfD7nlaTgVxDVoJGRERE6YwBGBEAc3YmVi6cLAZh3hows16T4JEREVE6YhE+EQAIwLjCHKy7awYs9nbkGrI8wRcL8ImIKA4YgBF5CYA5WwNztkb8moiIKB64BElERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApLSAD297//HTfeeCOuu+46vPDCC4kYAhEREVHCZCr9ghcuXMD69euxc+dOZGVloby8HNOmTcOoUaOUHgoRERFRQiieAausrMRVV12F3Nxc6PV6zJ07F3v27FF6GEREREQJo3gGrL6+HgUFBeLXAwYMwKFDhyL++bw8Y9SvWVBgivpnKHq8zsrhtVYGr7NyeK2VweusnHDxiuIBmNvthkqlEr8WBMHv63Cammxwu4WIH19QYEJDQ0tUY6To8Torh9daGbzOyuG1Vgavs3IKCkxoarKFDMIUX4IcNGgQGhoaxK8bGhowYMAApYdBRERElDCKB2AzZszAxx9/jObmZrS1teGtt97CzJkzlR4GERERUcIovgQ5cOBArFq1Cv/+7/8Ol8uFW265BRMnTlR6GEREREQJo3gABgDf+9738L3vfS8RL01ERKlKBVhbXbDY2pFr0sKcnQlEXhJMlFQSEoARERFFRQVU1V7Chu2fwenqhFaTgZULJ2NcYQ6DMEpJYWvA/uM//gOVlZVKjIWIiEiStdUlBl8A4HR1YsP2z2BtdSV4ZEQ9EzYAKy0txaZNmzB37lxs3rwZFotFgWERERF1s9jaxeDLy+nqhMXenqAREfVO2ADs+9//PrZs2YJNmzahqakJt9xyC+65556omqcSERH1Rq5JC60mw+97Wk0Gcg1ZCRoRUe9E1IbC7XajpqYGp06dQmdnJ/Ly8vDggw9iw4YN8R4fERERzNmZWLlwshiEeWvAzHpNgkdG1DNhi/C9B2cPHz4cS5YswZ/+9CdoNBq0trbi29/+NlauXKnEOImIqC8TgHGFOVh31wxY7O3INWR5gi8W4FOKChuANTc34y9/+QvGjh3r9329Xo//9//+X9wGRkRE5EcAzNkamLM14tdEqSpsAPbQQw/J/tu3vvWtmA6GiIiIqC9Q/CgiIiIior6OARgRERGRwhiAERERESmMARgRERGRwhiAERERESmMARgRERGRwhiAERERESmMARgRERGRwhiAERERESmMARgRERGRwhiAERERESmMARgREaUfFWBtc6G2wQ6rowNQJXpARP7CHsZNRESUUlRAVe0lbNj+GZyuTmg1GVi5cDLGFeYAQqIHR+TBDBgREaUVa6tLDL4AwOnqxIbtn8Ha6krwyIi6MQAjIqK0YrG1i8GXl9PVCYu9PUEjIgrGAIyIiNJKrkkLrSbD73taTQZyDVkJGhFRMAZgRESUVszZmVi5cLIYhHlrwMx6TYJHRtSNRfhERJReBGBcYQ7W3TUDFns7cg1ZnuCLBfiURBiAERFR+hEAc7YG5myN+DVRMuESJBEREZHCGIAREVHfxGatlEBcgiQior6HzVopwZgBo268GySidCQxt8k1az130cH5jxTBDBh58G6QiNKRzNxmyM6UbNZ66Hgjdr9/gvMfxR0zYASAR3cQUXqSm9sMOo1ks1YInP9IGQzACACP7iCi9CQ3tzldHUHNWheVlmDvgVrxMZz/KJ64BEkAuo/u8J2ovEd3WNtcsNjakWvSwpydyZQ8EaUMubnNqNNgSH891t01A40tThw/fQmvV55Eo8UhPoZHF1E8MQNGAOSP7miwOLB6UyUe3LwPq//8EapqL7E4lYhSRshjibqatV420IjhA4xosbuCH0MUJypBEFIqn9HUZIPbHfmQCwpMaGhoieOI0kjXziDv0R1qtQr3bPwo6M5x3V0zurtLd+F1Vg6vtTJ4nZUT92sdMLdJHksUyWNSHH+nlVNQYEJTkw15eUbZx3AJkroFHN1R22CXrQsLDMCIiJJWJMcS8egiUhiXIH2xD5Yfb+2EL9ZFEBER9R4zYF5K9cHyprlToKjdWzsReE3SMTVPRESkJAZgXeR6xUjVO/VYqjU7FYBxhTlYd9eMtK6LICIiUhqXILso0QcrJZuddtVFFOYbPIEogy8iIqJeYwDWRYl6px4FefGqS2O9GxERUcJwCbKLEvVOoZqdSorXkmWqLYUSERGlGWbAvHzqnR5cNg3r7poR84AkZENACfFaskzJpVAiIqI0wgyYr3j3gYmyqD3UkmVvNgbE43ndboFHFhEREUWIAZjSogjyol6y9BWi3UWvnlfmtT4+XIf1Lx3kkiYRJbcUagVE6Y1LkEks2iVLUVeNl9wZjj1+XhnWVpcYfAFc0iSiJNU1N67bcgBfnrqIfx45j9ONrfxLSAnBDFgy62EfrrA9zWLc3yteS6VERLFkbXVhy54qlE4rwraKajFjv2LBJIwfkQurnZkxUg4DsGTXg7q0iAKiSJ43wlR9zJc0iYjiwGJrxzWTh4nBF+CZGzfu+BxrbrsSDz/3CcsoSDFMvKahmPQ0C7OM6cucnYlVi6fEbEmTiCgeck1aqNWQvEGtOtXMMgpSFDNgaSgWPc2iOppJAKZPGIxB/XhkERElL3N2JsaN6C+ZsXe7/R/LMgqKNwZg6SgGNV7R1nWp1ar4tvAgIuotARheoMeKBZOwccfnfjVgL7551O+hLKOgeGMAlq6karyi2H7Nui4iSktuYHxRrv8NqkGDW68fF9eTUIgCMQDrK6I8fkiJo5mIiBLC9wZVBVjtLuQYNFi7fDrsDhfLKEgRDMD6iKhquoCYt6ogIko6MjemhQUGznUUd9wF2UeEqumS1XWXWJhvEPuHRUQFWNtcqG2ww+rokNw5SUSUaDwXlxKJGbA+QrGariiXOr0/w6NBiEhpbCJNicQMWB8R6+OHAPhlus7W28RAKqo7yij6jRERxYwKMGRret8zkaiHmAHrK2Jd0yWT6TJkZ0Z1Rxl1bRoRUW91zV9b9lRhUWmJ37FE3GxESmEA1pf04FgjOXKB09rl06Na6uQSABHFXUCZg1oFcf56vfIkymYWQ60Gpo4ZgDxTFoMvUgQDMOoRucDJ6eqIqn0F+40RUVxJZOvvvHkiTAYNnJZONFoc2P5ONQBgbFE/5Bk595AyGIBRj8gFTkadBkP66yNe6mS/MSKKJ6ls/ZN/O4T5s0Zha8Ux8XG88SOlMQCjHgkXOEW81Ml+Y0QUR3LZ+uEDjeJNpOyNH3doUxwxAKMeGz7AgF/fPg2O9g4MyTdCl4GeTV4xrE0jIvIll60fmufJ1NscLmg1mbA7XLC2dXTPUz1pqUMUBQZgFD2JiWnV4ikoGWoK+RhOXkSktJDZegBnG1uxYfsnQfMUd2hTvCneB+zAgQO45ZZbUFZWhqVLl+Ls2bNKD4F6SWpiWv/SQb9eX2H7gbFbPhEpwafM4cFl07DurhnijWCoeepsU2v0p4cQRUHxDNg999yDTZs2YezYsXj55Zexdu1aPPnkk0oPg3ohktYRIR+j1zA7RkTKkSpzUAE2ZyfKri0GAOzdX4tGiwNOVycarE4YszVYuXAyLDYHXq88hUaLg4X6FFOKBmDt7e24++67MXbsWADAmDFjsGXLFiWHQDEQSeuIUI/pUWqfxbBEFCsSJRK3f3887A5Phl6vy8Th441wC8AHn57B9751GfZ8fAqLSsdwkxDFjEoQhIT8Krndbtx5552YMGECVqxYkYghUBTcbgF1jXY0W9uQl5ONk+esWP/SQb8asOkTBkOtVomP//hwneRjjnzdiDVPVga9xsN3zcCE4gLJ15Z7Lu/rERFF6my9DXf/4b2gG8SymcXY/Y8TKC8twWuVJ9Fid2FRaQkq9tXgRzd8A8XDcjCkwJjAkVM6iVsG7I033sAjjzzi973LLrsMzz33HNrb23Hfffeho6MDy5cvj+p5m5pscLsjjxkLCkxoaGiJ6jUogMTd4i+XTPFrHVE0JBcnz1z0y1CVDDUFtZdoarJBr82UzI7pNRmS/19Z21xi8AV015wN6tc3i2H5O60MXmflKH2tzzfaJUskoPL879aKapTNLMbeA7Vod7lxy+wSGLIzoVELKf07wd9p5RQUmNDUZENennzAHrcA7IYbbsANN9wQ9H273Y4777wTubm5ePLJJ6HR9L0/oKlGasnw8RcPYt1dM1CYbwBUwL4j5/0yVN6aLqn2EmZ9JtbcdiWqTjWLKf5brx8nm9rncUVEFEtyJRLe+cfp6kS2LgM3zhgZdE4ka1UpVhTfBXnPPfegqKgIf/zjH5GVxWLGVBAqAAI8AVpghspvx6MvFVBVcwkPP/cJtlZUY/f7J7Bk7liMK5Kf1LyTpa+kLIblzk6ilOBtTeGdV7SaDCwqLcHeA7Xi1wP66cXgCwgzrxH1gKJF+F9++SXeeecdjBo1CvPnzwcADBgwAH/5y1+UHAZFKVzRfTQZKqls2sYdn4cswE+J44rY94wodXS1pvj17dNw9FQzhg0w4b9fOyLudCwvLUGdzDIlM+8UK4oGYN/4xjdw7Nix8A+kpGLOzsQvl0zBiXNWuAUBapUKxUPMYgAUzYHaPVpOTIHjiti0kSjFCIBRl4kd73wFk0GDH393PM432VE0yIyzDTYMzNNLzmsqlcqT3U6i+YdSk+JLkJSa2jvc2PXecWx/uxq73juO9g63+G/m7EysWjzFL53v22lapAIM2RqUl5Zg4ZwS5OfqxMeHXU7s6uNTmG/wBDRJNvmFW6YlouTjrUedc2UhVCpArVLhsS0H8Oz/fom//v0IFpWWBC1TPrXzEJchKSZ4FBGFFTa7IwDTJwzGoH4hMlQSS3Te7d3XTStK+XYS0WQBiSgJdNWj+s5Jy8rGo3CQEVeUDARUgEoFLJwzGrkmHXRZGXj2fz3LlFyGpFhgBozCiiS7o1arQmaopIK4bRXVuPWGcXit8iSaW5yRDSYWhe5xKJaXKuqVzAISUVKQmpN2vnsc100bgd3/OIHtb1dj61vVUKtUsLW2o6auhd3wKaaYAaOwYpHdkQvias63QJOhhkGnQW2DHbkmLdQqoNnqDO54L5FFW7FgEvoZs2DUZ0XWHT9exfIpUKdGRN2k5qRrJg/DM7u/8AvKtlZU454fTsVTrxxKzg1AlLIYgFFYcrsQ1WqVGDTlhWmOKxfEFQ/NwZB8A+5/+mPxuX27UPsGR3I7KL3dq0MGUl1HGdmcnfErlpc6b46IkpLUnKRWQ/JG0dXpxvxri1E8LBcOZwesbR08Do16jQEYhSeR3WmwOHDPxo/8jgYqGWqSnZCkgrhFpSU432THi28eC7rjLJtZjO3vVPsFR3JZtGyd5wiR0/UtGNAvG3mmLNn6s7Jri7m1nIgk56TRw/vJ7nzUZGbggf/6J9vMUMywBowi47MLEQAefzH4aKCQO4O6gri1y6ejvLQEZTOL8XrlSdgdHbJHgnj/21trJtWQdXCeHgadBrv/cQJbK6px/9Mfo6r2kl9dV2DmLCWauhJRfPncWD64bBrW3TUD2kwVlpVdLs4Rg/P0uPdH34SjvQPNVidMBs9NGpuyUiwwA0ZR6/HRQAJgb3Nha0W137dDHQniGxxJ3bEunTdesgv/urtmwKzXwNrqwvmLbeK/791fi0WlJUHHi7Cmg6gPCigbMOs1MBuy8MCyabC3uWBr68Dvn9/vl7V/vfIkGi0OZs6p1xiAUdR6U5Qf+LN799eivLQEW30CIm8NWFBwFLAUqlKpcPyMRTYYPNvYKi47el+z0eLA65UnMX/WKIwaloN8s5bBFxF5CIBRmwmjNhPWrAw8/kJl0M5tb3kEM+fUWwzAKGpSmahVi6dEFMgE/myL3YVhBUa/+jK1WoWRQ8zSOwl971hVgF6bKRkMGnQaPPLfnjvXvftrsXTeOFjtLr9O/pcNMoqBHRGRL7lMP1SQ3IjEonyKFgMwip5EUf7IYf3Q1GTr0c96gyzfVL5Rmyk+PtRz5ZmyJHdoOtv9a8tcXZ38fR9DRCSp69QOqZu7EYNMuP/H/waHs8NvIxKL8ilaLMLv63ralDTgaKCoOtnH8lghiULacYU5MOqzxELa2VMLg3ZasoCWiCR17Zr+w0sHcfv3xwcdRfTX/z2CIyebgzYicU6haDED1pfJNSUtyoHV7oLF1p4aqXWJ/lu+S51QSff26VUBbVdfsZS5RkQUEd9d03aHCysXTUZdox2D8w2ov9iK2d8shDZLzXY21GsMwPowqcamW/ZUYcncsdi44/PUTq37ZMbszk7sfv9E7M5pjFc3fSJKOIutHSaDBmVTi1GQkw2zIQvtLjdOX7Dh7U9q0GJ3YVnZ5Ricp0ddU6v4cyzKp2hxCbIPkzuKwxt8ASmeWu/KjA3up4vpOY1yh5On5DUiIj/9c3SYN2MkPvjsDOotbVj713/hhTerAAA/nDsOi0pHY+e7X+GOmyby7FfqFWbA+rBojuJI6dR6jM9p7HEfNCJKeu5Ot3gax7aKapgMGtw4Y6Rf78BFpSXIUINnv1KvMAPWh3nrpHzv4saN6B/7TvE9LfSPpRgW/kt15OfyA1F6EG+wumpHZ08tFIMvoLsfmFaTGbvNRNQnMQPWl0llhgwaybYOPb67S8N6KbnDyXkHTJT6fG+wtJoM2U081tZ25Bl500U9xwCsrwvcQeiO7XKdXL2U94DtlBTjJU0iSh7eG6wte6qwqLQE7S63ZD8wbRb/fFLvcAmSgsVwuS5UvZQoGZYooxXLXmZElDy6brB+sXgKMtTA5cX9sazMvx9YeWmJp/UMUS/wN4jiKuy5kT1domQfLiKKFwGwt7nw7P9WIT9Xh5tmjcKi0hLkGLTI1mbAbMiCMTsTcCd6oJTKmAGj8HqRoZIq9Pfdrt2jlg5dQdvqTZV4cPM+rP7zR6iqvZQamTMiSgnem8dGiwMHj15AP5MW//XKYfx+ywE89Nd/oarmEqD2zI1fX7ChzuKArb2T8xBFjBkwCq23RfRh6qV60tKhR3VlzJgRURTM2Zn45ZIpONdkx7ACI36/5QCcrk7k5+owe2ohzjfbYdBr8PTOQ6hraoVWk4Elc8diSJ4exUNMnF8oLAZgFFJMiugljgryCrlEKRM0RR20BQSRg/P0uOOmiRAEAblGBmNEJK29w402Zye+OmMRgy+pnmCvV55Eo8WBF988ikWlJSjI1aXuJiNSDJcgKaSIiuh7QXaJ0qCRXWaMtg+XbxCZn6tD6bQiPPzcJ3jwGS5fEpE077zhFgS4Bc8cI9cTbPbUQvHrHIM2ZvMjpTcGYBRSj5uORlo35rNE+eCyaVh31wyMK/QcBi51TmVTSzssNifW3HYlBufpxfGEOgbEN4iUmkAVO0YoFXd7EvVRvvPGB5+ewaLSEtmTQryfZa0mA9laNmWmyHAJkkLqUdPRaOvGJJYoAzNv3szV/U9/LD7nigWT0M+UBaNOE3I8fsucMk0Ve3WMUCT1ZWnYkJYonXnnjb37a3HjjJH45Egdyq8bK1kyAcGnPQX7AlKEmAGj0GQyVKEml1gcVh2YeZPKXG3c8bkYfFlb5TNLUsucvgLbYkSVpYpwRyYP8CZKLd55o8XuwseHz2H2lUV4auchLCot8ZtLlpVdjmxdBubPGoX+Zi0yMsDgiyLCDBiFF6KIXkosDqsOzLzJpf4vWBw43WDHxh2fy2eWfIJIm8OF4QOMQY/3Ll9Gm6WKdJMCD/AmSjECMK4oB2uXT0dLmwsOZye+c2UhAAHlpSXIMWphsTlha21HW3snIABbK6rx8wWTYXV0cHMPhcUAjGIubPPVSAS0rzDoNNj13omg5+zodIvBFBBil6ZPEDmkv16yLYa1Lfodn5EGVjG5JkSkHDVw5JQFL755FKXTioJ2Pr7x8UlcN60Iz+w+In5/ydyx+OPWg2ixu1hiQGFxCZJiLlzz1Yj5HPeTZ8rCyoWTMThPj4XfKUF5aQlWLZkCq90Z/S5NmWOEerLjM9JNCjG7JkQUfyrgdEMrNu74HNdMHia583Hq2EGwtbpQNrMYC+eUYP6sUXC73Wi0OFhiQBFhBoxiLx6HVXctByyZO9Zv+fD274/H4Dw96ppaxYf2NLPUkyxVxJsUeIA3UcqwtrpQdao55MadwkEmnGuwASpg7/5aNFocWDinxO8xLDGgUBiAUXxEWTcWCavdFbTcuPnVI1i1eArWv3QwdAAUsFNRrQKarU6/XYs92vEZTWDV02sSMPY8N6M2oniy2NrF3l8AJG/Mas+3YGvFMXFJsmJfjd9nmiUGFA4DMEoZckuEF5rtWHPblZ7O9lIBkEQLiPLSErxWeTKoVkMymIKnPky2zUQcgs1QY1+1eApKhvKoE6J4yTVpxd5fFftqsKi0xK8GzDt/AN1Lkvct/Sb+a9dhAIjs5o36PAZglDLklgiLBpkxvEAPuLu+GTDhSe1U3FpRjbKZxdj+TrV/oX1gMIXgAGjFgknoZ8yCUZ8V951OUmNf/9LB6I6CIqKomLMzcev147BlTxWumTwMGWrg//vxv+HrcxYU5Orx7P8eQaPFIT7e6epEu6sTq2+dyhIDihiL8Ck1qICGi21YVna537LAotISPL3rEM41O2Br75Ts4SWXOfP+e6hCe6kAaOOOz3HoRLMixxjF+ygoIpLQlQ1ffetUXDbUjPxcPTZs/xTP/W8Vas63oMXuX1yv1WTAbNDCrA/e3EMkhwEYpQRrqwuPv3gQtrZ2cddR2cxivF55EnVNrfjq9EUcOFof1dmR3gkyVK2GXACUpVErstOpx0dBEVHvdGXDB/XXo/5iqxh07d1fG9SMdVFpCTZs+5TnylJUuARJKcEbCLU5O7H7H8H9wAb002PDNukeXmq1CnfePBFP/u1QUA1HuFoN32XP/FwdZk8thFoNlBT2w+jhOfjq9KW47nQyZ2fil0um4MQ5K9yCALVKhdHDc7m8QaQQsz4TA/plo7y0BFsrqtFocaBiXw3uW/pN1J5vgb2tA69XnkSjxRG2byCRLwZglBJ8z2ULLIhdVFqCuka7ZKbqbFMrNmz7DCaDBvNnjcLwgUYMzddDrVJh5BBz2FoNc3YmViyYJNmM8fbvj4et9Xj8slEqwObogN3ZgV3vHfcrwk9pkZydSZQMVECTtR0btn2OwkFGrFo8BafqLsHtBv5r12GUTivC3gO1Yj2Y09WJphYnAzCKCAMwSgm+LSJerzyJ+bNGYcQQM06ds+L1ypOY/c1CyQL90xdscLo64bR0ilvG1901A0ZdJozarl//UH/8BaCfMQu33jAuKMO2+dUjWHPbld07JWMZVHTtfjxdbxODL+/rpnQRPg8lp1QhfgZb4HR14oqSgWK7G69tPpt5AM+co1arPMuQ/H2mMFgDRqnBp0XEilsm4apvDEDJUBOGDzCixe7C3v21KA+oy7j9++Px9ic1fk/TkwJ2oz4Lpy+0SGbYBMEzy0ZyIHc0vMX/bkFIqyJ8HkpOqcLa6sKWPVUYPtCE8tISjBhigsngf9NjMmgwYrAJC+eUoLx0DJbOG4f/2nWYv88UEWbAKHUEtohwdwdljS1OnK23YeGc0XC63IAAtDk7JHcrRbtkaM7OxLgR/WW75Ed6IHc0fIv/0+kMSR5KTqnC1uZC6bQiMfPtWzvaaHEgP1eHeTNG4k8+//7TH1yO664qgs3h4u8zhcUMGCUXFSRbScjqCsouG2hEfk42tr/9Fba/XY3d/ziBIXmGmJ1JObxAjxULJvk914oFk2Brc8Hu7Ay6M444SyXzfgNr3nxfd9XiKSl7hiR3dVKq0GZlBp0BubWiGnOuLAIAzLmyCFsD/v0vr3yBokFmqFRqIEP2qYkAMANGsdTb4ure1AeF6GIfk/MX3cD4olzxuVQqFZ7aeQh1Ta1Bd8ZAhEFFiPcrVfM2fKARQ/P0GDmsH5qabD14E4nXo+OeiBLA7nBJZmtHDcvBg8umoaNTujzgaM1F7H7/BO64aQImFffvbhBNFIABGMWE2y1EFjyFCNJ6vZQncyRQzI4J6np+AFi9qTLoznj+rFFioX8kQUW49yt3xqRancKNhngoOaWIXKP0yRv5Zi3M2RpYHR2S/w7B81l+audhrF0+HXlGZndJGpcgKSbqGu3hi6tVoYvVU6Xru9w4vXfG6+6aET5rpwIarc7Q77cr4Eu7ztrp+r4orXiztXIlDN4WNYENWfceqAXg+SzXW9rYmJVkMQNGMdFsbQtbXB0u4yN31mPS1Ad1Ze863ALKS8fg7U9q/JYcvXfGADxBhVy2z6fFRFK/X6K+LIJsbY5Rg7KZxRgxxITa8zaxISvg+SyroIK1lQX5JI0BGMVEf3N22GAi3A64pK0P6mqI+nVdi183/WVl42Frc+Gtf9bg1uvH+Y8zRH2XNxA1GTRBTWWT4v0SkYdMWQNUwIlzLcjIVEOtVqG+uRWjh+fi/YOnAaBrfrgcu97/Cj+cO5YBGEliAEYxMTjfEDZ4CpvhSsb6oBANUZ/ZfQTzZ43CkrljMa4ox6/YNlS2zxuIOi2deL3yJMpmFgMqYOKofAzpp2PwRZTkrK0unGuyA1D5nVJxx00TYdBlwi0I+Nu7X6H2vI0ZbZLFGjCKCbVaJQZPcnVQ4WoqACRdfVC4hqhuQcDGHZ/DGtBvLFS2z7cVQ6PFge3vVGP3+ydg1GYk/P0SUXgWWzvyc7Px4ptH/W6yntp5CGcabHj0f/aj9rwNKxZMStmWMRR/zIClg2Q5W08uXe/z73HJcMXx/YdriOrd8RTYSDRUti9pl1qJKCL9c3Sw19skb7KGFBjx4++Ow/CBZmRpMlDbYEeukWeeUjAGYKku1c7WCxekRSvO7z/cIeCvV56ULJwPGWQByMpUY/6sUcjMUGFIvhGaTBWsbR2cpImSnQo4fcEGa6sT5aVj4O46jmzv/lq02F04dc6Kwfl6tDpcWPc/+1NjXqaEUAnew+xSRFOTDW535EMuKDChoaEljiNKLGuby68nFQDxwGklCz8TdZ3j/v59AjyTQYMbZ4zEgH7ZOFNvx9uf1KDF7vJMrEU5sNoDsnDoyszZ29HfpIXbLcBia4chW4M/vHQQrk43bpwxMqgIP9wkXVBgQkNjS3yyfoHZRH1m8PtKqRmj59J97kgmqXStrW0urNtyANdPH4EX3zzmd0yRNisDO987jha7S+wL6JWIeTlQKl3nVFdQYEJTkw15eUbZxzADluL6+tl6cX//UsumBg2G5RswtihX/LqqRq6jvQZmvSYoS7eotAQqwO8oE5NB42lNkZWB/BydbLATcdPbaAVkEwfn6bFwTgme2nmYd/FEXSy2dlwzeZgYfAHdzZgXzhkttqFwB+Q2+tK8TJFhEX6K6+tn6yny/gM3Brj9v7bapXc8epvQSu2I3FZRjQH99eL38nN1uHHGSOx67zjWPvuvoCa1viJqetsDgeO8ZvIwMfiK5esQpbJckxZqNSRv/Jwuz1ZorSYDapX/h7cvzcsUGQZgKS6inYVpLBnef7gO/nL/7mzvFMc9e2ph0MG/csFOqKa3AKI/0Fzufaik/8gk28kEREoyZ2di3Ij+kjd+EDz/e9ctE1HQT9dn52WKDJcgU10y9s5SUjzfv9TuSgR/L1x/M7l/Hz7QiLtumYhNLx8KGewELlmEbHrbi00JcuNkp34iHwIwvECPFQsmYeOOz8XP2Z03T8QlmwNlM4ux9a1jKC8twcI5o+F0udnjjyQxA5YOkqx3luLi8f5lzq08ca4F67YcwJenLuKfR87jdGMrzIbwZ8ZJ/XueKQv6rEzMnzUKIwabIl5K9Ta9lXo9uQawkSwbBo7zg0/P4I6bJvAuniiQGxhflIt1d83Ar5ZeiTW3XYltFcfw7P9WYfs71ahrasWmvx2Gs93NHn8ki7sgKSbS7TrL7a5cMncMOt2C387FFQsmYcRgEy7ZXXC0dyDfpA3Owqm6d0R6s3TW1u7X8NaABT7v+BG5fh32gYBdkAFZv9oGOx7cvC/o/Ty4bBoK8w3h33jgOA2eGre+mF1Nt9/pZJay11oFHKmx4GyDDVsrqoP+uby0BMMHmJJm40rKXucUxF2QRJEKWG602KXrtvJzs7Fhm3+GaeOOz8Ut52KWqDDH//kl+p/51lw1Whz4+PA5rFo8BafqLsHtBl588yhuvX5c9+TdNcbzxxug12bCrA/up9brA80Dx+mOcd82ojRibXVh447PUXZtMbSaDJgMGsyeWgioALVKhSvHDUA/Q9+5aaHoMAAjkqibWnPbldL1UO2dskcSef/be+ZjuO3mgcHSFSUDsf6lg37PLz6XRCsLqdoudtknUo73Rm3v/losnTcOzvZOsbWMVpOBwfl6aDLNXIIkSawBoz5Pqm7qqZ2HsGLBpKD6p4LcbNndT/m5Oiz8TgnKri2G3dkZdvdhYM2V3NZ2i7098toun00JcmdyElFsmPRZKC8dg3lXj8SwAUa/vn5OVyc2vXwIlYfPy7aUob6NGTDq8xqtzqDAp66pFWaDJnh3pQpBu5/KS0tQeficXw3X7vdP4M6bJ+KyISHufgVg+AAD5s8aBbcgoHCgSXb5MKqGs7E+7omIgqmAMw02vH/wNEqnFeHLk82y2fFIs+LUtzAAo+SQwAPFs7WZkoFPRkaGuOPPYmsHVCqYszPF3U/ewKzB4sDUsYOC+ng9+bdDmD9rFIYPMMpmoZqtTvG4kvxcXdB5k+LyoUoVvrYrWQ5lJ+oDrK0ubHr5EMpmFmNbRbVYBxb4GYXALvgkjQEYJV6CDxQ36TUoLy3xq90oLy1BjkG+7so3w2TWa6BSq3p09+tbB9ZoceD1ypOYP2sURg3LQb65ezdl2NquVDuUnSjFiVnprh5+e/fXBt1ALSotweuVJ9k/jyQlrAbsyy+/xOWXX56ol6ck0pveVbFg1GZgWIER82eNwsI5JZg/axSGFRjR2eGOuO4qP0cnWRum1ahRNrMY5y+2SXalD6wDa7G7MHyAEZcNMvr3NPOp7Xr4rhlBtV2JvoZEfY3vMWhaTYZ4A1U2sxjlpSW4e9EVeL3yJFrsLvbPI0kJyYC1tbXhoYcegsvFPw6UBAeKC0DxEBMKcnV+9V619faIxyWVoVoydww0mWpsf7tKPisVTSf/rtqu4sL+nl4+Po9J+DUk6mO8n/kte6rEzFejxYHd/ziBlQsnY3C+HqsWXwG3G3C2d8La1sGyAPKTkADs0UcfxdKlS3Hw4MFEvDwlmV73rooFicL1qMblE0idbWrF6QuehsF//+BrlM0sFjNfW/ZUYfWtU/2DohgUzSfFNSTqS7o+86tvnQqbw4W1y6fD7nCJm2aOnmqGI6AthVxzZeqbFO+E/8477+Ctt97CunXrMGbMGBw7dkzJl6ck5HYL+PhwndgDS6vJwKrFUzB9wmCo1Ynbu93TcbndAuoa7TjXZMOpc9agmpDxxf3xjRH5STFWIoqts/U2vHfwDABg13vHg26K/r8f/xsmjS7g55LiF4C98cYbeOSRR/y+d9lll8Fms+G5556D0WjsUQDGo4iSU6+vs8RRPUmRqu/FuJps7bj/6Y+DJuC1y6cjz9jzzJTstU7Wa5iiOHcoJ52udW2DHV/WXAQAbH9b+niiq74xMCGlAel0nZNdQo8iuuGGG3DDDTf4fW/Hjh14+umn8cMf/lD8XllZGV544QUYjfKDpD4gWXtX9WJcdodLsi7L7nD1KgALEtB+orDA4BlnslxDoj4k16SFWuXJbkmVBbjdYG0mAVC4BmzBggVYsGCB+PWYMWOwe/duJYdApJhcowJ1WUq1n2CPMaKImLMzUTzEjMZLbVhWdjme2f2F+NlcOm8cHO2d6OgUYHWwKL+vYx8wojhR4lxGufYTMe26zR5jRJHr2lU9sH82HB1u3Lf0mzhWcxFaTQZcHUJQo2V+jvquhAZgLMCntBZNi4keUqL9hCJBHlE6EQCjNhNGLZBvzEI/QxZszk48tHkfP0ck4mHcRPHUVUNWmG/wb6waI77NIL1klzlVgLXNhdoGu2RTWDmhgjwiCqNrDnA4OyQ/R41WZ4IGRonGJUiiFBbxMmcvlhHZY4yoF7rqJzvdAspLx+DA0fO4omQgoALUKhUM7JDfZzEAI0plES5z9mYZUYlaNqK0JHHj89Oyy/G3d79CXVMrtJoMDMrXw6DNhFGbwc9TH8MAjCjVRdAqo9HqDFr+MBk0aHF0hN/ZqEAtG1FaCNgtDEEIuvH5y+4vUDazGNvf8RTjP/nyIcyfNQrDBxhZkN/HMAAj6gOytZl+y4j5uTrMmzESa//6r8iWJJO1TxtRspBa5l80WbLuy7f+0unqhLsrUGNBft/CInyiSMkVsfewuF1JJr0G5aUlYsH+nCuLxDPqgO4lSWurK5HDJEpZUsv8py/YJDfJ+N7AeL/mxpa+hxkwokjIFbEX5aCqJvl7ZBm1GRhWYMT8WaPgFgQM6Jcd9/YVRH2J1G7htz+pwZ03T8STfzskzg933DRBPKLIez7s65UnubGlD2IARhQBuSL2tcunp0aPrK7mkAW5Oljs7TDoNNzZSBRDUruFW+wuXDbY5F8/adBg5KCpONvUitMXbHi98iRa7C5ubOmDGIARRUCuF1aT1ZH8maSuwmBbmwvaLM9HXpuVwZ2NRDEkt1vYqMsUaygBiJ+vHL0GA8YUYGxRLje29FEMwIgiINcLK8+sS+5MUtfS6ZY9VSidVuR3DMovl0zhzkaiWIlkt7DP5/GaycOgVgPjRvSH2aAB3AkbOSUIi/CJIuC9u/UW1HrvbvPMWZLfNydJc0Xv0uk1k4eJwRfgydI9/uJBAIhbl36iPifMyRfWVhe27KnC9dNHYPc/TmBrRTUefu4THDllScrNOxRfzIARRULu7tad3D2yxKVTFZJ/qZQozVls7Zjzb4V48c1jfjdDG3d8jrV3TIe91RW6Jx+lFQZgRJGS64WVxD2yfM+KDLlUGtBAkn8AiGIv16RFP5NO8mbo9AUbNmz/LGl3UlPscQmSKI15l04/+PQMFvn0AfNbKu2qS1m9qRIPbt6H1X/+CFW1l3q/JJIC/dGIlGTOzkRejk6yN5g2y/M99uTrO5gBI0pnXUunq2+dCpvDhbXLp8PucPktlVrben5OpKxeHP5NlLYEoJ9Ji/LSErERslaTgfLSEtQ3t4oPY3lA38AAjCjdBSyR5hmzxO8D8i02evMHoDeHfxOls8CmyGqVCrqsDPztvePiY5JqJzXFDQMwoj5OrsVGb/4AxCOoI0ppPnWWBf2yMbB/NppbnMg1ZKHB4kCL3bPkyJ58fQcDMKI+Tq6BZG/+AMQjqCNKWWGW5M16TdLupKb4YQBG1NdF0kAySvEI6ohSVdgl+STeSU3xwwCMiIL/AMBTnN/jthRxCOqIUhWX5EkKAzAi8herHYy8qycCwCV5ksY+YETkR265hH2JiHpG7iizZDmyjBKDGTAi8sPlEqIY45I8SWAARkR+uFxCFAdckqcAXIIkIj9cLiEiij9mwIjIH5dLiGKHB92TDAZgRBSMyyVEvcczUSkELkES9YTK0yertsEOq6MDUCV6QESUbLijmEJhBowoWryrJaIIyO0obrQ6uSRJzIARRYt3tUQUCe+OYl9aTQaOn7mEBzfvw+o/f4QT51qYTe+jmAEjihL7ZMUAC5OpD5A6E7W8tASvVZ4EAJgMGpxpsOHxFw8ym94HMQAjilJC+2SpgLP1NpxvtKdu4MIlXOorAnYUZ2Zm4I9bD6LR4gAAzJ5aiK0V1fKHdFNa4xIkUZQS1ierK3C5+w/vicsXVbWXUm7Jgku41Kd07SguzDfAqMtEi93n91wF2Ww6pT8GYETR8rmrfXDZNKy7a4Yi2Zt0CVxCLeESpbPAmze1SiVZI8ZTJ/oGLkES9UQC+mSlS+0ZjzqiPitgSdKkz8LgfD02vXzIbzmejY/7BgZgRCkiXQIXqcJk/tGhPkMAzHoNzja24pH/3g+TQYP5s0Zh+EAjhubp+TnoQxiAEaWItAlceNQR9XG+5QROSye2VhyDVpOBdXfN4OegD2EARpQqugKXP/1iFs432VI7cOFRR9SHpUs5AfUOAzCiVCIAQwcYkaUSxK+TCvt7EYWVLuUE1DsMwIgoNtjfiygicuUEarUKtQ0p3OOPosIAjIhiQq5NBptKEgWQqINssDhwz8aPePPSh7APGBHFBPt7EUXBp0ErAPE4IsBzRNHpehu+Pm/j+ZBpjBkwIooJ1rUQ9YzvzUt+rg43zhiJbV1HFDEblr6YASOimEjYEU1EKc578wJ4zofcJnE+ZKqdeEHhMQNGRLHB/l5EPeJblB/qfEjWUqYXZsCIKHZ86lrM2Qy+iCLic/MyaVQ+z4fsIxiAERERJVrXzcvgfjou5fcRXIIkIiJKFlzK7zMYgBFR5Njpnij+eFRXn8AAjIgiw073REQxwxowIoqIXKd7bo8nIooeAzAiigg73RMRxQ4DMCKKiG+zSC9ujyci6hkGYEQUEXa6JyKKHRbhE1FkuD2eiChmGIARUeS4PZ6IKCa4BElERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApjAEZERESkMAZgRERERApTPACrr6/Hz372M/zgBz9AeXk5zpw5o/QQiIiIiBJK8QDs3nvvxbe//W288sorKCsrw+OPP670EIiIiIgSStHDuJubm3H06FE8++yzAICbb74Z06dPV3IIRERERAmnEgRBUOrFPv/8c/z2t7/FlVdeif3796OgoAC//vWvMXToUKWGQERERJRwcQvA3njjDTzyyCN+3ysqKsInn3yCJ598Et/+9rexY8cOvPrqq3j++efjMQQiIiKipKRoBqy2thbz58/HgQMHAABtbW246qqr8Pnnnys1BCIiIqKEU7QIv7CwEIMGDcL7778PAHj33Xcxfvx4JYdARERElHCKZsAA4Ouvv8YDDzyAixcvwmg04tFHH8WIESOUHAIRERFRQikegBERERH1deyET0RERKQwBmBERERECmMARkRERKQwBmBERERECmMARkRERKQwBmBERERECkv7AKy+vh4/+9nP8IMf/ADl5eU4c+ZMooeU1r788ktcfvnliR5GWjtw4ABuueUWlJWVYenSpTh79myih5R2/v73v+PGG2/EddddhxdeeCHRw0lbGzduxLx58zBv3jz8/ve/T/Rw0t66detw3333JXoYaW3v3r246aabcMMNN2Dt2rUhH5v2Adi9996Lb3/723jllVdQVlaGxx9/PNFDSlttbW146KGH4HK5Ej2UtHbPPfdg7dq12L17N773ve+F/ZBTdC5cuID169fjxRdfxCuvvIJt27bh+PHjiR5W2qmsrMSHH36IXbt24ZVXXsGRI0dQUVGR6GGlrY8//hi7du1K9DDS2unTp/HAAw9g06ZNePXVV/Hll1+KJ/9ISesArLm5GUePHkV5eTkA4Oabb8Z//ud/JnZQaezRRx/F0qVLEz2MtNbe3o67774bY8eOBQCMGTMGdXV1CR5VeqmsrMRVV12F3Nxc6PV6zJ07F3v27En0sNJOQUEB7rvvPmRlZUGj0aC4uBjnzp1L9LDSksViwfr163HHHXckeihpraKiAjfeeCMGDRoEjUaD9evXY9KkSbKPT+sA7PTp0xgyZAgeffRR3HzzzVi5ciU0Gk2ih5WW3nnnHTgcDlx//fWJHkpay8rKQllZGQDA7XZj48aNmDNnToJHlV7q6+tRUFAgfj1gwABcuHAhgSNKT6NHj8bkyZMBAKdOncIbb7yBa6+9NrGDSlO/+c1vsGrVKpjN5kQPJa3V1NSgs7MTd9xxB8rKyvDiiy8iJydH9vGZCo4trt544w088sgjft8rKirCl19+if/4j//Ar371K+zYsQP33Xcfnn/++QSNMvVJXefLLrsMNpsNzz33XGIGlabkrvVzzz2H9vZ23Hfffejo6MDy5csTNML05Ha7oVKpxK8FQfD7mmLrq6++wvLly3HvvffyXOA42LFjBwYPHozp06dj586diR5OWuvs7MT+/fvx/PPPQ6/X484778SuXbtw0003ST4+rc+CrK2txfz583HgwAEAnhqlq666Cp9//nmCR5ZeduzYgaeffhoGgwEAcPToUYwdOxYvvPACjEZjgkeXfux2O+68807k5ubi8ccfR1ZWVqKHlFZ27dqF/fv343e/+x0A4M9//jMEQcCKFSsSPLL0c+DAAaxcuRJr1qzBvHnzEj2ctPTjH/8YDQ0NyMjIwKVLl9Da2oof/OAHWLNmTaKHlnb++Mc/wmaz4f777wcAvPDCC/jqq6/w4IMPSj4+bTJgUgoLCzFo0CC8//77uPbaa/Huu+9i/PjxiR5W2lmwYAEWLFggfj1mzBjs3r07gSNKb/fccw+Kiorw29/+Fmp1WlcRJMSMGTPwxBNPoLm5GdnZ2Xjrrbfw0EMPJXpYaaeurg4///nPsX79ekyfPj3Rw0lbzz77rPjfO3fuxL/+9S8GX3Hy7W9/G6tXr4bVaoXBYMAHH3yA73znO7KPT+sADACeeOIJPPDAA3jsscdgNBrx6KOPJnpIRD325Zdf4p133sGoUaMwf/58AJ4apb/85S8JHln6GDhwIFatWoV///d/h8vlwi233IKJEycmelhpZ/PmzXA6nX5zcnl5ORYvXpzAURH13KRJk7Bs2TIsWbIELpcLV199NW6++WbZx6f1EiQRERFRMuL6BREREZHCGIARERERKYwBGBEREZHCGIARERERKYwBGBEREZHCGIARERERKYwBGBEREZHCGIARUZ+0a9cuzJkzB3a7Ha2trbjhhhvwyiuvJHpYRNRHsBErEfVZ/+f//B+YTCa0t7cjIyODRw4RkWIYgBFRn2Wz2VBWVgadToedO3dCq9UmekhE1EdwCZKI+qympiY4nU5YrVbU19cnejhE1IcwA0ZEfZLL5UJ5eTnKy8vhdruxY8cOvPTSS9BoNIkeGhH1AcyAEVGf9Ic//AH5+flYsGABFi1ahH79+mH9+vWJHhYR9RHMgBEREREpjBkwIiIiIoUxACMiIiJSGAMwIiIiIoUxACMiIiJSGAMwIiIiIoUxACMiIiJSGAMwIiIiIoX9/w/1QvwLzDzoAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# 2 clusters\n", "X2, y2 = make_classification(n_samples=500, n_features=2, n_informative=2, n_redundant=0, n_repeated=0, n_classes=2,\n", " n_clusters_per_class=1, class_sep=4, flip_y=0, weights=[0.5, 0.5], random_state=17)\n", "print_sns_plot(X2)\n", "\n", "# 4 clusters\n", "X3, y3 = make_classification(n_samples=500, n_features=2, n_informative=2, n_redundant=0, n_repeated=0, n_classes=2,\n", " n_clusters_per_class=2, class_sep=3, flip_y=0, weights=[0.5, 0.5], random_state=17)\n", "print_sns_plot(X3)" ] }, { "cell_type": "code", "execution_count": 116, "id": "f902c182", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHwCAYAAADq0mgNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABjR0lEQVR4nO3de3xU5Z0/8M9ckskFaGJMGO9tQ2Ukghh3kYCCugpBINVAf0UsUHHRVlkq7SIKtHStIF6qVivuQm2LSoo3FLA1oKKshmBWogUTIiVIleJADIlAyG1mzu8Peg5zObeZzJlzZubzfr32tZ3bmSc5pXx4nu/zfWyCIAggIiIiIlPYzR4AERERUTpjGCMiIiIyEcMYERERkYkYxoiIiIhMxDBGREREZCKGMSIiIiITMYwRJZGDBw/i0ksvDXnuL3/5Cy6//HLU1tYmZAz33XcfnnzySdX37N69G/PmzZN97fbbb8f69etj+u6DBw9i8ODBeOmll0Kef+aZZ3DPPffEdE0511xzDXbv3h2366k5ceIEpk2bhokTJ2LLli26PjNjxgxUV1fH9H3Hjx/HzJkzY/pstAKBAB566CFMnDgRkydPxty5c3H06NGEfDdRMmEYI0pi69atw4oVK/DHP/4RZWVlZg9HMnToUDzxxBOGXNtut+PBBx/E/v37Dbl+ou3Zswetra3485//jHHjxhn+fV9//XXCguYrr7yChoYGvPrqq9i0aRPOP/98rFixIiHfTZRMnGYPgIhis2rVKqxfvx5VVVU499xzZd/zwQcf4NFHH8VZZ52Fzz77DNnZ2bjtttvw3HPP4bPPPsO4ceOwaNEiAMDWrVvx9NNPo7e3F1lZWVi4cCEuvfRSnDhxAosXL0ZTUxOKiorgcDhw2WWXAQD+9re/4b777kN7eztsNhtmz56NG264AR988AF+9atf4fXXX8fhw4dxzz334MiRIzj77LPR2toqje+JJ57Am2++iYyMDOTn5+OBBx5AUVGR6s+dlZWFW265Bf/5n/+JdevWITMzM+T1e+65B9/5zndw6623Rjy+5pprMGnSJOzYsQNff/01/v3f/x319fVoaGiA0+nE008/jYEDBwIAqqqq0NTUhJ6eHtxyyy2YOnWq6u/pySefxMcff4wjR45g8ODBeOSRR0LG9dZbb+G3v/0tAoEAcnNzce+996Jfv35YtGgRDh8+jO9+97t44YUXkJWVJX2mpaUFS5cuxf79+2G32zFt2rSQWa2DBw9i8uTJ+OijjyIet7S0YOHChWhrawMAjB07FnfddRfuvfdedHV14bvf/S7Wr1+PAwcOYNmyZWhvb4ff78eMGTMwdepUfPDBB1i2bBlycnLQ0dGBqqoqLF68GH//+99ht9tRUlKC++67D3a7HXPmzMG0adPwb//2byE/86BBg3D33XdL9+jiiy9GVVWV6v0lSksCESWNL774Qhg+fLjw4IMPChdeeKHw/PPPq75/x44dwkUXXSQ0NDQIgiAIt956q/D9739f6O7uFlpbW4WSkhLB6/UKn332mTBp0iTh6NGjgiAIwt69e4XRo0cLHR0dwrJly4S7775bCAQCQmtrqzBmzBjhiSeeEHp7e4V/+7d/EzZv3iwIgiB4vV7hyiuvFOrr64UdO3YIEydOFARBEO644w7hscceEwRBEA4cOCAMHz5ceOWVV4RDhw4JpaWlQnd3tyAIgvDMM88Ib775pq6f3+/3CzfffLOwYsUKQRAE4Xe/+52wcOFCQRAEYeHChcLvfvc76TPBj6+++mph+fLlgiAIwp///GfB4/EIe/bskcb59NNPS+9bunSp9HOVlZUJe/fuVf09PfHEE8L48eOF3t7eiHHv27dPGDVqlPD5558LgiAI27dvF0aPHi0cP3485HcV7s477xQefPBBQRAE4dixY8LEiROFAwcOCD/4wQ+EN954Q/p9hP9+BEEQfvvb3wo///nPBUEQhI6ODuGuu+4Sjh07FvKe3t5e4frrrxc++eQT6TsmTJggfPTRR8KOHTsEj8cjHDx4UBAEQXj11VeF2bNnC4IgCD6fT1i8eLFw4MAB1fsVrL29XZg4caLw3HPP6f4MUbrgzBhRkjl58iT27t2LVatWYf78+bj00ksxZMgQxfefe+650uvnn38++vfvj8zMTJxxxhnIzc3F119/jf/7v//DkSNH8MMf/lD6nM1mw+eff47a2losWrQINpsNZ5xxBq677joAwIEDB9Dd3S0trQ0cOBDjxo3De++9h8svv1y6zvbt27Fw4UIAwAUXXCC9NnDgQHg8Htx4440YM2YMxowZo3up1W634+GHH8YNN9yAK664Qv8vD5DGe9555+HMM8+Ex+ORfjdff/219L5p06ZJ4xw9ejRqa2vhcDgUf08AMHz4cDidkf+zumPHDowcORLnnXceAKCsrAxnnHEGPvnkE9hsNsWxbt++HQsWLAAA9O/fH6+//rrun/PKK6/Ebbfdhi+//BKjRo3Cz372M/Tv3z/kZzxw4AA+//xzaXYUALq6utDY2Iji4mKcddZZOOeccwAAl112GR577DHMmDEDo0aNwqxZs3DBBRfoGsvnn3+OO++8E6Wlpbj55pt1/wxE6YJhjCjJZGVl4emnn0ZGRgZuv/12zJ07F+vXr0deXh5+85vfYOvWrQBOFaGPHDkyYhlPLiwEAgGUlZXh8ccfl5778ssvpSVDIegIW4fDAQDw+/0RQUIQBPh8vpDnbDZbyOfF77fb7Xj++eexe/du1NbWYvny5bjyyitx99136/o9nHXWWfiv//ovLFy4EDfccIPi9/X29oZ8Lvj3kZGRoXh9u/10SW0gEIDT6YTf71f8Pb355pvIycmRvVYgEFD8XamNwel0hnzuiy++QH5+vvRY7WcdNmwY3n77bdTW1mLHjh343ve+h9WrVyMvL096j9/vR//+/bFhwwbpua+++gr9+/fHxx9/HPLznHfeeXjzzTfxwQcfYMeOHbjllltw33334ZprrlEcP3AqiM6fPx///u//Li0dE1EoFvATJRm73S79BX7bbbdh0KBB+NnPfoZAIICf/OQn2LBhAzZs2ICf/OQnuq9ZVlaGmpoaNDc3AwC2bduGiooKdHV14corr8TLL7+MQCCAr7/+Gm+//TYA4Nvf/jacTqe0A/Dw4cPYvHkzRo0aFXLtK6+8Ei+88AIA4NChQ/jggw8AAE1NTZg0aRKKi4tx++2344c//GHUheXl5eUYM2YM1qxZIz2Xn5+PTz75RBpTXV1dVNcUvfrqq9KYa2trUVZWpvp7UlNWVob3338fX3zxBQCgtrYWX375JS655BLNz73yyisATu2CnDVrFg4cOCC9PmDAAPT29mLfvn0AgD//+c/Sa4888ghWrlyJa6+9FosXL8agQYPwt7/9TQqVgiDgW9/6FrKysqQw9uWXX2LSpEnS7y9YVVUV7r33XlxxxRVYsGABrrjiCjQ2NqqOv6GhAXPnzsWDDz7IIEakgjNjREnMZrPhwQcfxI033ojHH38cP/3pT2O6zqBBg3Dffffhpz/9KQRBkIrZc3Nz8R//8R9YunQpJkyYgDPOOAMXXnghgFOzSitXrsT999+PJ598En6/H3feeSdGjhwpBS4AWLp0Ke69915MmDABbrdbWhb0eDyYMGECpkyZgpycHGRlZWHJkiUAgN/85jcAoCtQLlmyBDt37pQez5gxA//5n/+J8ePH49xzz8XIkSNj+p10d3fjxhtvRG9vL5YsWYJvfetbAKD4e1IzaNAgLF26FHPnzoXf70dWVhb++7//G/3791f93C9+8Qv88pe/xOTJkyEIAm6//XZcfPHF0uv9+/fHggULMGfOHJxxxhkoLy+XXps1axbuueceTJo0CZmZmRg8eDAmTpwIh8OBYcOGYeLEiVi7di1WrlyJZcuW4Xe/+x18Ph9+8pOf4LLLLgu5hwBwww03oK6uDtdffz2ys7Nx1llnYcaMGQCgWMD/6KOPQhAE/PrXv8avf/1rAKeWzZ966imN3z5RerEJwXPcRERERJRQXKYkIiIiMhHDGBEREZGJGMaIiIiITMQwRkRERGQihjEiIiIiEyV1a4u2tg4EAsZtBi0o6IfW1hOGXZ9iw/tiPbwn1sT7Yj28J9Zk9H2x223Iz1dugZPUYSwQEAwNY+J3kPXwvlgP74k18b5YD++JNZl5X7hMSURERGQihjEiIiIiEzGMEREREZmIYYyIiIjIRAxjRERERCZiGCMiIiIyEcMYERERkYkYxoiIiIhMxDBGREREZCKGMSIiIiITMYwRERERmYhhjIiIiMhEDGNEREREJmIYIyIiIjKRoWHsxIkTmDRpEg4ePBjx2p49e1BZWYnx48dj8eLF8Pl8Rg4lKnXeeiypWY7vv/BjLKlZjjpvvdlDIiIiohRlWBj761//iptuugkHDhyQfX3BggX4xS9+gc2bN0MQBLz44otGDSUqdd56VDW9grbudggA2rrbUdX0CgMZERERGcKwMPbiiy9i6dKlKCoqinjtH//4B7q6ujB8+HAAQGVlJaqrq40aSlQ2NlejN9Ab8lxvoBcbm60xPiIiIkotTqMuvGzZMsXXjhw5gsLCQulxYWEhDh8+HPV3FBT0i2lsatq72xWfLyzsH/fvo9jwXlgP74k18b5YD++JNZl5XwwLY2oCgQBsNpv0WBCEkMd6tbaeQCAgxHNoyHPloU0mkOW58tDScjyu30WxKSzsz3thMbwn1sT7Yj28J9Zk9H2x222qE0im7KZ0u91oaWmRHn/11Veyy5lmqCguR4Y9I+S5DHsGKorLTRoRERERpTJTwtg555wDl8uFnTt3AgA2bNiAMWPGmDGUCCPcpZjumYJ8Vx5sAPJdeZjumYIR7lKzh0ZEREQpKKHLlHPmzMG8efMwdOhQPPLII1iyZAlOnDiBkpISzJw5M5FDUTXCXYoR7lJOJxMREZHhbIIgxLfoKoGMqBkLxjBmTbwv1sN7Yk28L9bDe2JNaVkzRkRERESnMIwRERERmYhhjIiIiMhEpvQZIyKi+Kht8GL9tma0HutGwQAXKscWo6zEbfawiCgKDGNEREmqtsGLNW80occXAAC0HuvGmjeaAICBjCiJcJmSiChJrd/WLAUxUY8vgPXbmk0aERHFgmGMiChJtR7rjup5IrImhjEioiRVMMAV1fNEZE0MY0RESapybDEynaH/M57ptKNybLFJIyKiWLCAn4goSYlF+txNSZTcGMaIiJJYWYmb4YsoyXGZkoiIiMhEDGNEREREJmIYIyIiIjIRwxgRERGRiRjGiIiIiEzEMEZERERkIoYxIiIiIhMxjBERERGZiGGMiIiIyETswG+COm89NjZXo627HfmuPFQUl2OEu9TsYREREZEJGMYSrM5bj6qmV9Ab6AUAtHW3o6rpFQBgICMiIkpDDGMJtrG5Wgpiot5ALzY2VzOMEZEutQ1eHg5OlEIYxhKsrbs9queJiILVNnix5o0m9PgCAIDWY91Y80YTADCQESUphrEEy3flyQavfFee6udYZ0ZEALB+W7MUxEQ9vgDWb2tmGCNKUtxNmWAVxeXIsGeEPJdhz0BFcbniZ8Q6MzHEiXVmdd56I4dKRBbUeqw7queJyPoYxhJshLsU0z1TpJmwfFcepnumqM5yqdWZEVF6KRjgiup5IrI+LlOaYIS7NKolRtaZEZGocmxxSM0YAGQ67agcW2ziqIioLxjGkkCsdWZElHrEujDupiRKHQxjSaCiuDykNxmgXWdGRKmrrMTN8EWUQhjGkoC4pMndlERERKmHYSxJRFtnRkRERMmBYYyIKEWEd+b/4aQSlJyfZ/awiEgDW1sQEaUAsTO/2G+s9Vg3fvvSX1Hb4DV5ZESkhTNjREQpQK4zf3ev35DO/Dwbkyi+GMaIiFJAojrz82xMovjjMiURUQpIVGd+tbMxiSg2DGNERCmgcmwxMp2h/5PuynDEvTM/z8Ykij8uUxIRpQC5zvxyuyn7Wu9VMMAlG7x4NiZR7BjGiIhSRHhn/sLC/mhpOS49jke9F8/GJIo/LlMSEaWJeNR7lZW4MWuCR5oJKxjgwqwJHhbvE/UBZ8aIiFJQbYMXr71fi5a2Tmk5Ml71Xjwbkyi+GMaIiFKM0nJkbpYDHV3+iPez3ovIXAxjcVbnreeB3kRkKqXlyMwMJzKddtZ7EVkMa8biqM5bj6qmV9DW3Q4AaOtuR1XTK6jz1ps7MCJKK0rLjic6fSH1Xnbb6ZoxHptEZB6GsTja2FyN3kBvyHO9gV5sbK42aURElI7UGsCWlbilnmQB4dTz4jImAxmRORjG4kicEdP7PBGREeQawAYvR7KLPpG1sGYsjvJdebLBK9+Vl/CxEFH6Enc6vvb+ZyG7KcXn2UWfyFoYxuKoorgcVU2vhCxVZtgzUFFcbuKoiCgdlZW4UXHVd0KavorYRZ/IWrhMGUcj3KWY7pkizYTlu/Iw3TOFuymJyFK0ljGJKLE4MxZnI9ylDF9EZGly51hGe0YlEcUPwxgRURpiF30i6+AyJREREZGJODNmEezcT0RElJ4YxkxW563HS59uwEl/p/Sc2LkfAAMZERFRiuMypYnE45OCg5iInfuJiIjSA8OYieSOTwrGzv1ERESpj8uUCaBUD6YVtti5n4iIKPUxjBlMXIoUZ8CC68GUjk8C2LmfiIgoXXCZ0mByS5FiPVhFcTky7BkRn8l15rBzPxERUZrgzJjBlGa+2rrbpbDFlhZERETpi2HMYEpLkWI9GI9PIqJ4qW3whhxx9MNJJSg5P8/sYRGRBoYxg1UUl4fUjAGsByOi+Ktt8GLNG03o8QUAAK3HuvHbl/6KmeWDdR17FB7kkv2sylT7eSi1sWbMYCPcpZjumSLNhOW78lgPRkRxt35bsxTERN29fqzf1qz5WTHItR7rBnAqyK15owm1DV5Dxmq0VPt5KPVxZiwBuBRJREYTg4fe54PJBbkeXwDrtzUn5WxSqv08lPo4M0ZElAIKBriiej5YX4KcFaXaz0OpjzNjREQpoHJscUjNGAC4MhyoHFus+dmCAS7ZoGK3AbNXbNVdc2WVOi2ln0dPMCUyA2fGiIhSQFmJG7MmeKTAUTDAhbnfu0RXGKocW4xMZ+RfBwHh1P/XU3NlpTotuZ8n02nXFUyJzMCZMSKiFFFW4g4JX4WF/dHSclzX5wBIs1p22+kgJtKqubJSnVb4z8PdlGR1DGNERBQS5Gav2Cr7HrWaK6vVaYUHUyIrM3SZctOmTbj++usxbtw4rF27NuL1hoYGTJkyBRUVFbj99ttx7NgxI4dDREQ6xLIZoC8bCIjSnWFh7PDhw3jsscdQVVWF1157DS+88AL27dsX8p5ly5Zh3rx52LhxI771rW/hmWeeMWo4RESkUzQ1V7UNXixYWSM7A8Y6LSJ9DAtj27dvx8iRI5GXl4ecnByMHz8e1dXVIe8JBALo6OgAAHR2diIrK8uo4RARkU5ymwFmTfBELPuFF+0HU/oMEUUyrGbsyJEjKCwslB4XFRVh165dIe+55557MHv2bCxfvhzZ2dl48cUXo/qOgoJ+cRmrmsLC/oZ/B0WP98V6eE+sKdb7UnFVf1Rc9R3V97z2fm1E0T4AFOZn4/dLxsX0vemAf1asycz7YlgYCwQCsNls0mNBEEIed3V1YfHixfjjH/+IYcOG4Q9/+AMWLlyIVatW6f6O1tYTCIRv+YkjvTuRKLF4X6yH98SajL4vLW2dis/zvw/y+GfFmoy+L3a7TXUCybBlSrfbjZaWFulxS0sLioqKpMd79+6Fy+XCsGHDAADf//73UVdXZ9RwiIgozli0TxQfhoWxUaNGoba2FkePHkVnZye2bNmCMWPGSK9fcMEF8Hq92L9/PwDg7bffxtChQ40aDhERxRmbqxLFh2HLlAMHDsT8+fMxc+ZM9Pb2YurUqRg2bBjmzJmDefPmYejQoXjggQdw1113QRAEFBQUYPny5UYNh4iI4ozNVYniwyYIgnFFVwZjzVh64n2xHt4Ta+J9sR7eE2syu2aMHfiJiChpWOUwcqJ4YhgjIiLTRBOuxL5mYjsN8TByAAxklNQMPQ6JiIhISXjTWDFc1TZ4Zd+vdhg5UTJjGCMiIlNEE65qG7yWO4ycKF64TElERJqMqNXSG67EGTQl7GtGyY4zY0REpCra5US99DaNlZtBE7GvGaUChjEiIlJlVK2W3qaxasuQPIycUgGXKYmISJVRtVp6m8YWDHDJflfBABeDGKUEhjELq/PWY2NzNdq625HvykNFcTlGuEvNHhYRpRm1MJQIlWOLQ1paAFyepNTCZUqLqvPWo6rpFbR1twMA2rrbUdX0Cuq89eYOjIjSjlFnUOqtRSsrcWPWBI8U/goGuLg8SSmFM2MWtbG5Gr2B3pDnegO92NhczdkxIkooo86gVKtFC792WYmb4YtSFsOYRYkzYnqfJyIykhFhiH3DiE5hGEswvXVg+a482eCV78ozfpBERAlgdi0akVWwZiyB5OrA1jSuw93/+8uIWrCK4nJk2DNCnsuwZ6CiuDxBoyUiMpZRtWhEyYYzYwkkVwcGAB2+k1jTuA772w9gmqcSAKTZMu6mJKJUZVQtGlGyYRhLkDpvvWa913uHdmDn4b/ipL9TCl/3j16UmAESEZlAqRbNiOOXiKyKYSwBxOVJPU76OwGcbmUBgLNhRJRWxJYX4k5LseUFAAYySkkMY3GkVJyvtDypha0siCgdRdPygigVMIzFiTj7JYau4JmtvrSjYCsLIko3bHlB6Ya7KeNEqUnry3s3wg5bzNdlKwsiSjdKrS3Y8oJSFcNYnCjNYHX4TiIAIeL5DHsGrjx7pBS2cp05sIfdDrayIKJ0xJYXlG64TBknSk1a5dhhw3TPlIhaMB4MTkTElheUfhjG4uTiAg/eO7RD13sDEBiyiIhU8CxKSicMY3FQ563HDu9O3e+XqwNT2wDA4EZE6YQ9xijdMIzFQTStK5TqwJQ2ALC1BRGlEq2gxR5jlI5YwB8HemvF8l15srViatdgawsiShVi0BJbVIhBq7bBK71HrccYUapiGIsDve0n7h+9SHGWS+kabG1BRKlCT9BijzFKRwxjcVBRXI4Me4bqe7R6jVUUl0e0trDDztYWRJQy9AQt9hijdMSasT4IbkWR48hGpjMDHb6Tsu8dffblmtez2WwIbklms8XeLJaIyExytWEFA1yygSw4aFWOLQ6pGQPYY4xSH2fGYiTufhRruk76O9HhO4krzx6JK88eGTET9klrE+q89YrX29hcDb/gD3nOL/ixsbk67mMnIjKSUm3YsOICzWauZSVuzJrgkQJawQAXZk3wsHifUhpnxmKktIPyvUM7MGvINHw775t4rvFFBHDqX3dt3e14rvFFAPKtKljAT0SpQqk27P+ajiDDaUOP79Rz/bKduOnaCyOCFnuMUbphGIuRWkja2FyNbl+3FMREAQTw0qcbZMOYUgd/FvATUbJRqg070ekLedzZ5cOf3tqL1Zsa2U+M0hqXKWOkFpLauttx0t8p+5rS83KbAHg2JRElI73F9n7hdECTa3NBlC4YxmKkFpJimc0a4S7FdM8U6bNqPcmIiKxM7qBvPXp8ATzzeqNhgay2wYsFK2swe8VWLFhZw+BHlsFlyhiNcJdif/uBiPMoxdmsl/dulN1ZaYMNdd562ZA1wl3K8EVESU/uoO+uHh86uvwanwQCAgzpuM/O/mRlDGN9MM1TiW/nfVNqb5HvykNFcbkUqJ7f81LEDkkBguyZk8FtMsKvQ0SUbMIDWW6WA06HDT6/oPHJ041g4xmS1BrOMoyR2RjG+khpNkt87rnGFxBA6P/4hJ85yUPCiSjVhM9EibNiNhsgCEBulgPdvQHFcKa3477eQ8XZ2Z+sjDVjBhrhLo0IYqLgnZNqh4QTESUjuZko4FQQy3TaMf26wbjl+otgV+htrWcTgJ6zLrWux87+ZAUMYwbTc+akWo8xtUaxRERWpTbjFLw8eOukIZqNYJVEc6i43KYCdvYnq+AypQHCj0ly2BwhtWPhLSuUeowB4HIlESUlpaOPROJrcsX+SkuNwUuS/bKdEX3Lgq+9YGVNyHWi+R6iRGMYi7Pw+q+T/k7YYUeuMwcdvpOyxfkVxeUhnwkWXl9GRJQM5M6YDBa8PKin4354DZpSEBO1HuvG6k2N2HewHTPGe3R/jx5669SI9GIYizO5+q8AAsh0ZOKhMb+U/YwYtNY0rpN9XVyu5G5LIkoWYjipevPTiJYWsSwPKtWgaXnno0MYdG5e3MISW2SQEVgzFmexnjE5wl2q2ix2TeM66RribkvWkxGRlZWVuPHkXWMxZ/KQPh/83Zddj3I1ZH25lt46NSK9ODMWZ3rOmFzXtB41hz5AAALssGH02ZdjmqdSdbkyHJcviShZxGN5UKsGTU0821ewRQYZgWEszuQCVXDB/rqm9SFd+wMQpMfTPJUAIC1H2mFTbI0BnJohu3Pr3Vy2JKKUoVSPpVWDpiae7SvstlOnBMg9TxQrhrE4EwORUn1XzaEPZD9Xc+gDTPNUhjSRvXPr3bq+k01iiSgV6KnHEoOa2DxWS7zbV8gFMbXnifRgGDOAUlf+Om+94kyX3PNqLS/CcdmSiJKd1pFFwcud4cENOBW8Rg91Y1dzq2E7HZWWS9k8lvqCYSxB6rz1eG7Pi4qv2xE5x31xgSfiIHI1eoMbEZEVRVOPZVbfMLnlUjaPpb5iGEuQl/duREBQrnUYffblIY/rvPXY4d0Z8b5MWwacdidO+jsjXlPbjUlEZHXRzjpFuzEg2v5gau9nnzGKJ4axBOnwnVR9XSzeF8n1KwOA3MxczU0CRETJyMhZp2j7g2m9n+GL4ol9xixAbolSrV/ZCHcppnumSDNh+a48TPdMYb0YESW1shI3Zk3w9LknmZxo+4OxnxglEmfGEiTHkS27tAhEV7wvBjClTQJERMnMqFmnaPuDsZ8YJRJnxhLke4O/q/iaDbaIbvoVxeXIsGeEPMelSCKi6NU2eBX7gCnVo0X7PFFfMIwlyAh3Ka48e6TsawIEPL/npZBANsJdipHuy6QlTDtsGOm+jLNhRERREGu/5PqAqdWjVY4tRqbTrvv9RH3BMJZA0zyVyHFky77mF/zY2FwtPRZ3U4pLmAEI2OHdyfMoiYiioHTAuN0G1Xo0I+vXiMKxZizBlOrGgNCifbndlEqNXeu89Yod/4mI0plSjVdAkN9FGYy7JilRGMYSIDgsqZ03GdwnTG03Zfi1g9tc8GgkIko20fb/iobaAeO1DV6GLbIELlMaTAxLYohSCmIOmyOkOF+pgWv482ozaEREVifWdImBSeznVdvgjfo6C1bWYPaKrViwskb6vFqNF9tUkFUwjBlMqXlrsFxnDn5w0fdCZrL07qbUO4NGRGRF8ejnpRbo1Ga+2KaCrILLlAZTC0VPXfOQ4mtiMBOXN3OdORAEAWsa12Fjc7VUF6bVj4yIyMri0c9L64BxHu5NVscwZiC1nY9qYSm8IP/Ks0dih3enbF1YX45GYuE/EZktHkFJK9DpPWbJyNo1IjUMY3EUHm66fcr/slMKS3IF+e8d2hHxPrEu7P7RiwAg6lDFwn8isoJYzqMMD039sp040emLeJ8Y6MIP987NcsBms2H1pkas39YsfZfaWZQMamQkhrE4kQs3apQCj54aM5H4HeFLmmLxvlqoiqZ1BhGRUcKDklbQeW5zE9756JD0uPVYNxw2wOmwwec/vUEqPNCJbSpOHwDulz6/5o0m2GwCenyhG6x6fAGs3tSI1ZsaQ57XOmScKFoMY3ESTYhSW6KMpvBevE4ss1ws/Cciq9Dbz6u2wRsSxER+AcjNsOMbuU7NQKdUXxat4Jo0or5iGIsTvSFGrOdSqtdSKshXug4Q2ywXC/+JKNmo7bDs6PLjybvGal4jnjsouRuT4oWtLeJEKcS4HJkR50sCCOk91tbdjjWN67Cuab1iS4srzx4pfUe+Kw8j3Zfh5b0bcefWu2Oa5eJB5ESUbNTCj96C/3juoORuTIoXzozFidyuRofNgV6/L+R8yfcO7cD7hz6AINP89b1DO/DtvG9iumeKakF+nbcez+95CX7Brzqm4IAoNxOn9T1ERFai1k1f7wHechsGYsFDwymeGMbiJLyIXtxNKXcWpVwQE728dyMeGvNLzeJ7rSAWPMulVFM23TNF2o1JRGRVwTsZ5Vx96dm6a87EmjG77dT5lAUDXBhWXICa3V7dAY27KSneGMbiaIS7NCRE3bn17qiv0eE7iTpvPUa4SxXryrRqysJnubhzkoiS1endj5FBKZpQFH6dgHB6dqusxI1B5+ZFtL440ekLCW0MYGQUhjED5TiyZWfGtIitKZR2SKoV+ee78iJmu7hzkoiSldzuR5GecKQ2qxa8I1JpR2fw58UNBAxkFG+GhrFNmzbh6aefhs/nw6xZs3DzzTeHvL5//34sXboUX3/9NQoLC/Hoo4/iG9/4hpFDMkz4LNbFBR50B3piupbYK0xpNquiuFy2ZswOu2wBPndOElGyUivaV2stUdvgRdWbn6KjS72kQ+364bNp7C9GRjFsN+Xhw4fx2GOPoaqqCq+99hpeeOEF7Nu3T3pdEAT8+Mc/xpw5c7Bx40ZcdNFFWLVqlVHDMZRYkxW8O/K9QztU67oy7BnIsGXIvqY289XW3Y4R7lL84KLvIdeZIz2f48jGjCH/T3bZkTsniShZqe1YVApSYojSCmJa14/HIeZEehg2M7Z9+3aMHDkSeXl5AIDx48ejuroac+fOBQA0NDQgJycHY8aMAQD86Ec/wrFjx4wajqGiafgKnK7pAqB4rqQ4yyb3WSCyPk2N3OYC7pwkomRQObY4ogO+SClIqS1tBtPaERmPQ8yJ9DAsjB05cgSFhYXS46KiIuzatUt6/Pnnn+PMM8/EokWLsGfPHnz729/Gz3/+86i+o6CgX9zGq6SwsL/me9qjqL06M+cMrJy8THr8ZfchvLX/fQSEAOw2O67+VhkmDh2LAQOy8T//txY9/tNLnZmOTPzg0ht1jSncxMKxmDhUuyFisojld0DG4j2xpmS/LxVX9cc/vurAX2r/HvK8K8OBH04qkf35juoIS4X52Zg54SJcddl5qu9paYus+y3Mz+7T77Xh83Y8+8YefNXWiTN1jIMSw8w/K4aFsUAgAJvNJj0WBCHksc/nQ11dHZ5//nkMHToUjz/+OFasWIEVK1bo/o7W1hMIBJTbRPRVYWF/tLQc13xfns6u+QBwUd6F0jXrvPV457NaBARxd08AW5r/FzV//xBTL6zATYMrI2azPDkX6RpTKtN7XyhxeE+syar3JdpDt6eOLcY5Z+ZGfKbk/LyQn0+8rtrfCplOO2ZN8EjfF/77CR5bbpZD9szLG674Vsy/14bP2/Hkix9LM3ctbZ148sWPcex4F+vQTGT0nxW73aY6gWRYGHO73fjwww+lxy0tLSgqKpIeFxYW4oILLsDQoUMBAJMmTcK8efOMGo6h5Bq+KvmktUn6zy99ukH2Mx2+k+wDRkQpKdaieK3zK9VaYIj6ZTtx07UXqhb9B1+jo8sPh+3U5050+uLS3uLZN/Yo1qExjKUvw8LYqFGj8OSTT+Lo0aPIzs7Gli1b8Ktf/Up6/dJLL8XRo0fR1NQEj8eDrVu3oqSkxKjhGEquJkurnUSdt1617QX7gBFRKlIriu9LGFGrE9MbouSu4RdOLYk+8ZMxMY8t2Fcyy54A69DSnWFhbODAgZg/fz5mzpyJ3t5eTJ06FcOGDcOcOXMwb948DB06FE899RSWLFmCzs5OuN1uPPTQQ0YNx3DhBfVLaparFuCLvcTUsA8YEaUao4ri1T7/8B2j+3SNeAalMxXq0HjOZXoztM/Y5MmTMXny5JDnVq9eLf3nSy65BC+//LKRQzCN3NJlcDsJPUGLfcCIKNUonS/Z1zASy3XDa9fE5ch4jE2pLm7mhItCasYAnnNJ7MBvGK12EmpLmcCpBq49/h7cufXuqFtRKB2jRERkNrmDuuMRRqK9rlztmpxYxqZWF1dx1Xdw7HhXVBsYKPUxjBlIrRdYRXE51jSuU/yszWZDh+8kgNNHIe1vP4BPWpvQ1t0OO2wIQIgIW0qHgovjISIykxg64h1Gor2u3l5ko4eqbxwAImfBunp8inVxFVd9R3MzAqUfhjGTjHCXYn/7Abx3aEfI8xn2DGTaM6QgJuoN9Ia8N/DPzdvhYYuHghOR1fUljKi1xQi/bm2DFwtW1si+V28d2K7mVs3x6Jlhi+Y7Kf0YdhwSaZvmqcSsIdOk2rB8Vx6me6ZEBDEtYtgCeCg4EaUuMfiIoUZc/qtt8Eb9Xr11YFoBSu8Mm+jdnV/ofi+lD4Yxk41wl+L+0Yvw1DUP4f7RizDCXRpy5qReYthSKvrnZgAiSnZVb36q+6xIrXMlK8cWI9Op76/A5zY3Kb4W7WzXs2/sier9lB64TGkxdd76qGfGgNNhS2sXJ4v7iSgZ1TZ4FQ/+lgtEWm0qxOXKqjc/1TxQfNvHhzBjvEf2NaVdnEqU+oxRemMYs4DggGSDTfsDMtq627GkZjkqissx3TNFNnCxuJ+IkpXc7JdIbslRq9WFWHvW0eWHK8OB7l7lQKZ26t6w4gK889GhiOcznTb0+CI/eGZ+tux1oj0iilILw5jJwgOSoHqqmjoxXCkdo8TifiJKVmqzT3KtJ+RaXTgdNnT1+DB7xdaQ96oFMQCwq/wbWanAPzPDASAQ0Wpj5oSLIt4b6xFRlDpYM2YyuYCkR4Y9AzmOyH9hBRfzh2NxPxElK6WC+37ZTtnAUlbixqwJHulzNhvg8wuaS5Jyxg4/W/E1pZB4otMX8v0FA1yYNcGDqy47L+K9WvVtlPo4M2YyvUEo05aB3MzckKVHpT5lStdUajTL4n4isjqlpq43XXuh4mfEkKZ1gLgaV4ZDsV4MUF8O1dvCIxHHMJG1MYyZTKsTv+jysy7DNE9lyHNiXZjcNeVoFfcTEVlVrM1io209EcxhA2aWD1Z9TzxOFDDqiChKHgxjJpMLSHI+aY3cWh1tuNI6oomIyGzRNHXVQ+/sktNhgyAI8P8zU9kAjBl+tub3xeNEAaOOiKLkwTBmsvCApETutVjCldoRTUREZjKikF1P64mCAS4MKy5AzW4v/IFT3y0AqNntxaBz83QFsr4U2ht1RBQlD4YxCxDD0XONLyIA5el0sXVFcJhiuCKiVKFWyB5rMJGbdQKA3CwHpl83WLrugpU1qt9tdOsJnleZ3hjGLGJjc7VqEAPkDwzPcWRLh4pz2ZGIkpkRhex6Z53UvputJ8hoDGMWoXdXZfiB4Sf9p7s5s4krESUzowrZ9cw6qX23ETN2RMHYZ8xEdd56LKlZjju33g17jJ33w6n1GSMisjK58yIdtlNNWWev2IoFK2tkDwU36rsznXYMKy5g6wkyHGfGTBLeeT/Qh8774djElYiSUfiSYm6WA929AZzo9AGI3/KgWv1X8PNF+dmyRx2J2HqC4oVhzCRKnfftsPU5mNlhQ523nkuVRJR0gpcUF6ysQUdX6OyT3PJgNMX1cvVfv3+9EX96ay9OdPpQMMCFOZOHAABWb2pUHCdbT1A8cZnSJEqzVwEIeOqah/p07QAEVDW9gjpvfZ+uQ0RkJj3Lg2K4Ep8TZ8+UljPl6r/8AiJm36re/FR1bLMmeFgvRnHDmTGTqB1NFI8QxQPAiSjZ6Snoj7a4Xk+dV48vgB6f+riiDWLi7N3RY904g33EKAzDmEmUuudfXOCRdkT2FWvHiCiZ6elMH21xvZ4msHrGFQ25pdHVmxqlZdDcLAdGXDQQu5pb2fQ1TTGMmUScsXrp0w1Se4pMewbqj+xSPBrpyrNHYpqnEuua1oe0t1DCA8CJKJnp6RGmZ/YsuKasX7YTDtuppUktmU57xKzb1ZdqH5EUTut8zI4uf8hGAfYxSz8MYybrFU7PhXf4Tqq+t/7ILrx3aIeuNhg8AJyIUoFWjzCt2bPwWakTnT44HTbkZtjR0eVX/e5ZEzxx6bofy0wc+5ilF4YxEyntqFQihjWt3ZZ22DDdM4X1YkSU8rRmz+RmpXx+AVmZ6v+otdvid0RRrEuj7GOWPhjGTGRETVeGPYNBjIhSllIbC6XQpBRoxN2TSsYOP7vPYxUpnY+phX3M0gfDmImUdlT25Xo8m5KIUpXeMyKDA5vdBgRiaN046Ny8eAw5ZGzimPRgH7P0wjBmooricqxpXCf7WrTNX2cNmcYQRkQpTU8bi/DAJhfEMp12ZDhtqjVj8a7XEmfvCgv7Y+O7f5OazALcTUkMY6Ya4S5VDGMBCMiwZ+iuKRPPo9zYXI227nbOkhFRytHTxkJp56I4QyYGHQCqS4etx7qxYGWN7q7+0RT6x6sWjVIHw5jJ1Jq/Xlzg0dXCAjhVfxbct0x8DICBjIhSgp42FkqBLSAAv7/nGulxbYMXmRmRrSuChXf1ByJbTehdOiVSw+OQEqTOW48lNctx59a7saRmudRlv6K4HBn2jJD3im0pPmlt0n19O2wRs2hiF34iolRQObYYmc7Qv7bCa6uUit7D+46teaNJs4g/mLgcGk5p6VTrOCWiYAxjCVDnrUdV0yvSDJg4ayUe5j3dM0Vq0JrvysNI92XScqNeSvVl7MJPRKmirMSNWRM8UrAqGOCKOCNST2BTa8KqtoNRbtZNaSauo8uveD4mUTjFZcrf/OY3mDdvHmw27QajpE6un1jw2ZHi/wGng5tarZjLkYluf4+u72YXfiJKJVr1Vnq69qvtaHz4jtFSrVg4uaCm1kOMTVtJL8UwtmPHDnz44Yd49NFHUVhYmMgxpRyl2Sm557UawWbYM+CAQ9f3sgs/EaUjrcCmVXum50xMUeXYYumMyXCtx7pR2+BlICNNisuUa9euRVlZGaZMmYL3338/kWOyPKX6LyVqs1Phn1VbVsx35WG6Z4p0lqXad4nvZfE+EdEptQ1exVmv4LClZzlUVFbiRr9s5b1wa95o4nIlaVL8b5Ddbscdd9yBq666CkuWLMHbb7+N888/X3r9lltuScgArSZ8GVHPrkW1fmLiUqVIqb+YHTbcP3qRavAT30NERKHCdz0Gk1vKjKb9xE3XXqh4bbGY38jZsWhba5D1aLa2sNvtsNls2LdvH7q6uhIxJkvTqv+So9ZPLHwmTKkQPwBBCoJKxPdwNoyIKJRS0X7BABcevmN0n65dVuLGvoPteOejQ7Kvi8X8SqcE9CVAsbVGalAMY4Ig4L//+7/xzDPPYP78+bj55psTOS7Liqb+K5haP7FgOY5sxWXIl/du1GwCG2tvsTpvPRvGElHK0tMwNla1DV7U7FZfilQ7JaAvAUrPqQRkfYphbNq0aejs7ERVVRUuvPDCRI7J0vSGqnAVxeURuyTlCuzVdq92+E5qjq830IvnGl/AmsZ1ukNVLEuvRETJRE/D2FiptcoQaZ0SEGuAMjJkUuIoFvCXlJTg5ZdfZhALo9akVY1cPzG5Ans9gUuLuNQZ3M9MjdrSKxFRKtDTfyxWeoKPnlMCYglQeprckvUpzoz94he/SOQ4koYYnmJZ0gvuJ6ZEaeYtVlr1bEDsS69ERMlCT/8xNWo1Xmq9xgD5UwL0ztJp1ZZF04aDrItnU8ZAT6iKldxyZl/Fq56NiCiZ6d0hGR6AhhUXoGa3N6TGa/WmRuw72I4Z4z2ygUiUm+XA9OsGxxSg9NSW9TVkkjUwjFmMGPKUdl/GIl71bEREqU4uACntknzno0MYdG6eFHz+9NbeiPMue32RO+T1Bii9tWXRtOEga2IYs6AR7lK8vHdjXOrHAEihSmnHZF+WXomIUkVtgxfPvN6IgHyHIVliMCorcWP9tuaIMKZUmK8nQLE4P30wjFlQnbcenb749HTLdeZghLtUc8ekkUuvRERWJ86IRRPEgNBgFK/wJC6Tar2Hs2Gpg2HMJGp9vTY2VyMA9W3SepUWDZOuGW2zWiKidKGnPYWc4KL7eLTPUDspIBj7iKUWxdYWZBxxlkosmg9vQaFUcJ+d0Y1fl7+A7Az9/8r6pLVJ9ZrcMUlEpD57lem046IL8mSfDy6619s+Qzwjc/aKrViwsibk7Eq9oZBLlamFYcwEWn29lAruS8/6HOd9ow2lZ32u+7vEsKV0Te6YJCJSnr2y24BZEzxYcFMp5kweonp4uNoB47UNXvzimS343Hs+1r75f1KYEndIioFMb8jKzXLE/LOS9XCZ0gBaRwtpzVKFHyw+b+Rb+JdzDsBp9wMA7rx8K27/12348B/fxBM7rlUdS44jW7omd0wSEclTajcRHLiUiu61eoGJS49lQ2twvvsL/MtFO/G/H42RXg8u8tfqWSZSO62Fkg/DWJwpFcrvbz+AT1qb0NbdDjtssgeCi7NUI9yl2N9+AO8d2gEAeOGTf8U3875CYe5xOO1++AN2tHT0xwu7/1VzPOIfWO6YJCJSFmu/Lj29wAoLbsPa+2rhdJ7aaTn/pt/gP773FD5oGIFH1v5M+hwgHwrlhO/apOTGMBZnSkuQYrACIBvEwmeppnkq8e28b+K5xhdw+MQ38MIn/4qflL2Fzl4nMhx+vPjJv6DHdwHyXep1X8HtMbhjkojSndosViz9uvT0AvvDpu/jnNn7UHTGETgdfvj8DhxpK8Lz1dOlzxQMcElj6/EFYLdBdWdnLN36ybpYMxZn0RTE23Fq1ko8pxIAltQsx51b78aSmuUAgBlDvg877Bh1XjO6fRl4qeFf0e3LwKjz9qOiuFxXd30iIjo9i6VUrxULPe0senq/ibWbp8Pp8KOzOwtOhx9rN98Eb+tZAE4thw4rLggZW0DQv3HAqJ+NEodhLM6iCT8BCHjqmodw/+hFACC7wxIAZgz5f9jyt8tx11+m4fVPL8GiLbfA37MAI9ylUqCTw5owIqLT1GaxYqEWdIJnrirHFmPs8Bp097hQtXkauntcuOKSGgCnNgj0+ALY9vEh2bHt+Xt7xLVHD42cwYv3z0aJxWXKOIvmbMng4Ka0vLmmcR3yXXm4uGA8DqEJQDu6fPn4utMDfEN+yVM03TOFy5JERP8U7472akEneOaqrMSNPZ/Px71P9eDAlzn4695xuHxIDzKddilARdNsdldza8jj2gYvu/UnOYaxOJMrlL+4wIMd3p2qOxnVlhvbuttDas6CZ83UDvlmECMiOi0eTVmDqQWd8Jmri84fh5/PAgoL+6Ol5TgWrKxBjy+2oBT8veLypJJYfzZKLIYxA8gVyn8775uqOxmVQpUSsS8ZW1YQEemj1L4ivP5Kr76Eu77MWAVfX61JbF9+NkoshrEE0drJGM3ypqitu50tK4iIdJJrXzGsuADrtzVj9abGqHcg9iXc6e0nFi78+mrXCG9KS9bFMGYR4aFKD7Gha3jQq/PWY0nNcoYzIqIwwe0r9PQI07oWAPzprb1S368Mp75mrHr7iQUTTwMIHpva7ByDWPJgGLMQMVQt2LYUJ/2dmu+X68Csp+ksAxoRkb4eYXr09J6+RkeXX1egE1975vVGXcX74acBiOK99ErmYBizoO8N/m7IcUhKghu6ivQ0nQ3eAMBARkTpKh47EJUC3epNjVi9qVF6LjfLgenXDUbFVf2l58pK3Nh3sB3vfHQo4roXXZCHI22dmg1cYz05gKyFYcyCxID00qcbVGfI5Hqa6V3iFDcAMIwRUbqKx+5KvcGto8uP37/eiAH9s1Byfp70fHibCtGnn7fj1klDdC+XMnwlNzZ9tagR7lI8PPa/8NQ1D+HKs0dGvO6wOWR3TEbTdDaa3ZtERKmmcmwxMp2hfw1Gu8QXTXDzC8Czb+wJeU4pzAUEsIN+GuHMWBL4dt43UXOoDgGcngoXhNNFBnXeeqnwP8OWofu6at37iYhSXTyW+KItxP+qrTPkDEm1MyhjqV+j5MQwZrLgICU2iA0utL+4wIOaQx9EdNoPIICNzdUAgOf3vAS/4AcA9Ar6W2Oode8nIkoHfV3iCw90WvrlZISEN63ifXbQTw8MYyaS2/kYXmgf/DhcW3c7/rTnFSmIRYuHiBMRxSZ4dkucUQsu2Jfj+OdiRDTtLNhBPz0wjCVI+AxYRXG57M7HaPVEMRMWjF36iYhio9SfzJVhQ3ev/FSXuJvydxqBLRxbVKQHhrEEkJsB09O6It4ybRnoEXql5c+NzdXSQeTsO0ZEpI9SOwulKtx+2U488ZMxAIDX3v8MLW3afSRFrBdLD9xNmQDxmAGLhwxHBp665iFUFJdjh3entJtS7DtW5603d4BERElAqY5LqfxL7M4PADMnXBSxg1MJlyjTB8NYAlilhYTYJFapMay4IYCIiJQphSS7wtRY8Puvuuw8jB7qlt5rt51q8CoX0FqPdWPByhq2t0gDDGMJoFUoL76e78rDlWePVHwcL0rh0CqhkYjIyuT6kwHA4PMjQ1V437J3d36Bmt1eaRdlQACa/3EMo4e6ZUOeWI/GQJbaDA1jmzZtwvXXX49x48Zh7dq1iu979913cc011xg5FFOpFcrnu/Jw/+hFmDVkGgBIuydnDZmG+0cvwrfzvhm3cYgHiyuFO+6uJCLSVlbixuihkbVc4aGqYIAr4jzJZ9/YI1tvtu3jQ1LfsXBiv7FEq23wYsHKGsxesZUzdAYzrID/8OHDeOyxx7B+/XpkZmZi2rRpuPzyyzFo0KCQ93311Vd48MEHjRqGJYxwl2J/+4GINhXijka1w713eHeq1pu5HJno9vdojsEOO743+LsAToXD4O8LHgsREWmTO8aoxxfAruZWPHzHaMXPfaVQvB88UyYn0f3GlHaMAtxUYATDZsa2b9+OkSNHIi8vDzk5ORg/fjyqqyNrkpYsWYK5c+caNQzLmOapxKwh00KWIKd7pmCEu1T1cG+lIJbvysOsIdN0BTEAmDHk/0m7JUe4SzHdM0V2LEREpC3WQ8bPzM+O6fuClzATMWOltGPUjBm6dGDYzNiRI0dQWFgoPS4qKsKuXbtC3vPss89iyJAhuOSSS2L6joKCfn0aox6Fhf3jdq2JhWMxcejYiOfbo6zVsgH4nxseAAD8+cAWfHXyqOr7z8w5I+J7lcaSLOJ5Xyg+eE+siffFGIX52bItKgrzsyN+5+/u/ALPvrEHX7V1ol+O/iPrgrUe68bC/6nFv3qK8PaHB9Hd65eef7b6Uwzon4WrLjsvpmvLOaoQKo8e607Z/06Z+XMZFsYCgQBsttOL34IghDzeu3cvtmzZgj/+8Y/wemNL9a2tJxDQOkuiDwoL+6Ol5bhh1xflufKiKp4XANz+2r2oKC7HxG+Oi1hyDDfxm+MS8nMkSqLuC+nHe2JNvC/xE95xf1hxAWqOd4fMHmU67bjhim+F/M7Dl/uOn4y9zVFLWyf+Uvv3iOe7e/34n1d3oeT8PNmxRnveJgCcMcAlO8t3xgBXSv53yug/K3a7TXUCybBlSrfbjZaWFulxS0sLioqKpMfV1dVoaWnBlClTcNttt+HIkSOYPn26UcOxtFhqtcS6MgCY7pmCXGeO7Psyozg4nIiIIomBSgwnrce6UbPbq1msD8gv9xnhRKcPtQ1e2bHGshtTbsdo+M5Qih+bIAiGTC0dPnwYN910E15++WVkZ2dj2rRp+NWvfoVhw4ZFvPfgwYOYOXMmtm7dGtV3pMrMGADM3boQQgwHd4u7MYFTnf5f+nQDTvpDp84z7BkpVRPGf+1bD++JNfG+xMeClTWys0R2G3DrpCEoK3GjtsGLqjc/RUfXqeXDftlO3HTthZrnVcaTGAzlxlowwKW6sUBOPGbYkoXZM2OGLVMOHDgQ8+fPx8yZM9Hb24upU6di2LBhmDNnDubNm4ehQ4ca9dVJ6YqzL1c9FFxJ8PKmuBkgPIyJDV1TJYwRESWSUlF+QADWvNGEfQfb8b8fH4I/6N/TJzp9+MNf9iA3yyEFtGC5WQ5kZTpVC/77ZTtDuvfHOk6t15SUlbhTNnxZjaFnU06ePBmTJ08OeW716tUR7zv33HOjnhVLNdM8lQAQdSCzB52GVuetZ0NXIqI4K1ConwJO9wiTW6Tx+QU4ZIqBMp12TL9uMMpK3IqzbuJMVHC9mR42GyC33sWjlayNHfgtZJqnEk9d8xBmDZmmWAMWLvDPpU2xV5kSu+IRtkREpEap475IrVpG3PUYbPTQ0zNOarVZZSVuzJrgiSpIyQUx1npZn6EzYxQ78RxJLWKvMK3DyAMx1KMREdHpJqfPvN4oG7zsNvVAFi68YWyG04aef65GirVm4ncGLxUG13DpXcJM9VqvVMEwZkEvfbpB1/uCu+ZrLUPyqCMiotiJYSZ82TDTacfooe6ImjE14rJkeNsLAOjpVV6SDK/hmr1CvbwnlqJ9MgeXKS2kzluPJTXLIwrw5dhhC9khqRa2HDYHjzoiIuqj8GVDsZ3FjPEezJ40BLlZDum9/bKdyHTKl4eIn69689M+dbnXWr5M9BFKFDvOjFlE+PmUauRaVVxc4FEs/lfrXlLnrcfG5mq0dbcj35WHiuJy7rokIlKgtMMw/PnaBi/+8Jc9Ee9z2G2oHFuM2gav7C5LQH+IqhxbjN+/3qg4I8ei/eTBMGYRWjVfokxbBjLsGVjTuA4bm6ulGa8d3p2KnwkgINvaQumAcgDSexnWiIiit35bM3wyKSknyyntolSiN0SdXjrdgx5f6HexaD+5MIxZhJ7WE4PzirH/2OdScX9bdzvWNK6DDTbNhrFy11c6oFwMbnrCGhERRVKa3Trxz+OQ1Ga/9IYosaC/xyegX7YTgiCgo8vPov0kxJoxi1Cr+cp15mDWkGk40tkqO3ump3O/3PW1epKphTUiIlKmNLtls9tQ2+ANqS8L5sqw6QpR4ccenej0odcnYM7kIXj4jtEMYkmGYcwi1ArsMx2ZGOEujblxa/Cuy2BKAVB8ng1kiYhiM6y4QPb5QEDAmjea4JMvF0OGUz6khZM787LHF8Azrzdi9oqtWLCyRvY8ytoGLxasrFF9DyUew5hFqC37tXW3Y0nNct2NYIPlu/IUz6WsKC5Hhj30IPHg4KYV1oiISF54L7FgPb6AbDNYAFLvMK3QpHZEk/h6+AHh8TpEnOKPNWMWku/KU52NssEGh80Bv6DwT6qg6+gptBdfVyrQryguj9jhqTTLRkREp8XaVqJggCui/5gYmoDTRftqRzSJxDYZ4meUZtOC30PmYBizELX2FMCp2jAH7HA5MhV7keW78nD/6EW6v3OEu1QxtGmFNSIikqcVlmxARLWvuANST2jSe25l67FuLFhZg8qxxYrjYT8y8zGMWUSdt161PYWoR+hFhi1D8fW27nbUeet1Byat1hVqYY2IiORphaXwIJab5ZAOD1+9qVH2M8GhKXi2q/VYt+qRTOLMmtIRSuxHZj6GMYvQ22cM0D63Uqv9RHAAC8bWFURE8aEUlux2GwIyqSkr06m5BBkemsLPrVQLfz2+ADKcNmQ67RHHObEfmfkYxiygzlsf1x2Kwb3C5L5LrdO/2meJiEg/uW79tyqcJxkcvuRm1bRCU3j4k9PR5cecyUOk9xjVjyz4QHP2PNOHYcxkYjiKN6Vwp2cGjq0riIiMcWZ+NlraImt+g2e9woOV3kAjhr8FK2sUZ9aUjnOKFz2bDygSw5jJ1MKRw+aAy36qWD/flYeTvpPo9vfovrZcPZieoMXWFURExpg54SI8+eLHirNe4bNKcyYPiSrE1DZ4ZdtmJGo5kjs2Y8MwZjK1cPSDi74Xsly4YNvSqK79XOOLCCAgfU9V0yvIcWQr7sQE2LqCiMhIV112Ho4d75Kd9Yp2Vik8uA0rLkDNbm9EGAreHKAmmuVFpfdyx2ZsGMZMptRbLN+VF1G3pRai5IhBTNQb6IUPkTtpgr+TrSuIiIyltFQYzaySXHB756NDst8XvDlAidz1Vm9qxL6D7Zgx3qP5XjE06t18QKEYxkwWTWNVrVktPcLPscxxZON7g78rBbA6bz2W1CxnXzEiogSLZlZJLrhFe10913vno0MYdG5eSJhTO4pp7PCzI2bnuGNTG49DMtkIdymme6ZIdVpqxxfZbLa4f3+Xv0v6z+JmAnGmTlzarPPWx/17iYgolNLskdzz0Sz72W3QPPJI7XrrtzXrem9AAGp2ezF6qFsac8EAF2ZN8LBeTANnxixAb2NVrf5iwew2OwKC9r+aAhCk3ZxymwnY6oKIKL6U6q2iaWmh5zgkUUAA1rzRhH0H27GruVW2JkzteuHPq723xxfAruZWPHzHaF1jo1M4M5ZE9O5ydDkyI9s7qxADl9q5mERE1Hfv7vxC8bDushI3Zk3w6JpVinbZr8cXwDsfHVI8JFzteuEzc5Vji5HpVI4PLNaPHmfGkohcfVl4+4uK4vJTwcrfHtW1xRoxpc0ERETUd8++sUe1SF+uuF9u1+Su5tY+jyX8e/cdbI/YBCA3MyeO75nXG2WPYGKxfvQYxiwuvFfYSPdl+KS1SbXAfk3juqi/R7yW3s0EREQUva9kGr4C8rNJtQ1eVL35KTq6/CHvU9o1KVI7p1Lte2eM92DQuXm62luIz0V7UgDJYxizsPCji9q627HDu1OxwF+kNMOlRAxc4jXVDg4nIqLoBM9s2WyQLSPpl+2M+IzaWZNKMp12jB7qlu03pjY+MVzpmZkTA1qsJwVQJIYxC4u1oF5uhktJeGsLvZsJiIhIW22DF3/4yx74/KcSmKAwYyWEvRBN6wpRcBgadG4eVm9q1PU5te74Wo1ojT5eKV0wjFmYWkG9Wi+w8BkuO2wIKFT0u5wuhi8iIoP86a29UhBTE7wUCURfBG+3IWRWqqzErXpouN7v4vFGicEwZmFqy43hvcAARASy4EauSnVk3ClJRGScE53Kp54ECy96j6Z1BXC6fQVwup5LrlWGnu8OxuONEoOtLSysorgcGfYMzff1Bnrx8t6NWFKzHHduvRtLapaHNGod4S5FrjNH9rPcKUlEZC65onet9hFyxBkrUXirjH7ZTjjCeodrFdxH04iWYseZMQuTK6hXmsnq8J2UmsLKzZZNvbCCOyWJiBIsN8sRsQQJAGIdv1LRe3hxfG6WA929Ac0lz/AZq/Caruc2N2Hbx4cQEE4tbY4eql7zFU0jWoodw5jFhRfUi7ViWsIL/blTkogo8aZfNxi/f70RwRnKYQNmTxqiWXMVHqSCdzUqta9Qm7GqbfCiZrdX+px4fFH42ZPhYwC4Y9JoDGNJJpqdkuGhjTsliYgSKzzMFOZn44YrvhVTmAkOZ3KtL7RmrPQU42u1sSBjMIwlGbkZrm5fN076IxsJsh6MiMh8wWGmsLA/WlqOx+WagPaMVXC4UiK+ptXGgozDMJaEwme4wpvDAqwHIyJKdVoNWvtlO9HZ5YNWZw1xaZNtLMzDMGZx4cchydV5KdWDAVDtR0ZERKkjfGZLT1uN4KVNtrEwD8OYhckdhyTXU0x8rDZbpvZZIiJKftF27Q9f2lTrbRZ8ZBLFH8OYhcV6HFJfP0tEROZSKqRXo3cGq2CACw/fMTri+cqxxYpHKFW9+Sl3VBqIYczCtLrvG/VZIiIyj55Cermwpqdrv9yOSz1F/h1dfqlfGgv7448d+C1MaTeknl2Sau8J7s5PRETWolZID5wOa2J4EsPRsOKCiK79TocNuVkOAKdmxGZN8ET0Lgu+ll7h3f6pbzgzZmFyPcX07pKsKC5XPI+SS5VERNalVUivFNZ2Nbdi1gRPVMuJ0daZhY+HtWTxwTBmYX3pmj/CXcrDwYmIkpDScqPYgkItrEXboFVrRqxggAvdvX7FnZlcrowPhjGL60vXfKWzLOPdDFZP+w0iItJH6zxIrbAWDa06s4fvGC3b7V/EPmTxwTCWYoKDkcuRGfG63mVOvQGLLTSIiOJLqbs+ACxYWSMbnmI9vFttB6UY7sTxKL2Pfcj6jmEshYQHo25/T8R7Rrov0wxJ0QQsttAgIoo/uUPClWangmvDntvchG0fH0JAAOw2YOzwszFjvEf1e/YdbMc7Hx0KeT483JWVuBV3XMYyI0ehuJsyhcgFo3CftDbFdB0xYIVjCw0iIuMpFdqLPcPEIPbOR6eCGAAEBOCdjw7huc3q/7s/Y7wHcyYPkUKV3K5L4NQsWvhuzVhn5CgUZ8ZSSF/6j+l5j1L9WSLq0oiI0oVcDzG1ov3ZK7aiYIALR4/Lv2fbx4cw6Nw81V2Wegr/9R5OTtFjGEshSsEoWK4zR/O8ymgCVl/abxARUSilhq+5WQ6p6aoctbqtgADNJrJ6x8YgZgwuU6aQiuJyZNgzFF932Bzo9HVJQUusBQtvAit3HaWANcJdiumeKVJQy3flYbpnCuvFiIhioNRDzGazRSwRRkOtiaweco1mV29qxH88vg21Dd6Yx0WncGYsSantdhSfz3XmQBAEnPR3It+Vh25fN076O0OuI1dsH21/s7603yAiotOUZrhOdPowZ/IQzWOL4vFdcpRq1jq6/Ow1FgcMY0lIbrfjmsZ1WNO4TjU43bn1btnryS1JMmARESWeWg+x4Lou5RYXNvj8Qshuyl3NrTHvgtRzbiV7jfUdw1gSUts1qdaGgsX2RETWptXwVTSsuCCiHQUAjB56VkQrC7m2GHp2Qaq10wjHXmN9wzCWhLSK9JX6fLHYnojI2vTuWNzV3Cr7ebnnY90FGc25ldH2GuNmgFAMY0lIz65J8fXw2rKR7svwSWsTjy4iIrIoPW0mtA4Tj+Waeq8VLtpeY0o7RsVxpiOGsSQkN8MVLt+VJ1tbtsO7k7sdiYiSXDzPp4z2O/plO+HKcMQ8q6W0YzSd684YxpJQ+G7HcOLSI48qIiJKTXpry4z4jpuuvbBPoSnaWb10wDCWpIJ3Oyq1uVjTuE72szyqiIgouSWiG75R35GIWb1kwzCWApTaUCjVltlhQ523nrNjRERJLJY6MCt8RyJm9ZINw1gKU6otC0BQbH9BREQULp67H3nGZSSGsRQmBq3nGl9AAELIa6wdIyIiPYzY/ZiIWb1kwjCW5NSORQLA2jEiIuoT7n40HsNYEpNrXSG3/MjO+0REFCyaZUfufjRe7EfAk2nqvPVYUrMcaxrXKbauCFZRXI4Me0bIc+y8T0SUnsRlRzFMicuOtQ1e2fcr7XJM592P8cYwlmTE2TC1Jcbw10a4SzHdM0WaCct35bHxKxFRmlJbdpRTObYYmc7QuJDuux/jjcuUSUbtkHCR3PKjUvsLIiJKL7EcpQRw96ORGMaSjFbRPZcfiYhITSxNV7n70VgMY0kgeMekHbaINhUiHvxNRJS84tnLSw2brloPw5jFhe+YlAtiGfYM1oARESUxI3p5KeGyo/UwjFmcUo2YOEPG2TAiouSX6F5esSw7JmrmLh0xjFmcUo1YAAKeuuahxA6GiIgMYfVeXomcuUtHhoaxTZs24emnn4bP58OsWbNw8803h7z+1ltv4cknn4QgCDj33HPxwAMP4Bvf+IaRQ0o68W7YqtWxn4iIEi+WovpEYhd+YxnWZ+zw4cN47LHHUFVVhddeew0vvPAC9u3bJ71+4sQJ/PKXv8SqVauwceNGDB48GE8++aRRw0la8WzYGt6jTOzYX+etj8dQiYgoRlbv5WX1mbtkZ9jM2Pbt2zFy5Ejk5eUBAMaPH4/q6mrMnTsXANDb24ulS5di4MCBAIDBgwdj06ZNRg3HsvScLQlA12yW1rXk6s94YDgRkfmsXlRv9Zm7ZGdYGDty5AgKCwulx0VFRdi1a5f0OD8/H9dddx0AoKurC6tWrcKMGTOi+o6Cgn7xGayKwsL+hl37vb/X4U+frkePvwfAqZmqP326HgMGZOPKC0ZI75tYOBYTh47t87XaFerP2rvbDf05jZBs400HvCfWxPtiPUr3pOKq/qi46jsJHo0+P5xUgt++9Fd09/ql51wZDvxwUknK/HfMzJ/DsDAWCARgs9mkx4IghDwWHT9+HHfeeSc8Hg9uvPHGqL6jtfUEAgH5nlvxUFjYHy0txw27/vMfvSqFJ1GPvwfPf/QqPDkXxf1aOc4cdPhORnw2x5kT8XNaubbM6PtC0eM9sSbeF+tJ1ntScn4eZpYPjpi5Kzk/T/PnqW3wourNT9HRdSrI9ct24qZrL7TMrB9g/H2x222qE0iGhTG3240PP/xQetzS0oKioqKQ9xw5cgS33norRo4ciUWLFhk1FMtS2imp1WU/1msJgnxwDX8+vLeZWFsGICSQWTmwERFRfMXaDuP3rzfCH/TXzIlOH/7wlz3SNcnAAv5Ro0ahtrYWR48eRWdnJ7Zs2YIxY8ZIr/v9fvzoRz/ChAkTsHjxYtlZs1SntCMylp2Seq510t8p+57w59Vqy0TcDEBERKLaBi8WrKzB7BVbsWBlDWobvABO1cD5ZeYBfH5B8WDydGTYzNjAgQMxf/58zJw5E729vZg6dSqGDRuGOXPmYN68efB6vWhsbITf78fmzZsBABdffDGWLVtm1JAsp6K4PGQGCoh9p6Sea+ltk6Fnlo2bAYiICFDvQaa225I7MU8ztM/Y5MmTMXny5JDnVq9eDQAYOnQompqajPx6y4tmp2Q8rqU3/OkJbfFcYiUiIutT6sCv1oNMaRcmwJ2YwdiB32Qj3KVxm0nSulZ4YLPDFrL8KL4ez1k2IiJKfrHMfqnNfDkdNsv0ULMChrEUoqegXnysVqAfz1k2IiJKfrHOfsmx4m5KszGMpQi9OyABffVe0c6ycTclEVHqUpv9mjN5SMismZKCAS48fMdoI4aX9BjGUoRSwHqu8QWsaVwXEpbiVe8VzyVWIiKyLrUO/OGnByhhwb4yhrEUoRSkAhCk18WZMtZ7ERFRNCrHFkfMfgWfnRncg+w/Ht8mNXgNlpvlSMxgk5BhfcYosfQEKXEpMp6HjxMRUeorK3Fj1gSPtAOyYIALsyZ4ZOu+lPqGpmM/Ub04M5Yi5Arq5bR1t7Pei4iIoqa3A/+JTl9UzxPDWMqQa1shLlEGE2fQWO9FRERqlPqKaVGrLyN5DGMpJDhghe+uFLV1t2NJzfI+z4TxXEoiotT13OYmvPPRIelxcF8xrUCmVV9GkRjGUlT4TFmwvh78HU0bDSIiSi61Dd6QICYS+4pphbHw3ZXRzKqlK4axFCbOlC2pWR4RyML7isW7TxkRESUntQO89ban0FtfRqdwN2Ua6OvB37Fcj4iIkpNa4GLdlzEYxtKAUtuLWA/+1nM9IiJKTmqBi3VfxmAYSwN6+opFE7DYp4yIKHVVji1GpjMyHlx96dlcejQIa8bSQLwP/mafMiKi1MUC/MSzCYIQ2YwqSbS2nkAgYNzwCwv7o6XluGHXt5pkaVeRbvclGfCeWBPvi/Uk6z2JtedYsjD6vtjtNhQU9FN8nTNjJGEjWCIiClfb4A3pGxZNzzHShzVjREREpGj9tuaQBq7A6Z5jFB+cGaOoJMtSJhERxYdSqwu9PcdIG2fGSDexMazY7kJsDFvnrTd3YEREZBilVhfsORY/DGOkWzSNYYmIKDXItbrgWZPxxWVKAqBv+ZGd94mI0g9bXRiPYYx0n0uZ78qLqiM/ERGlBqWzJlO95UWicJmSdC8/svM+ERGJxJYXYiG/2PKitsFr8siSD8MY6V5+HOEuxXTPFGkmLN+Vh+meKdxNSUSUhtjyIn64TElRLT+yMSwREQFseRFPDGMU1bmUAHuNERHRqdYWcsGLLS+ix2VKimr5kb3GiIgIYMuLeOLMGAHQv/yoVuzP2TEiotSktmtSfN5uC60Z465K/RjGKCrsNUZElF70HBQezUHibIcRicuUFBWlnmLsNUZElJq0dk1Gs6uS7TDkMYxRVNhrjIgovWjtmoxmVyXbYchjGKOosNcYEVF60TooPJqDxNkOQx5rxihq7DVGRJR6lGq5KscWh9SEAaG7JrVeD8Z2GPIYxoiIiNKcniJ9paL7aA4Sjya4pROGsRTCZqxERBQLtVou8ZBwtR2PWq8Hv0/8Pu6mPI1hLEWIzVjFHmBiM1YADGRERKQqkbVceoNbOmEBf4pQa8ZKRESkJpoifIo/hrEUwWasREQUKx5tZC4uU6aIfFeebPBiM1YiItLCWi5zMYyliIri8pCaMYDNWImISL9UreVKhuOXGMZShFikz92UREREp+hp2WEFDGMphM1YiYiITtNq2WEVDGNERESUVIKXHu02ICBAdgkyWY5f4m5KIiIiShri0qMYqALCqefFJcjaBq/03mRp2cEwRkRERElDbulRJC5BipKlZQeXKYmIiChpaC0xBr+eLC07GMaIiIgoaRQMcKkGsvAlyGRo2cFlSiIiIkoackuPIisuQerBmTEiIiKytPDGraOHurGruVVzN2WyYBgjIiIiy5Jr3Fqz24tZEzxJGbzkMIwRERGRZSk1bv3TW3stX5ivF8MYERERWZZSsf6JTh9OdPqk91jxmCO9WMBPRERElqW3QWt4j7FkwjBGRERElqW2ezKc1Y450ovLlGmozluPjc3VaOtuR74rDxXF5TxgnIiILEmucWtXjw8dXf6I91rtmCO9GMbSTJ23HlVNr6A30AsAaOtuR1XTKwDAQEZERJYU3rg1fIclkLw9xgAuU6adjc3VUhAT9QZ6sbG52qQRERERRaesxI1ZEzzSTFjBAFdSt7rgzFiaaetuj+p5IiIiK0qGY4704sxYmsl35UX1PBERERmLYSzNVBSXI8OeEfJchj0DFcXlJo2IiIgovXGZMs2IRfrcTUlERGQNDGNpaIS7lOGLiIjIIrhMSURERGQizowRERFRWqpt8GL9tmYcPdaNM0w8bJxhLA2xAz8REaW78MaxZh42zmXKNCN24Bf7iokd+Ou89eYOjIiIKIHWb2sO6eAPmHfYOGfG0oxaB37OjhERUSoQlx/Fsyzllh+VDhU347BxzoylGXbgJyKiVCYuP4qhSlx+rG3whrxP6VBxMw4bZxhLM+zAT0REqUzv8mPl2GJkOkNjkFmHjRsaxjZt2oTrr78e48aNw9q1ayNe37NnDyorKzF+/HgsXrwYPp/PyOEQ2IGfiIhSm97lx+DDxm0w97Bxw2rGDh8+jMceewzr169HZmYmpk2bhssvvxyDBg2S3rNgwQLcf//9GD58OBYtWoQXX3wR06dPN2pIBHbgJyKi1FXb4IXdBgSEyNfklh/Fw8YLC/ujpeV4AkYoz7Awtn37dowcORJ5eXkAgPHjx6O6uhpz584FAPzjH/9AV1cXhg8fDgCorKzEE088wTCWAOzAT0REqUasFZMLYmYtP+pl2DLlkSNHUFhYKD0uKirC4cOHFV8vLCwMeZ2IiIhIL7laMQCw22Da8qNehs2MBQIB2Gw26bEgCCGPtV7Xo6CgX98HqqGwsL/h30HR432xHt4Ta+J9sR7eE2McVagVEwSg4qrvaH7ezPtiWBhzu9348MMPpcctLS0oKioKeb2lpUV6/NVXX4W8rkdr6wkE5OYj48TsNWSSx/tiPbwn1sT7Yj28J8Y5Y4BLtnj/jAEuzd+50ffFbrepTiAZtkw5atQo1NbW4ujRo+js7MSWLVswZswY6fVzzjkHLpcLO3fuBABs2LAh5HUiIiIivazUqiJahoWxgQMHYv78+Zg5cyZuuOEGTJo0CcOGDcOcOXOwe/duAMAjjzyCBx54AOXl5Th58iRmzpxp1HCIiIgohQW3qgDMbVURLZsgCMat8xmMy5TpiffFenhPrIn3xXp4T6wpZZcpiYiIiEgbwxgRERGRiRjGiIiIiEzEMEZERERkIoYxIiIiIhMxjBERERGZiGGMiIiIyEQMY0REREQmYhgjIiIiMhHDGBEREZGJGMaIiIiITMQwRkRERGQihjEiIiIiEznNHkBf2O22lPgOih7vi/XwnlgT74v18J5Yk5H3RevaNkEQBMO+nYiIiIhUcZmSiIiIyEQMY0REREQmYhgjIiIiMhHDGBEREZGJGMaIiIiITMQwRkRERGQihjEiIiIiEzGMEREREZmIYYyIiIjIRAxjRERERCZiGAOwadMmXH/99Rg3bhzWrl0b8fqePXtQWVmJ8ePHY/HixfD5fCaMMv1o3Ze33noL3/3ud1FRUYE77rgDX3/9tQmjTC9a90T07rvv4pprrkngyNKb1n3Zv38/ZsyYgYqKCtx66638s5IAWvekoaEBU6ZMQUVFBW6//XYcO3bMhFGmnxMnTmDSpEk4ePBgxGum/l0vpDmv1ytcffXVQltbm9DR0SFMnjxZ+Nvf/hbynokTJwofffSRIAiCcO+99wpr1641YaTpReu+HD9+XBg9erTg9XoFQRCExx9/XPjVr35l1nDTgp4/K4IgCC0tLUJ5eblw9dVXmzDK9KN1XwKBgDBu3Dhh27ZtgiAIwsMPPyw89NBDZg03Lej5s3LTTTcJ7777riAIgvDAAw8Ijz76qBlDTSsff/yxMGnSJKGkpET44osvIl438+/6tJ8Z2759O0aOHIm8vDzk5ORg/PjxqK6ull7/xz/+ga6uLgwfPhwAUFlZGfI6GUPrvvT29mLp0qUYOHAgAGDw4MH48ssvzRpuWtC6J6IlS5Zg7ty5JowwPWndl4aGBuTk5GDMmDEAgB/96Ee4+eabzRpuWtDzZyUQCKCjowMA0NnZiaysLDOGmlZefPFFLF26FEVFRRGvmf13fdqHsSNHjqCwsFB6XFRUhMOHDyu+XlhYGPI6GUPrvuTn5+O6664DAHR1dWHVqlW49tprEz7OdKJ1TwDg2WefxZAhQ3DJJZckenhpS+u+fP755zjzzDOxaNEi3HjjjVi6dClycnLMGGra0PNn5Z577sGSJUtwxRVXYPv27Zg2bVqih5l2li1bhn/5l3+Rfc3sv+vTPowFAgHYbDbpsSAIIY+1Xidj6P29Hz9+HLfddhs8Hg9uvPHGRA4x7Wjdk71792LLli244447zBhe2tK6Lz6fD3V1dbjpppvw6quv4rzzzsOKFSvMGGra0LonXV1dWLx4Mf74xz/i/fffx/Tp07Fw4UIzhkr/ZPbf9WkfxtxuN1paWqTHLS0tIVOY4a9/9dVXslOcFF9a9wU49S+Z6dOnY/DgwVi2bFmih5h2tO5JdXU1WlpaMGXKFNx2223S/SFjad2XwsJCXHDBBRg6dCgAYNKkSdi1a1fCx5lOtO7J3r174XK5MGzYMADA97//fdTV1SV8nHSa2X/Xp30YGzVqFGpra3H06FF0dnZiy5YtUm0FAJxzzjlwuVzYuXMnAGDDhg0hr5MxtO6L3+/Hj370I0yYMAGLFy/mbGUCaN2TefPmYfPmzdiwYQNWrVqFoqIiVFVVmTji9KB1Xy699FIcPXoUTU1NAICtW7eipKTErOGmBa17csEFF8Dr9WL//v0AgLffflsKy2QOs/+udybsmyxq4MCBmD9/PmbOnIne3l5MnToVw4YNw5w5czBv3jwMHToUjzzyCJYsWYITJ06gpKQEM2fONHvYKU/rvni9XjQ2NsLv92Pz5s0AgIsvvpgzZAbS82eFEk/PfXnqqaewZMkSdHZ2wu1246GHHjJ72ClNzz154IEHcNddd0EQBBQUFGD58uVmDzstWeXvepsgCELCvo2IiIiIQqT9MiURERGRmRjGiIiIiEzEMEZERERkIoYxIiIiIhMxjBERERGZiGGMiNJaQ0MDLrvsMuzevVt67ujRo7j22mvx7rvvmjcwIkobbG1BRGlv3bp1WLVqFV599VXk5uZi9uzZKCsrw49//GOzh0ZEaYBhjIgIwIIFC3Dy5Emcf/75+OKLL/Dkk0/yZAciSgiGMSIiACdPnsQNN9wAn8+HTZs2ITc31+whEVGaYM0YERGAzz77DB0dHTh27BgaGhrMHg4RpRHOjBFR2jt69CimTp2Kn/70p+ju7sZjjz2GV199FYWFhWYPjYjSAMMYEaU1v9+P2bNnY9CgQfj5z38OALj33nvxxRdfYM2aNXA4HCaPkIhSHZcpiSitPfTQQ+js7MTChQul537xi1/g66+/xqOPPmriyIgoXXBmjIiIiMhEnBkjIiIiMhHDGBEREZGJGMaIiIiITMQwRkRERGQihjEiIiIiEzGMEREREZmIYYyIiIjIRP8ftDRxEu6zBdEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 2 0.72\n" ] } ], "source": [ "model15 = TrainModel_medoids(X2, 2)" ] }, { "cell_type": "code", "execution_count": 117, "id": "c4675813", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAHwCAYAAADq0mgNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABibklEQVR4nO3deWBU1d0//vcsSUgCachGFBUFhAiCgi0mQUFtBVFATPBXxAKKglZ9UGsRhbT0sYKKtm4t9geoiIIrUUAtglJ8lCRGgYqyyC6KTlYgJGSZ5X7/iHec5d47d5Y7987M+/WXs5/MJfD2nM/5HJMgCAKIiIiISBdmvQdARERElMgYxoiIiIh0xDBGREREpCOGMSIiIiIdMYwRERER6YhhjIiIiEhHDGNEMeT777/HkCFDvO57//33cfHFF6OysjIqY3jooYfw7LPPKj7nq6++wqxZsyQfu+2221BeXh7SZ3///ffo378/3nzzTa/7n3/+eTzwwAMhvaeUK664Al999VXE3k9Jc3MzJk2ahGuuuQYbNmxQ9ZopU6Zg/fr1IX3eyZMnMXXq1JBeG44FCxbgtttui/rnEsUCq94DIKLQvfbaa1i8eDGWL1+O8847T+/huA0aNAjPPPOMJu9tNpvx2GOP4aKLLkLv3r01+Yxo2r17NxoaGrBx48aofN6JEyeiFjRF77//PtatW4cLLrggqp9LFCsYxohi1JIlS1BeXo5Vq1bhjDPOkHzOZ599hr///e847bTTcOjQIaSmpmLmzJl4+eWXcejQIYwaNQpz584FAGzatAnPPfcc7HY7unTpgjlz5mDIkCFobm7GvHnzsGfPHuTl5cFiseCiiy4CAOzbtw8PPfQQjh8/DpPJhOnTp2PChAn47LPP8Ne//hXvvvsuampq8MADD6C2thann346Ghoa3ON75plnsHHjRiQlJaF79+545JFHkJeXp/hzd+nSBTfffDP++Mc/4rXXXkNycrLX4w888ADOPfdc3HLLLX63r7jiCowdOxZVVVU4ceIEbr31Vmzbtg07d+6E1WrFc889hx49egAAVq1ahT179qCjowM333wzJk6cqPg9Pfvss/jvf/+L2tpa9O/fH0888YTXuD788EP84x//gMvlQnp6Oh588EF07doVc+fORU1NDa699lq8/vrr6NKli/s1dXV1mD9/Pg4ePAiz2YxJkyZ5zWp9//33GDduHLZv3+53u66uDnPmzMGxY8cAACNHjsQ999yDBx98EG1tbbj22mtRXl6Ow4cPY8GCBTh+/DicTiemTJmCiRMn4rPPPsOCBQuQlpaGlpYWrFq1CvPmzcO3334Ls9mMgQMH4qGHHoLZbMaMGTMwadIk/PrXv/a7XgcOHMCyZctw55134tNPP1W8tkQJSyCimPHdd98JF154ofDYY48J/fr1E1555RXF51dVVQnnnXeesHPnTkEQBOGWW24Rfvvb3wrt7e1CQ0ODMHDgQMFmswmHDh0Sxo4dKzQ2NgqCIAh79+4Vhg8fLrS0tAgLFiwQ7r//fsHlcgkNDQ3CiBEjhGeeeUaw2+3Cr3/9a+GDDz4QBEEQbDabcOmllwrbtm0TqqqqhGuuuUYQBEG44447hCeffFIQBEE4fPiwcOGFFwqrV68WfvjhB2Ho0KFCe3u7IAiC8PzzzwsbN25U9fM7nU7hxhtvFB599FFBEARh2bJlwpw5cwRBEIQ5c+YIy5Ytc7/G8/bll18uLFy4UBAEQXjvvfeEgoICYffu3e5xPvfcc+7nzZ8/3/1zFRUVCXv37lX8np555hlh9OjRgt1u9xv3/v37heLiYuHIkSOCIAhCRUWFMHz4cOHkyZNe35WvO++8U3jssccEQRCEpqYm4ZprrhEOHz4s/O53vxP+/e9/u78P3+9HEAThH//4h/CnP/1JEARBaGlpEe655x6hqanJ6zl2u124+uqrha+//tr9GWPGjBG2b98uVFVVCQUFBcL3338vCIIgvP3228L06dMFQRAEh8MhzJs3Tzh8+LDi9Wpubhauu+464ZtvvhFWr14tzJw5U/H5RImKM2NEMebUqVPYu3cvlixZgnvvvRdDhgzBgAEDZJ9/xhlnuB8/66yz0K1bNyQnJyMrKwvp6ek4ceIEPv/8c9TW1uKmm25yv85kMuHIkSOorKzE3LlzYTKZkJWVhSuvvBIAcPjwYbS3t2PUqFEAgB49emDUqFH45JNPcPHFF7vfp6KiAnPmzAEA9OrVy/1Yjx49UFBQgOuuuw4jRozAiBEjUFRUpOo7MJvNePzxxzFhwgRccskl6r88wD3eM888Ezk5OSgoKHB/NydOnHA/b9KkSe5xDh8+HJWVlbBYLLLfEwBceOGFsFr9/1qtqqpCYWEhzjzzTABAUVERsrKy8PXXX8NkMsmOtaKiArNnzwYAdOvWDe+++67qn/PSSy/FzJkz8eOPP6K4uBj33XcfunXr5vUzHj58GEeOHHHPjgJAW1sbdu3ahT59+uC0005Dz549AQAXXXQRnnzySUyZMgXFxcWYNm0aevXqpTiGefPmYcqUKejXrx++/vpr1WMnSjQMY0QxpkuXLnjuueeQlJSE2267DXfddRfKy8uRmZmJp59+Gps2bQLQWYReWFjot4wnFRZcLheKiorw1FNPue/78ccf3UuGgscRthaLBQDgdDr9goQgCHA4HF73mUwmr9eLn282m/HKK6/gq6++QmVlJRYuXIhLL70U999/v6rv4bTTTsP//u//Ys6cOZgwYYLs59ntdq/XeX4fSUlJsu9vNv+8v8nlcsFqtcLpdMp+Txs3bkRaWprke7lcLtnvSmkMVqvV63Xfffcdunfv7r6t9LMOHjwYH330ESorK1FVVYXrr78eS5cuRWZmpvs5TqcT3bp1w5o1a9z31dfXo1u3bvjvf//r9fOceeaZ2LhxIz777DNUVVXh5ptvxkMPPYQrrrhCcuw2mw1ffPEFDh06hOXLl+PEiRM4efIkZsyYgaVLl8r+zESJiLspiWKM2Wx2/wM+c+ZM9O3bF/fddx9cLhfuvvturFmzBmvWrMHdd9+t+j2LioqwZcsWHDhwAADw8ccfY/z48Whra8Oll16Kt956Cy6XCydOnMBHH30EAOjduzesVqt7B2BNTQ0++OADFBcXe733pZdeitdffx0A8MMPP+Czzz4DAOzZswdjx45Fnz59cNttt+Gmm24KurD8qquuwogRI/DSSy+57+vevbt7FqampgbV1dVBvafo7bffdo+5srISRUVFit+TkqKiInz66af47rvvAACVlZX48ccfAxa0FxUVYfXq1QA6d0FOmzYNhw8fdj+ekZEBu92O/fv3AwDee+8992NPPPEEFi9ejN/85jeYN28e+vbti3379rlDpSAIOOecc9ClSxd3GPvxxx8xduxYyVmsVatW4cEHH8Qll1yC2bNn45JLLsGuXbtkx56fn49PP/3U/edx1qxZ+OUvf8kgRiSBM2NEMcxkMuGxxx7Dddddh6eeegp/+MMfQnqfvn374qGHHsIf/vAHCILgLmZPT0/H//zP/2D+/PkYM2YMsrKy0K9fPwCds0qLFy/Gww8/jGeffRZOpxN33nknCgsL3YELAObPn48HH3wQY8aMQX5+vntZsKCgAGPGjEFpaSnS0tLQpUsXlJWVAQCefvppAFAVKMvKyrB161b37SlTpuCPf/wjRo8ejTPOOAOFhYUhfSft7e247rrrYLfbUVZWhnPOOQcAZL8nJX379sX8+fNx1113wel0okuXLvjXv/6Fbt26Kb7uz3/+M/7yl79g3LhxEAQBt912G84//3z34926dcPs2bMxY8YMZGVl4aqrrnI/Nm3aNDzwwAMYO3YskpOT0b9/f1xzzTWwWCwYPHgwrrnmGqxcuRKLFy/GggULsGzZMjgcDtx999246KKLvK4hAEyYMAHV1dW4+uqrkZqaitNOOw1TpkwBAMUCfiIKzCR4znETERERUVRxmZKIiIhIRwxjRERERDpiGCMiIiLSEcMYERERkY4YxoiIiIh0FNOtLY4da4HLpd1m0OzsrmhoaNbs/Sk0vC7Gw2tiTLwuxsNrYkxaXxez2YTu3eVb4MR0GHO5BE3DmPgZZDy8LsbDa2JMvC7Gw2tiTHpeFy5TEhEREemIYYyIiIhIRwxjRERERDpiGCMiIiLSEcMYERERkY4YxoiIiIh0xDBGREREpCOGMSIiIiIdMYwRERER6YhhjIiIiEhHDGNEREREOmIYIyIiItIRwxgRERGRjhjGiIiIiHSkaRhrbm7G2LFj8f333/s9tnv3bpSUlGD06NGYN28eHA6HlkOhGFVt24ayLQtx56b7UbZlIapt2/QeEhERUURpFsa+/PJL3HDDDTh8+LDk47Nnz8af//xnfPDBBxAEAW+88YZWQ6EYVW3bhlV7VuNY+3EAwLH241i1ZzU++bZa34ERERFFkGZh7I033sD8+fORl5fn99jRo0fR1taGCy+8EABQUlKC9evXazUUilFrD6yH3WX3us/usuPVHWt0GhEREVHkWbV64wULFsg+Vltbi9zcXPft3Nxc1NTUBP0Z2dldQxpbMHJzu2n+GSTt+E8zYr4aTjXyuhgQr4kx8boYD6+JMel5XTQLY0pcLhdMJpP7tiAIXrfVamhohsslRHJoXnJzu6Gu7qRm70/KMlMy3UuUnrLTsnhdDIa/K8bE62I8vCbGpPV1MZtNihNIuuymzM/PR11dnft2fX295HImJbbxfa5CkjnJ674kcxJuGHytTiMiIiKKPF3CWM+ePZGSkoKtW7cCANasWYMRI0boMRQysGH5QzG5oBTdUzIBAN1TMjG5oBSX9hqm78CIiIgiKKrLlDNmzMCsWbMwaNAgPPHEEygrK0NzczMGDhyIqVOnRnMoFCOG5Q/FsPyheg+DiIhIMyZBELQrutIYa8YSE6+L8fCaGBOvi/HwmhhTQtaMEREREVEnhjEiIiIiHTGMEREREemIYYyIiIhIRwxjRERERDpiGCMiIiLSEcMYERERkY50OZuSKFjVtm1Ye2A9jrUfR05aFq45exSbwRIRUVxgGCPDq7Ztw6o9q2F32QEA9acasWrPagBgICMiopjHZUoyvLUH1ruDmMjusmPtgfU6jYiIiChyGMbI8I61Hw/qfiIioljCMEaG1z0lM6j7iYiIYgnDGBne+D5XIcmc5HVfkjkJ4/tcpdOIiIiIIocF/GR4YpE+d1MSEVE8YhijmDAsf6g7fOXmdkNd3UmdR0RERBQZDGMUU6pt2/Be1QbUn2pE95RMjO9zFWfIiIgopjGMUczw7Td2rP04+40REVHMYwE/xQy5fmMv7XoNZVsWotq2TaeRERERhY4zY2RInscficuRSn3FOEtGRESxijNjZDjicqQYvsSglW5NU3wdu/ITEVEs4swYGY7ccqTvfVLYlZ+IiGINZ8bIcMIJVOzKT0REsYZhjAxHTaBKs6T6deUHgA5nBwv5iYgopjCMkeFIHX/k65SzFZMLSpFmSfW6v8VxCqv2rGYgIyKimMEwRoYzLH8oJheUKs6QdU/JxLD8oUixpvg9ZnfZ8fKu1xnIiIgoJrCAnwxJPP7It9ErACRbkt2HhMvVl7kgsNUFERHFBIYxMjTfQ8K7p2Tid0OuQ0HaeQA6Z8jkApnY6oJhjOLZ9vombDzagOMdDmQmW3Flz2wMycnQe1hEFASGMTI8z0PCAe+Dwsf3ucpv5swTW11QPNte34R3vq2F3SUAAI53OPDOt7UAwEBGFEMYxshQpDrvK81siY+9vOt1uCD4Pc5WFxTPNh5tcAcxkd0lYOPRhoiGMc6+EWmLYYwMI9SDwMXHfGfIksxJ7toyonh0vMMR1P2h4Owbkfa4m5IMQ67zvtojjpI92mGkWVIxuaCU9WIU1zKTpf9/Wu7+UCjNvhFRZDCMkWHI1XcFqvt6bU85Xtr1Glocp9z32YXIzQwQGdWVPbORZDZ53ZdkNuHKntkR+4xozL4RJTouU5JhmGGSrPsyw+R3n2dtmRTupKR4J9Zx2V0CTAAEQJN6rsxkq2TwisTsm961aHp/PpGIYYwMQyqISd3/ybfVijsoRWp2Uga7YYDICHzruAT8PCMW6TBxZc9sr88CIjP7pnctmt6fT+SJy5RkGHI7H80weXXTf3XHmoBBTOn9ROKGATG0iRsG2LmfjC6adVxDcjIwoVeeeyYsM9mKCb3ywg4setei6f35RJ44M0aGIdczzLebfsOpRtXvp0RpwwBnx8jIol3HNSQnI+KzRaH+DJFaWmQtHBkJwxgZhlLPMM+QlJ2WhfoAgSzZlOQVqKSWI0PdMECkNy3ruKRoUVsVys8QyaXFaH+HREq4TEmGMix/qGztmBiShp52fsD36RB+nvGSW45Ms6RKvpaNYsnoorGLUiQGIDG4iAFoe31TWO8bys8QyaXFaH6HRIHwfwFIN3LF83LnTXZPyUS1bRs2H64K+N6egUpuOTLZmoQkcxIbxVLMEWeBorETMFAACnUMofwMkVxajOZ3SBQIwxjpQqnbvlTtmBiS1h5Yjw5nh+J7+wYquWXHFscpTBswibspKSZpUcclRSkAvXmoxut2sEuGwf4MkV5ajNZ3SBQIwxjpQql4/uHhc93PEUPS+dkFin3FRFKBSmmmzfcQcilsf0GJTC4ASdHiXExPWrXZINIbwxjpIlDxvGdI8p1Fk9I9JdMd4nwpzbQFEup5mUTxQioAKTne4cD2+iZNAhmXFileMYyRLuRmq9KtaSjbstBrFkpqFs1ToGA1LH8oDh4/jC0/fAYXBJhhQmH+RV5hz3fmC4DsTBzbX1Ai8Q1AamjZPJVLixSPGMZIF1KzVRaTBS2OU+4zJo+1H8fLu96ACy7Z91GzbFht24Yq21b3Lk0XBHzyQ+cmgN6ZZ/vNfL2y+00IgqD4uWx/QbGg6mgDVu8+GvYskhiAFn15SFUgU7NcyaOIiH7GMEa6EMOT54xUc0cLnHB6Pc8FF0wwQZBod6G0NOlJbmbtkx+q8NmPW2EXvB9zCk6/50p9NpGRba9vwppva9ERweN+glmyVApt2+ubUH64Bk7h5+eWH64Ja2xEsYxhjHTjWzx/56b7JZ8nQAirBYXSLFaHEPhYJV9sf0GxYOPRBncQE4VbYB/MkqXSDsf3jtS5g5jIKXTezzBGiYhNXykmTC4odc9G5aRlYXJBqeqarUjOYnVPyQzqs4n0otVxP0NyMnD/Becohq1AOxxPOaVLAOTuJ4p3nBkjw0i3prnrxTyZ0NklW1ySzM3thrq6k6rfd3yfq/DSrteCGosZZq+asSRzEkMYxRStj/uRW7JMtZgw9qzwDxInSiScGSPDmNhvPCwmi9/9wk8HhVfbtoX0vsPyh+LS0wtVPz/NkoopA/4/94waZ8MoFl3ZMxvJIR73s72+CYu+PIS5n+/Doi8PSR59NCQnAxN65bnDXWayFdef0wN/Gto3YBBLtZiCup8o3nFmjAxD7UHhoZhUUILemWf7NZKtsm31q0W7vv+1qprBEhnZkJwMZGR0CXo3ZTCHcYfaZmLsWXlYfajGa7+y+af7iRIRwxjpSqrHV6CDwkMlFbB8Axq761M8KeyZjT7JyUG9RuksykgtPbJ5K5E3hjHSjVx3+zRLKk45W/2eH2whvppjjDgDRuQt2ML/UPuFBZpV217fhPeO1LmL+lmLRvGMYYx0I3c+ZbI1KaRWFp7hK82SinZXh7tnGI8xIlJHqfDfN3j1y0jDF/VN7uXG4x0OrD4Ufr8w3z5kANDqFCLy3kRGxDBGupFbdmxxnMK0AZOCWj70nWWTmlmzu+x4addrWHtgverlSB4STolG7jDufhlpfrVk1RKF/S4A7x6pDSswbTza4NeHTHzvYJdL2emfYgHDGOlG7nzK7imZQS8fBjq/0pPaWTIeEk6JQCqsTOiV53efVC2ZnFapJBUEpV5owfRJC2YzQigY9ChSGMZIN1LnU4ba3T7Y4n41uzPlllF5SDjFC7mwMqFXHu6/4Byv57750xJhNMgtlYqPAeqCkNrNCJ7vlWYxQ4CAVqegGLC0DnqUWBjGSDdS51OGugwoN8umJNDz5R7nIeEUL4LZOakUkHylWcJrYXllz2y/mjGgs/1Fv4w0/HXbfq/ZNzEIfXuyFXubTrkDmprNCL71aZ6nAPgGLM/QZgL89n1HetcpJQ6GMdJVOLsZPeu50q1pfl3zAcgeMi4q27JQNgAqLaMSxYNgdk5K1ZKJkcvzt85iAq45K9frtUqzWNvrm/DukVp3uEqzmHHNWbkoObuH327KQd27YXvjScnlUrtL8KphUwqOnqcQSJ2T6fu+G482AIDXzy/3Et+g5/tzj8rtJv9hlLAYxijmfPJtNV744nWvo5NaHKdgMVmQhCTYPQ7/VgpigHIdWCSXUYmMKJgjk+R6g0nd57sEKLecB8Cv+esppwvlh2tQcnYPlA3t4zWGRV8eUl23Jkc8hUAMSmrOwzze4cBbh2oC/G3SSdx16hkwxfd459taZGR0Cbr3G8U/hjGKKdW2bXj1m3J0ODv8HnMKTggI/BerL7k6sGH5Q3Hw+GFs+eEzuCDADBMK8y9ivRjFDbmdk3JHJsn1BlNallNaCgUg+RvrFKR3TYZ6yLkYOj0DpNS5mkrUPFNq16knu0vA29/8gD8OOlv151JiYBijmLL2wHrJICaS694fiOdypOfyp+97V9m2onfm2QxkFBei0Qk/2CaySo8HU7fm+RpxN+jxDgc2Hm1Au9MZ9gybSKwdU7vrtLFN3a5vSiwMYxRTAhXPm2EKKZCJdWC+7Sx8cTclxZtQz5dUK9BSaKBdk56kZvKAzjqz/NRkHGxu83tNVrLVb5k0UpLMJkzo5X0qQKBdp2YAcz/fF7OtMNjOQxvhbXkhijKl4vkkcxKGn35xSO97fnYBAHX9yribkki9K3tmI8ls8ru/w+lCv4w0yX+ELCZILpUOycnAhF557qCWmWzF9ed01pY1yoSsQ81tEZsF85SZbPULYuL9SjxPK3jn21psl2ica1Ri/Z8YaGPxZzAqzoxRTBnf5yrJmrE0Syqu738thuUPxSc/VAX9vhU/fo7emWerClrcTUmknhhWfAvaTzld2N54Er/MycBXx0767aaUm22Rm8mTm/GKdAwzAZh4Tg/Z8cnN3sm1wnjrUA3ePFQTE7NM0ThEPlExjFFMGZY/FBkZqXhl+9uyvclC6TnmFJxYsev1gM/jbkqi4A3JycDGow1odXoHJrtLwN6mU/jT0L5hf4bccqhUCAI6Q1+yxexebutwulTtrBQAxeaucnV4csuX4thioWlsqPV/FBjDGMWcS3sNQ0Haee7b1bZtKNuy0B3Ozs8uQJVtq+rjkUSB2mBwNyVR6LT+h1xuZ+iQLP/eZElmk9/s2/b6Jr82G3ICzQZJzd6J4Syc99VbMK1QKDj8BimmSZ0fWWXbit4ZZ2Hf8YNwQQjY+FWtYHdT8pBxop8p7YRc9OWhkJbottc3eTWGTTJ1znidcrq8lv16dUsNWHQutZwqvpeUYEOk3PJluO8bTcG2QiH1GMYopsmdH/nN8QPu25EIYp7vHWg3ZbVtG97au9arKS0PGadEpxRG1CzR+e7i65eRhq0NTV7d8+0C4HS6cL1PTZfaHaPi8zw/S44Jwe2KFB//6MdGxfYWRp5likYrlERl3KtOpIIeOxuVPlOpNQbbYlAi8/2H3JfSEp1UF/9qmR18Lkg3jJUjNbvmAhSPSAK8a73e/W4/zj/jZjz3xcs4K72H1/mYnmFlSE4GRp3XEzPe3yb7vkafZdK6FUqiYhijmBZKsb4aSeYkJJuTvGa3ROnWNNnXBWqNwbYYlMjEf8jnfr5P8nG5mah3jwTXLf94h0NVPyzfQ8KBztm1YA3K+xSndzuEszI/RvWPP2/wOd7hwJuHavDekTp3jVrV0QbFTQWhLNVypir2adpnbN26dbj66qsxatQorFy50u/xnTt3orS0FOPHj8dtt92Gpib2KqHgjO9zFZLMSRF9z2RTEpJMVskgBgCtjjZU26T/zzZQ2GJbDCL5pTip+7fXN3m1xFAjzWJW1Q9r49GGgDNgSm69YC7+MeoSTB88HwAw/YI/4x+jLsGtF8z1et4ppwvvfFuLdw7V4OWvjkgGMXFTQTDY9yt+aBbGampq8OSTT2LVqlV455138Prrr2P//v1ez1mwYAFmzZqFtWvX4pxzzsHzzz+v1XAoTg3LH4rJBaXukJNmSYUJ/g0mg9Eh2HHK2Sr7uAsurD2wXvIxpbBlhpltMYgg3QhWrhBcPMNSLTM660SVzsMUhVssv2bf79HQmg+H0BkiHYIVDa35WLPv937PtbsEfF7fhA6JGT4TINlANpBA536GY3t9ExZ9eQhzP9+HRV8eYsDTmGbLlBUVFSgsLERmZiYAYPTo0Vi/fj3uuusu93NcLhdaWloAAK2trfjFL36h1XAojg3LH4ph+UNRbduGl3e9HlLBfmpSOx7+9Tso+2gCWu0pAZ8vNwM2vs9VsjVjJlN4IZEoXgRTCK4UmIblZODrY83ueq9Uiwljz8qT7enl+16hnHXpqe7UmViz73bMvHAu2hypSDJ3YM2+21F36kzJ58v9zSRAubeY3FJkpNqFBKqbi4UeaLFOszBWW1uL3Nyfp1zz8vKwY8cOr+c88MADmD59OhYuXIjU1FS88cYbQX1GdnbXiIxVSW5uN80/g4Lne10++bYar35THvJB4UNPO4Izf3EMQ087gi1Hzg34/K5J6ZJ/Nq7JHYmMjFT887OX4BK8t8Q7BSfeO7wB1wwaGdIYjY6/K8Zk1OsyKrcbRp3XM+DzsrokSe4+TE+yYMYw6WaxcjsWs7okeX0fpef1xPIdR+AU/LvlpyVZ0GJ3+r1HstmEop5Z+KquCY1tdvwqfyPanal4d/+tGNt3GX6ZvxHbbL+RHJdcrViy2SR7naqONmDNt7XuGbXjHQ6s+bYWGRldZL8b359TSdXRBpQfrvX6DqTq5uwuAR/92KjqmsUqPX9XNAtjLpfLayZAEASv221tbZg3bx6WL1+OwYMH48UXX8ScOXOwZMkS1Z/R0NAMlwZnjolyc7uhru6kZu9PoZG6Lq9sf9vviCQ1ZhV+iF/2PAyrufMv3Tsv3oTbfvUxvjh6Np6pkv4LFej88yz3Z6Mg7Ty/ICaqP9UYl3+m+LtiTPFwXX59WpZkb6urz8iR/dmkXgMAjW12zP5wh3tmqU9yMkrOzvOaFQKAVIsZV5+R49fmwnNWanR+FgDgQPM9eLwyDd83/wKfHb0a3VOlZ+WSzCZAECSDTodLwIbdRyVnnVbvPuq3tNnhErB691HZvl+/Pi1L9XVfvfuoXxiV09hmj/k/T3K0/l0xm02KE0iahbH8/Hx88cUX7tt1dXXIy8tz3967dy9SUlIwePBgAMBvf/tbPP3001oNh+JcqLsUX//6Vzg7sx656SdhNTvhdJlR19INr3/1K8XXyRX3i+R2ebKAnyg4Q3Iy8O3JVnxe3wQBnbNLQ7K6KS6XKbXR8FxyE5/j29hVLLgX30vps/p0HYE7fjoQZO7nQFOHdGuKCb3kl0/FcQSzTCveP6FXXli7KYNZ0jRyD7RYp1kBf3FxMSorK9HY2IjW1lZs2LABI0aMcD/eq1cv2Gw2HDx4EADw0UcfYdCgQVoNh+KcXLsJc4Bi/prmX+D1r38Fi9mFVrsVFrMLb3z9S9S0KNcvBgpVUrs8ea4lUfC21zdhe+NJ9/KeAGB748mABeVDcjJw/wXnSAYIu0vAe0fqvHYiSj0n2EJ4pV2iQ3IyFMOM3DiUXiMGxvsvOAcLf3Uu7r/gnKBrutQGLHba15ZmYaxHjx649957MXXqVEyYMAFjx47F4MGDMWPGDHz11Vf4xS9+gUceeQT33HMPxo0bh9WrV2PhwoVaDYfiWLVtG1odbX73W0wWTBnw24DBqfjMA2h3JOHNnb9CuyMJRWceUHw+AOSlZuN/Ns3BnZvux/9smoPX9pR7Pe67y7N7SiYmF5Sy4StRkMLdMSgXck45XRE/mijQLlGlMCMXiqTeUxSJnZNX9syGReb/WdMsZvfYQtntSeppOuc4btw4jBs3zuu+pUuXuv975MiRGDkyPouZKXrWHlgPl8TxvinmZHf4kdvhCABrv7kQL2y7BCfa0/DJ4XORndYc8DM9j1tyQcAnP1QBACYVlLjvF3d5ElHogt0x6FvjpXS+ZCDBLssF2iU6JCcDtQ4HPv7OO0DJzTqJuxyVQmOgwBioKaz43551c+KuVIav6OECMMU8uXoxsVeYGIhWyLS9OND4cy3jifY0nGhPQ5I5SbGTvpQtP3zmFcaIKHxy7SfkGsT6HptkBmAxeR9vlGQ2wWqCYjPZUJflAtWY/W5QL+RZre6AlGYxw+5y4c1DNXjzUA3SLGZ381ff0wGkKAVGqe9DqkUFjzjSH8MYxTw1xfLD8ofipV2vqXqf7imZGN/nKr/DvgMJta0GEcmT2zEo1yDWdxbJBSDVbEKKxeI1OwRA9uByALCG0BZQ7dFEngeS+xb1n3K6UH64Bilms6rTAZQCo9ISrzguHqdkDAxjFPOkGq2GUiz/8PC5fve9svtNOIWfew1ZTBa4BJfkDFugzQJEFLxINIhtdQr409BzJB8T3zfVYkKHS3AHoFanEFSjU7WzUJ7ePVIreb9TgKql1UBnWQZa4vU9m/N4hwPlh2sUx0zaYBijmCcuQ649sB7H2o/DDBPsLrv7yCLx8XRrWlAzXb7vK86YHTx+2F0j5mn46ReH+6MQkQS1y2jBLGn6vu+iLw+h1en9Wt9ZJJHUbJKaWShfwZ656Ss/NVlxZivQ9/HekTq/2Ten0Hk/w1h0MYxRXJAq1D/Wfhyr9qx2Pz6x33jZpUq5WS2pInzx9pYfPoMLAswwYfjpF/vVi1XbtvkFORb0E2knmCVNX2o3CsjNgMktd3q+fnt9Ez766jAa2+wBNwf4ztRJOdjchsPNbe7tS76zcVLfhxlAh9OFuZ/vk31fqVk5Lmdqi2GM4sZbe9f6Fd2LM2RiCLKarHAI/n/pBjurNamgRLFYv9q2TTEYElHkBbOk6UvtrJrcDJjcUUfi66VCnJKxZ3VuLPI9HcCX7yOes3G+34cY8ILdXRrKEiwFh2GM4kK1bZvsEuSx9uO4c9P9sq9NsSSjd+bZER3P2gPrAwZDIoq8UHcGqp1VkwtRwk/Pl3u9VIiTM8yjwD85hNYcxzscfjNZ15/TAxuPNvgtxUrxXScIZQmWgsMwRnFBrA8LRbuzAy/v6jykPlJBSa7dRqjHNhGRttTOqinNoIm1Y767Nhd9eUhxJkx8T8/P9J2NCkaaxew3k6V0FJMv308MptcblzNDwzBGcSHckOOCCy/teg1v7V0LQRBwytkKM0xwQVBV7+VbH5ZmSXX3OfPEsymJjEvNrJrSDJrv69UEqsxkK+6/wH+np5qZNLml0VCb3HqOyfe2miVcLmeGTrPjkIiiKVIhp8Vxyh2ixL5hYr1XtW2b5GvE+jAxEB5rP452VwfMEr9ex9qPo2zLQtn3IiJjG5KTgQm98txBROmooECBSmlzQaCassxkK1Itkf8n3HNM2+ubZGf1pMYe7tFViYwzYxQXpHqNRZJSvZdUfZhTcCLdmoZkS7LfrB2L+Ylim9q6tEBLk/0y0rDxaAPePFQTVFsKcSZNaUekEs9l0X4ZadjbdCqoZVK545KCPbqKfsYwRnFBqifY+dkFqLJtjVhAC7YOrMVxCotG/AVlWxb6PYfF/ETxT+5czDSL2W+5U01bCvF5i748hCt7ZssGNiVyy6K+lGb1HDKTfcH2eaOf8RuiuCHVE6x35tl+AW3LD9WSB4sHIrcUGug4JhbzEyUmqZM6xPsD7VD03VDgSQxuQ7K6YXvjSdVF/uLSopoie6WQJ7eTsl9GGqrrmyQ/k5QxjFFckwtob36zRrLAXo7S8UpSS6QWkwXtjnbFlho8Pokovsl12G91CrItJjxDkBjKpOq27C4Be5tOYUKvPMnABnQWhXf5aXZO7kxOuSL7QLNuUs1wtzee9HvekKxuLN5XgWGMEo5vQPPcCZluTQu4m1Kqs/7kglKv92h1tAUMey4IqLZt41IlUQwL5TgiuV2Q4mt8KdViec6iyY1FvP/NQzWSny010yW3TCo3Trllzb1N6o+gS2QMY5RQ5I4oUhuI5DrrTy4odR80XrZloeozMFnITxS7ArVykAs0ckFMbklPaZZqe32TO0RJbSzwHaPcZ/u+v/g+UicABNMMl8X76rC1BSUMqRYUSi0rpMh11n9p12vulhXB1IJ5HmhORLElUCsH3zYYSoUJSi0ylGquArWNUNv5X2pGbkhOBsqG9sH15/QI2MpDrkifxfvq8FuihBGJI4qUgpYY7uQavobynkRkXGpmgzxnq5RaUSjtcBySkyHbQT/QzJOamSmLSTnwhdsMlwJjGKOEEYldjXI7J0V2lx3J1iQkmZO8gl+SOQnJ5iTJ5Ut25SeKTcG2cgin9UOor1XT/iLZbAq7yF58/btHat0bF5JMxtukZNTjmrhMSQlDqTVFtW0byrYsxJ2b7pfskC8+ria4tThOYXJBqfvzuqdkYnJBKSb2G48kc5LXc5V2aRKRsV3ZMxtJZu/AoTQbdGXPbCQH8fxwPkvpdb7kdn2GwrMH2SmnC+98W4vtPu0u9CLWz4nhVKzxM8L4ODNGCUOqBUWSOQnnZxdIFuUfPH4YXzfsCXoZsXtKpuKmAKkNBEQUe9QeLu75/IyMLli9+2jQMzPBfpbc66REav4qUO80vSmNb9R5PXUaVSeGMUoI4i5Ku8vu17JCrpbskx+qFN8zzZIKu+DwC3dKM13B7NyU+xkY5IiMQ+3RSKLCntnok5wclc/yfZ1czVqk5sWMvqPSyONjGKO4Vm3bhrf2rvWq1XJBcIemYflD8dKu10J671POVlx6eiG2/PAZXBBghgmF+RdpEpDkWmoAbItBROqEWnemts7K6MchGXl8rBmjuCUGGKmiec+WEqEW0CeZklBl2wrXT/9f6YKAKtvWoFplqKW0E5SISI1Q6s6CqbMKta4tWqTGZzEB7U4nZry/DYu+PKRb/RjDGMUtqQDjSawFG9/nKr/CejUcPkuUQGdAemvv2qDfKxCeb0lE4fLte6bU2wzoDGJvHapR7KUWzvtHm+/40ixmCMLPGxj0LOjXf26OSCOBgoo4IyYu84n1WGrJHQLc4jgV8WOOAh1GTkSJTe1Sotq6M3FGTG3H/mDfXy+e41v05SG/0wX02nDAmTGKW0pBxbfQflj+UDw8fC6mDZikepZM6aDvN79Zo3qcakjN3rEtBhEB2rRsCNS53wh1VuEyUkE/wxjFLbnlxzRLKiYXlMrOXCWZfv5LJt2ahktPL5QMQsNPv1j2s4PpwK/GsPyhkr3LWLxPFL+21zdh0ZeHMPfzfYr1TIGOZQqFUiAxUh1YOIx0hFPsR1siGb7Lj4HaQfjuWASADpcdvTPPRu/MsyXfJ1D7i0gKpy0GEcWWQIeQe9Jihkdu56EJMFQdWDiMdIQTwxjFtWACjNKOxYeHz5V8n3RrmuRuTRNMIdeNsZ8YEQXTQFWLlg1yQSVeghgQeiNdLTCMEf0klB2LE/uNxyu734RTcHrdL0DAS7tew0u7XgsqULGfGBEBwc12aTHDY6SgoiWxoD83txvq6k7qNg6GMaKfBNqxqDRj9fKu1939xnwFE6iUZucYxogSRzCzXVoFJ6PvjIwnDGNEP5E7u3J8n6sCzlgF6uKvNlAFmp3jEiZRYgh2tovBKbYxjBH9RKngv2zLQskZqze/WaO6C76aHmZKs3NcwiRKHImyTEidGMaIPMgV/MsFqVPOVtVtLNQ0aFWaneMSJlFi4WxX4mCfMSIVwu10r7ZBq1I/MR6JREQUnxjGiFQI9fxKILQGrR3ODgCdQevNb9ag2rZNNhDySCQiotjGZUoiFdTsmvSVZE4KOoRV27b5tco45WzFy7vewPDTh6HKtlVyCZOIiGIXZ8aIVBqWP1R1EAv1uKK1B9b79SwDABdc+LphD49EIiKKQ5wZo4QRibYQcrsdfZ/z8PC5IY9NzrH24zwSiYgoDjGMUUKIVFsIqd2OnkJZNpQ6E1MKa8OIKFq21zexrUYUcZmSEoJSW4hg+O52TLOkIt2aBiC8pclAQcwMM2vDiCgqxEPKxRMAxEPKt9c36Tyy+MWZMUoIkWwLEemlwkBjSLOk4vr+13J5koiiIphDyikyGMYoIQQ6d1JPSmMLtvaMiChcwRxSTpHBZUpKCFJ9wozSFsLIYyOixCN1GLnS/RQ+hjFKCEqd7fVm5LERUeK5smc2kswmr/uUDimn8DHmUsIwclsI37FV27ahbMvCsNpwEBGFgoeURx/DGJHBRKoNBxFRqHhIeXRxmZLIYCLVhoOIiGIDwxiRwUSyDQcRERkfwxiRwci12zBCGw4iIoo8hjEig2GrCyKixMICfiKDEYv0wz3UnIiIYgPDGJGEats2XcOQkdtwEBFRZDGMEflgawkiIoom1owR+WBrCSIiiiaGMSIfbC1BRETRxDBG5IOtJYiIKJoYxoh8sLUEERFFEwv4iXywtQQREUUTwxiRBLaWICKiaOEyJREREZGOGMaIiIiIdMQwRkRERKQjhjEiIiIiHTGMEREREemIYYyIiIhIRwxjRERERDpiGCMiIiLSEcMYERERkY40DWPr1q3D1VdfjVGjRmHlypV+jx88eBBTpkzB+PHjccstt+DEiRNaDoeIiIjIcDQLYzU1NXjyySexatUqvPPOO3j99dexf/9+9+OCIOD3v/89ZsyYgbVr1+K8887DkiVLtBoOERERkSFpFsYqKipQWFiIzMxMpKWlYfTo0Vi/fr378Z07dyItLQ0jRowAANx+++248cYbtRoOERERkSFpdlB4bW0tcnNz3bfz8vKwY8cO9+0jR44gJycHc+fOxe7du9G7d2/86U9/CuozsrO7Rmy8cnJzu2n+GRQ8Xhfj4TUxJl4X4+E1MSY9r4tmYczlcsFkMrlvC4LgddvhcKC6uhqvvPIKBg0ahKeeegqPPvooHn30UdWf0dDQDJdLiOi4PeXmdkNd3UnN3p9Cw+tiPLwmxsTrYjy8Jsak9XUxm02KE0iaLVPm5+ejrq7Ofbuurg55eXnu27m5uejVqxcGDRoEABg7dqzXzBkRERFRItAsjBUXF6OyshKNjY1obW3Fhg0b3PVhADBkyBA0NjZiz549AIBNmzZh4MCBWg2HKCjVtm0o27IQd266H2VbFqLatk3vIRERUZzSbJmyR48euPfeezF16lTY7XZMnDgRgwcPxowZMzBr1iwMGjQI//znP1FWVobW1lbk5+dj0aJFWg2HSLVq2zas2rMadpcdAHCs/ThW7VkNABiWP1TPoRERURwyCYKgXdGVxlgzlpi0vi5lWxbiWPtxv/u7p2Ti4eFzNfvcWMbfFWPidTEeXhNjituaMaJYJRXElO4nIiIKB8MYkY/uKZlB3U9ERBQOhjEiH+P7XIUkc5LXfUnmJIzvc5VOIyIionimWQE/UawSi/TXHliPY+3H0T0lE+P7XMXifSIi0gTDGJGEYflDGb6IiCgquExJREREpCOGMSIiIiIdMYwRERER6YhhjIiIiEhHDGNEREREOmIYIyIiItIRwxgRERGRjhjGiIiIiHTEMEZERESkI4YxIiIiIh0xjBERERHpiGGMiIiISEcMY0REREQ6YhgjIiIi0hHDGBEREZGOGMaIiIiIdMQwRkRERKQjhjEiIiIiHTGMEREREemIYYyIiIhIRwxjRERERDpiGCMiIiLSEcMYERERkY4YxoiIiIh0xDBGREREpCOGMSIiIiIdWfUeABERUTCaqipQX74ajsYGWLOykVNSiozCYr2HRRQy2Zmxp59+GoIgRHMsREREipqqKlCzYjkcjQ0AAEdjA2pWLEdTVYXOIyMKnWwYq6qqwtSpU1FXVxfN8RAREcmqL18NoaPD6z6howP15at1GhFR+GTD2MqVK1FUVITS0lJ8+umn0RwTERGRJHFGTO39RLFAtmbMbDbjjjvuwGWXXYaysjJ89NFHOOuss9yP33zzzVEZIBERkcialS0ZvKxZ2TqMhigyAhbwm81mmEwm7N+/H21tbdEYExERkaScklLUrFjutVRpSk5GTkmpjqMiCo9sGBMEAf/617/w/PPP495778WNN94YzXERERH5EXdNcjclxRPZMDZp0iS0trZi1apV6NevXzTHREREJCujsJjhi+KKbAH/wIED8dZbbzGIEREREWlIdmbsz3/+czTHQURERJSQeBwSERERkY4YxoiIiIh0xDBGREREpCOGMSIiIiIdMYwRERER6YhhjIiIiEhHDGNEREREOmIYIyIiItIRwxgRERGRjhjGiIiIiHQkexwSERFRPGiqqkB9+Wo4GhtgzcpGTkkpDxonQ2EYIyKiuNVUVYGaFcshdHQAAByNDahZsRwAGMjIMLhMSUREcau+fLU7iImEjg7Ul6/WaURE/hjGiIgobjkaG4K6n0gPDGNERBS3rFnZQd1PpAeGMSIiils5JaUwJSd73WdKTkZOSalOIyLyxwJ+IiKKW2KRPndTkpExjBERUVzLKCxm+CJD4zIlERERkY44M0ZERAmNTWFJbwxjRESUsNgUloyAYYwkVe60ofzjA2hoakd2RgpKRvZB0cB8vYdFRBQW31kwV0e7ZFNY2wvLYFu2hDNlFBUMY+SncqcNL/17DzocLgBAQ1M7Xvr3HgBgICOimCU1CybL5XI/hzNlpDUW8JOf8o8PuIOYqMPhQvnHB3QaERFR+KSORlKDxyeR1hjGyE9DU3tQ9xMRxYJwjkDi8UmkJS5Tkp/sjBTJ4NU11YrZi7ewjoyIYpI1K1syVJnS02FJ6dL5mNnsXqL0fS2RVjgzRn5KRvZBstX7j4bVYkJrm8Md0sQ6ssqdNj2GSEQUNLmjkXrccCN6L/ob+i1bjvzpt/L4JIo6hjHyUzQwH9PGFCA7IwVA50xZSpIZTsH7eawjI6JYklFYjB5Tb3LPclmzstFj6k1ehflqnkMUaVymJElFA/O9liCnP7pJ8nmsIyOiWKLmaCQen0TRpunM2Lp163D11Vdj1KhRWLlypezzNm/ejCuuuELLoQSlcqcNsxdvwfj71mD24i1cigPcs2Rq7yciIiJ1NJsZq6mpwZNPPony8nIkJydj0qRJuPjii9G3b1+v59XX1+Oxxx7TahhBi2aPrVhqrFoyso/X9wIAyVYzSkb20XFUREREsU+zmbGKigoUFhYiMzMTaWlpGD16NNavX+/3vLKyMtx1111aDSNo0eqxJYa+WCmIl6ojmzamwLDhkYiIKFZoNjNWW1uL3Nxc9+28vDzs2LHD6zkrVqzAgAEDcMEFF4T0GdnZXcMao5RGmRqoxqZ25OZ2i9jnvPNppWToe+fTQxh/2bkR+5xIGn9ZN8OMLZLXgiKD18SYeF2Mh9fEmPS8LpqFMZfLBZPJ5L4tCILX7b1792LDhg1Yvnw5bLbQZoMaGprhcgmBnxiELJkeW1kZKairOxmxz6k71ip7v9znaLWsGUvLpUDnL0wkrwWFj9fEmHhdjIfXxJi0vi5ms0lxAkmzZcr8/HzU1dW5b9fV1SEvL899e/369airq0NpaSlmzpyJ2tpaTJ48WavhqCbVY0uL2qhgC+K1WtaMteVSIiKieKNZGCsuLkZlZSUaGxvR2tqKDRs2YMSIEe7HZ82ahQ8++ABr1qzBkiVLkJeXh1WrVmk1HNU8a6NM0K42KtjQp1UtG8+hJCIi0pdmy5Q9evTAvffei6lTp8Jut2PixIkYPHgwZsyYgVmzZmHQoEFafXTYxB5bWk5biuFO7fKgVudFavG+sbbsSUREpCdNm76OGzcO48aN87pv6dKlfs8744wzsGmTdFPReObbWFWJ3HmRavp8KYWjcN5X7rOi1RqEiCgcTVUVqC9fDUdjA6xZ2cgpKWWzV9IFj0OKEaHWsgWqCYt0jRyXPYkoFjRVVcD24vPug8MdjQ2wvfg8mqoqdB4ZJSIehxQjgl3WFCmFI8+ZuUgtK2q1nEpEFEk1r64EnE7vO53OzvsBzphRVDGMxZBgljVFasJRoPcNpgYs0sueRERaEFpaZO+vWbEcQkcHgM4Zs5oVywGAgYw0w2XKOBfumZLBtr6IVmsQIiKtiEHM83Z9+WqdRkOJgGEszoUbjoKtAeOxSUQUC8xdgzvBRawtI9IClynjXLg1YaHUgIWynEpEFE15kybD9uILgNPx850WK0xdUiSXMK1Z2VEcHSUahrEEIBWO1NaBsQaMiOKRWP/lW6gPwKtmDABMycnux4i0wDCWgILpBVYyso/XcwHWgBFRfMgoLPYqyhf7jgkdHYDZDLhc3E1JUcGasQQUTB0Ya8CIKBE0VVWgZsXyn2vDXC73jBiDGGmNM2MJKNg6sHBqwHg0EhHFAveMmAdxFyXDGGmNYSwBRasOLNijkRjciEgvcrsluYuSooFhLAFpUQcmFaQCdf/3fT3PtCSiaBPrxORwFyVFA8NYAor0EUhyQco3iImkZuWCCW5ERJEg1on5Lk+KuIuSooVhLEFFsheYXJAymwCX4P98qeVQnmlJRFoTZ8HEVhbO9jbZIMZdlBRNDGMUNrnA5BI6lz/VLIeynxkRacl3FixQLVjvRX+LxrCIALC1BUWA0vmXatti8ExLItKS1G5JOawTo2jjzBiFTWlDgNrl0EjXsREReVK7K1KqTsx3eZPLlxRpDGMUEUlWEzp+OuKta6oVN/ymn1eQUtO2gmdaEpFWrFnZkoHM3LUrzMkpcDQ2wJSeDpPJBNuyJagvXy15PJKjsQE1K5YDAAMZRQyXKSks4k7Kljan+74Ou0vyOWJNmLjbsnKnLapjJaLElVNSClNystd9puRk5E2ajN6L/ob8W2cCdjtczc0Afg5dNa+ulG0GSxQpnBmjsKhpSRHo+CUuTRKR1uQOBve8Xyp0QabOjM1gKZIYxigsalpSKD2HjV6JKFp8DwYXNVVVBB+uzFxYoshhGKOwqGlJIfccswkhNXrdvPU7LH93J2fTiChsYsuLoLmkm1oThYJhjILmWYyf3sUCq8UEh/Pn7q6+LSnkdlsG06Hf87NXrP8G7Xan+7mcTSOiUAXT8sIT219QJHGelYLiW4zf0uaE4BLQNbUz12dnpGD4oHyUf3wA0x/dhNmLtwCAZL8xpf5kcso/PuAOYiLP+jMiomCEWvuVNnhwhEdCiYwzYxQUqWJ8pwCkJFnwzN0jZM+pnDamAI/fMdzv/V54dxc8JtVgMUGx0SuPTSKiSJJreRHIyYotSOt7LttbUERwZoyCEigMBdo56ctkNine9hXKbJoeKnfaMHvxFvfsINt4EBmTVMsLNdjegiKJYYyCEigMBTNzVf7xAa9aMwBwOAXFJceSkX2QkmTxus9oxyaxrxpR7MgoLEaPqTeF9Fq2t6BIYRijoJSM7AOLz+SV59JiMDNXoSw5Fg3Mx13XX6DqvEu9BDs7SET6yigsDrkgv6mqIsKjoUTEmjEKmslsgmehl+fSotI5lZ4qd9pgMgGC98QYALg3A8i57KIzMfCszNAGHwWsayOKPWmDB6Np83+Cfl19+WrWjVHYODNGQQm0tFg0MF9y56TvOZUv/XuPZBADAEHugRgRK3VtRNSpqaoCJyu2hPRaLlVSJHBmjIKiZtYn0IHfUst4njzPuVSi5vDxaLyHL7Wzg0RkDKH2GgPYb4wig2GMgqKm434ggZbrzCZg+qOb0DXVCkEQ0NLm9AtKUi00lq7bhVUbv8HkK/urClRybTiA8BrIep7JyVMCiIwv1NktU3IyckpKIzwaSkQMYxQUqVkfq8WEtg4Hpj+6SVXwkAt0ItdPq5TNrQ73fZ5Bafxl3WRn11ranAEDledsmC81xzGpEWh2kIiMI9ReY57tLVg3RuFgzRgFxbcmrGuqFYJLcC8tqmnjUDKyD5Ktwf/R89yRqBTmOhwuLF23S7K/l2/bCSkstCdKLKH2GgM6Z9VqViznrkoKC8MYBa1oYD4ev2M4XnjgCqQkWeBTzx+wjYMY6AL0d5UkBiU1y6JSwTBQvZra9yai+CH2GhPrv8xduwb1ejaApXBxmZLCEmobh6KB+Vi6blfQnycGJanlUimewVBuadITC+2JElNGYbHXUmNTVQVqXl0JoaVF1eu5q5LCwTBGYQmnoD9Q7Zgvz6Ak1mO9+uFer9oyKeIMmZoZMRbaExHgHc723npTwOdzVyWFg8uUFBap+i+1s0tSr7WYfm762jXVivQunUcfSfUrKxqYj2fuHoEZ4wYohj+zCYpBzGICZowbgMfvGM4gRkTBs1jhbG/D3ltvwsH772P9GAWNM2MUlnDaOESqBYS4c9G3VQXQGQwDzYgFOpyciBJXU1UFZI8LEbmc7uVMsaAf4A5LUo9hjNxCbYAaThuHSLaAkAt3gWrFxBMEOCtGRJ6aqio6g1WgU0F8HhcL+hnGSC2GMQIg3wB1//fHseNAQ8w0L5ULd4FqxsJpZ6FFF38i0l84nflZ0E/BYBgjANItHzocLvxn+w/u25HqUB9tvjNmUkJtZ6FVF38i0l84gYoF/RQMFvATAPUzQ4F6iBmV2BttxrgBIW84kCIXYmPxOyIib6b09NBex2OSKEicGSMAwbWZiOUO9ZE+NzLUPmtEZHwmkwkBqsXcxCOVrFnZyCkpZb0YBYVhjACob6IKhNeh3gj1VZHcNBCJg9OJyJhczc3qnmgyofeiv2k7GIprXKYkAP5nTmZnpODyIadHdEnP91xINedYGl04fdaIyNhU130F2m1JFABnxshNasao7xmZEZvJUqqvitVi90gvexKRceSUlKJmxfKQd1QSqcUwRooiuaSnpr7KCMuYwYrkd0RExiHWfdleWAa45Es4Qi30JxIxjFHUBKqvCrVNRCwGOCKKDRmFxbAtW6L4nG6/Ghal0VC8YhijoIQTfKQ2CXjWV4WyjMk+X0SkNXGnpJyTFVsAAM1ffO4u+jelp6PHDTdyVyWpwjBGqoUbfALVV4XSJiLUAMeZNCJSK6ekFLYXnwecTsnHhY4ONG3+j/d9LS2drwHPqKTAGMZItUgU4CvVVyktY3oGqNzuqZhwyTkoGpgfdICTCpRL1+3C0nW7GMyISIEp+Jc4nTyjklRhawtSTesGp3JtIgb3yfZqiVF3rNXdEkOun5fc/VKBUhQPrTaIKPLqy1cDTkdIr+UZlaQGZ8ZItVAbnKpdFpRbxpSbkXv+3V1wSbT3UerzFSg4RqvVBpdKiWIHz6gkrTGMkWqBCvClBFtnJrWMuXTdLsn3lgpigYKNmmOfwpnpUxOyuOmAKLYEKuBXwjMqSQ0uU5JqUl36p40pUAwQkThIW+3RQp4zadMf3YTZi7f4LTlKLYXKfV7lThtmL94i+16+1J4wwMPFiWJLTkkpTMnJIb2W9WKkBmfGKCjBNjiNRJ2Z2nMzG5ra8eL7u+FwCu7bvjNOvkuhvsSZvlBmr9RucODh4kSxJaOwGKf270PT/32s2PxVysH77+PB4RQQZ8ZIU8EW2EvxnZEzm+V3NYlBTCQ141Q0MB+P3zEcLzxwBWaMGyA50xfK7JXakBWJ74SIosf2ykudrSskgpglzY4hz26EJc0u+VpHYwNqVixHU1WF1sOkGMaZMdJUKHVmUjxn5HYeOY6nXt0Gp8qzeZVmnORm+kKZvVK7wSFS3wkRaa+pqsKvh5in7r+0Ie2sk+h+kQ31n5wp+Ryho4MtLkgRwxhpSquDtE1mE9SmsVBmnELZOao2ZPFwcaLYUV++WvL+fn+oRtbFP8Jk7fx9P/eeL9D3rm1o/Ow07P27//FIbHFBShjGSHORPkh7xb93+y1HypEKQ547HrumWtEluRn/O3M2Hln+JMYUDkbRwPyQZq+CCVmhfidsiUEUXXIh6siqAUjvfQIpuS2AVYDgMKG9Ng1HVg2QfD5bXJAShjGKOfXHWmUfMwFIT7WiudUhGVZ8C/ObWx24qOAznJX/HXqfUYGX/t25Y0ouWAHA7MVbZMNQpIOnJ7bEIIo+ubYWbbauOLJqAPrdVw1nqwWmJBeOvDoAbbaufs81JSezxQUpYhijmJPTPRV1MoHMYjHhht/0U7Xj8Y83/g0XD6yG1drZWfveG56G4/p/YvveIgBr/YKV3kcpReI4KiIKTk5JKWpWLIfQ0eH/2PDv4Wq34LvXz8OZv92N7OLv0VDRE8DPIc6alc3dlBQQwxjFnF8V5OH9ym8lH3M4BTz/7i7s//44dhxo8JvB8qwDW7l+Ms45/RDysmphtTjhcFpQeywPL6z7LRbO8H9vNUcpAdrNUrElBlH0iSGqvny13wzZ0bfPxcElF8B+ogvqNp+JlNyf/ifRbGYAo6CwtQXFnM/31Co+7hKA/2z/QbL5qmcB/o8Np2HlB5NhtTjR2t4FVosTKz+4AXb72ZLvq/YoJa2wJQaRPjIKi9F70d/86r6a92fBfqILAMB+ogua93fvfMDlgu3FF9jOglRjGKOYo1QzJkc8y9I3UF16wado70jBqg8mob0jBSMurJAt0lcTerScpSoZ2QcWnxZrFhPYEoMoStIGD1b/ZKcDta+t0m4wFFe4TEkxR6lmTInUWZb/rpyIl9+/HT80ZODLvaNQenmK7DJjycg+sudkirSaparcacOqjd/4dfMwKTTAjQXcHUqxoKmqQnKZMhBXc7NGI6J4wzBGMWfqmPPw7Bv/DXg8UiDZGSm4Z+Ktqp9fNDA/YBgTj1KKZMDw3TjgyeEUYraAn7tDKRY0VVXIFvCrfT1rxygQLlNSzLnsojO9jkdK72KB1Xf9ToVQlhTVzHypOSw8GEobB8TPiEU8MJ1iQX356pCDmPh6okA4M0YxSarthDgbZTZJL0n6CmVJUWmpMjsjRZP2E4HCVqwW8HN3KMWCcDvns/M+qaFpGFu3bh2ee+45OBwOTJs2DTfeeKPX4x9++CGeffZZCIKAM844A4888gh+8YtfaDkkiiHBLPd5hjOlZT1RqGdBFg3Mx/7vj+M/23/we0wpRKgJGHI/r9zRTEBsn2kZypFTRNEm1/Q1GEf+9hjOum9OhEZE8UizZcqamho8+eSTWLVqFd555x28/vrr2L9/v/vx5uZm/OUvf8GSJUuwdu1a9O/fH88++6xWw6Eoq9xpw+zFWzD90U2YvXhL0Mt0YqAKZbmvaGC+1zJmdkYKLh9yutftaWMKQp6pmjK6ADPGDQgqNAR6rtLPWzKyD5Kt/r+qXVOtYf0cepP6uWI5XFJ8ikTn/Lbdu2F75aUIjIbilWYzYxUVFSgsLERmZiYAYPTo0Vi/fj3uuusuAIDdbsf8+fPRo0cPAED//v2xbt06rYZDUaS2MFtp5ktpuW/8ZecGHIOWxxJ5vr94NJISNQFD6ed9/I7h7ufE065DHphOsSCjsBi1r62S3BlpzcpG70V/w8H77ws4e9b08Wbk/26aVsOkGKdZGKutrUVubq77dl5eHnbs2OG+3b17d1x55ZUAgLa2NixZsgRTpkwJ6jOys/3PAIu03Nxumn9GvHnn00rJYPHOp4fcQWrz1u+wYv03aLc7AXQGthXrv0FGty647KIz0SgTcMT7jXJd5MYJdJ6TmdM9FVPHnIfLLjpT9nmbt34nG+gam9qRm9sN4y/rpiqE6imUaxILP1esM8rvSiwTZt6CA//8F1ztP/+emlNScM5Nv0NubjcIN/0O+/7+dIA3ESDs2g6MHMFrYlB6XhfNwpjL5YLJ9PMON0EQvG6LTp48iTvvvBMFBQW47rrrgvqMhoZmuNRUaocoN7cb6upOavb+8UquB1jdsVb397n83Z3uICZqtzux/N2dGHhWJrJk6omyflru0/u6iLN6cn/6sjNS3DNaALB28z7JGSBxFlFOVkaK7j+rGvxdMSZel8gwDRiCvCnT3L3GxPMmTQOGoK7uJE42qet7eGj5K8gbOYLXxIC0/l0xm02KE0iahbH8/Hx88cUX7tt1dXXIy8vzek5tbS1uueUWFBYWYu7cuVoNhaJMTWF2oJ10JSP7+BXhG6GeSGy+2tLmlH2O7ziVlm2V2lYY4eclok4ZhcWS/cKaqipge/F5Ve/BnZUkR7MC/uLiYlRWVqKxsRGtra3YsGEDRowY4X7c6XTi9ttvx5gxYzBv3jzJWTOKTWoKswOdsyhVhK93sboYqpSCWHoXi984lerBlOrN9P55iSiw+vLVgFP+7wRPvmdbEok0mxnr0aMH7r33XkydOhV2ux0TJ07E4MGDMWPGDMyaNQs2mw27du2C0+nEBx98AAA4//zzsWDBAq2GRFGipjBbzcyX1kX4wQrUfBUAuiRb/casNAuoNItopJ+diKQFM9sViZ2ZFJ807TM2btw4jBs3zuu+pUuXAgAGDRqEPXvka2UoNEY56y9QkNJqJ52WP7+aXmFywUru/pKRffDi+7vh8Dh00moxcXmSKEaY0tMhtLSoeq5t2RIcW1OO7teW8Igk8sIO/HEk1s76i/TMl9Y/v1LzVc/n+Ao0Cyj4bEJxOAW8+uFeAMa8bkTUqamqAkJbcCdGtNfVo2bFcgBgICM3hrE4osVRPLFE659fKlR5EgOW1OzctDEF7vvSu1hgMpmwdN0u2aObmlsdqoOkVrOBvu87uE82dhxo0H3WlcgoOuvFHEG/TujoQH35aoYxcuNB4XEk0c/60/rn991UkN7Fgq6pnf8/I24wAKQPCgeAx+8YjhnjBsDuENDc2vkXuFJnlg6HC0vX7VI8wSCckwqUSL3vf7b/EPHPIYpl4eyO5M5K8sSZsTiS6Gf9RePnD7S0OnvxFsXZOTWbAHwpLbdqNRuoZpyJNOtKJCWccyu5s5I8cWYsjiT6WX9G+PkDzc6FOksnBp9gPi+c80HVjjNRZl2JpIS6O9KUnMydleSFM2NxJNHP+tPy55eqy5L6rECzc3KPmwDZbv6iYHZqdk21hrWZQc1mBfF5RIkqo7AYp/bvQ9Pm/wT1uh5Tb2K9GHlhGIszRuvNFW1a/PxSuzRffH83BJcAsSNFQ1M7lq7bhfN6ZeLkKbvszkm5nZXDB+Xj//77A5wKiSyYnZqCIIS1fBlos4Lvz0WUqPJ/Nw1pfc91H5UUSEpuDoMY+eEyJVEAUvVTDqcgGZx2f3scnnNcXVOtXp305U4W2HGgQTGIAcDgPv41JnLvJ3dKgNplRan3vXzI6YY6EYHIKDIKi1UtO5qSk3HWlBujMCKKNZwZI/LhuyQZbF1Uh+PnVNVh959Zkpq9W7puV8D33fKVDX3PyHQfMK60HCt31FIwy4qJPstKFIz68tUBn9Nj6k08KJwkcWaMyEPlThtefH932AX3IrnCe19qQpL4XmraWRhhMwNRIlGzRHlq/74ojIRiEcMYkYdXP9zrdTSRHKtF/cH24s5GJSUj+6h6z4amdsV2FiIjHrROlOiaNv8HtR//n97DIAPiMiWRB7EZqxRxyVJcFtz//XH8Z/sPqt536bpdWLXxG0y+sr9kICoamI9VG7+Bwyld6+U7Bim+93OZkSg6mqoqVD/3yMsr0euRIRqOhmIRwxgZjlEOO/dVMrKPe1zlHx9Aycg+6HtGpvu+rqlWtLY5ZAvxW9qciu0l5IruReIyo5p6MKN+h0TxSE29mKi9np33yR/DGBmK3oedp3exSIaiZKtJclzTxhTg8TuGe41fqRhfqb2E0qyXb6BSOnhc7++QKNEE04U/JYed98kfa8bIUNTUQ2lp8pX94Vu6ZTEByUkWVeMqGpgfsBi/oaldsiO+XNH9jHED8PgdwwO2x/Bseqvnd0iUaNQebcTWFiSHM2NkKHofdi7XxV9utktqXGoapkrNVgVzgoBSPZje3yFRoskpKUXNiuUQOjoUnyd0dGDf35+GuWtX5E2azOav5MYwRoZihMPOpYJOMH27xNe++uFexQ0BUkuWkSi6N8J3SJRIxFDl7sJvNgMuF8xdu8LV0gII3oWkruZm2F5Y5vVaSmxcpiRDMWp/rGDHVTQwH8/cPQIzxg1QDEFazFYZ9TskimcZhcXovehv6LdsOfoteQH9li2HOTnFL4i5uVyofW1VdAdJhsWZMTIUox52Huq4xJmuWx/bBJfE38lm9e3KNB8rEUVWoMJ+V3NzlEZCRscwRoZj1P5Y4YxLKogp3R8q35YWM8YNMOR3SZQIrFnZQe20pMTFMEYUBdGo44pWSwupHmbjL+sWsfcnihc5JaWwvfg8INfM2WTC3ltvgjUrGzklpawfS2CsGSOKgmjUcUWjpYXcuZibt34Xsc8gihcZhcXIv/kWIDlZ+gk/1ZM5GhtQs2J5UJ38Kb4wjBFFQTTOioxGSwu5wLfi37sj9hlE8SSjsBj9Fi9B/q0zFfuRCR0dQXXyp/jCZUqiKNG6Fi6YpdBQj0uSC3b1x1qDHzBRAskoLEZGYTG+ffCPaK+rl3wO68sSF2fGiOKE2qXQyp02vPj+bq+lxhff3+13IoAUuRq3nO6pIY6aKHE0VVXIBjEAMKWnR3E0ZCQMY0RxQu1S6Ksf7oXD5zRzh1PAqx/uDfgZcoFv6pjzwhw9UXxrqqpAzYrlis8RWlqw7+47WTuWgLhMSRRH1CyFyp0K0NzqwPRHNwU8hgnw72F22UVnoq7uZPg/AFGcaKqqcHfkt2Zlw9XRHvC4JKAzkImhjbsrEwfDGBF5CdQSw6h94IiMQpwFE8NXsLVgYjE/w1jiYBgjCoFcAXyohfHRlN7FgpY2mb5HP5E6N5OI1KkvX61qFkwJi/kTC8MYUZDkmqvu//44tnxl07zpargmX9kfL7y7C84A3f+1ODeTKBFEIkgptcGg+MMCfqIgyfXa+vi/P2jedDUSigbmY/rYnw8wlzsfM5KnAxAlErkgZUpPR0pujvs5GZddDnPXrv7PS05GTkmppmMkY+HMGFGQ5GaM5M6ZNNIMk+cyqhjCUlMsaLe7vHZYRvp0AKJEklNS6lUzBnQGrB433Ig+40a7N7s0VVXg1I4dcKEZMJsBl4tHIyUohjGiIMk1VzWbpAOZUWaYfJdXxbG2tDlhMQFdU61obnUYttaNKFaIQcpzN6VvwPIt8oer8/cybfBgBrEExDBGFKSSkX28Qg3QOZM0fFC+V82YeL9RZpiklldFTgFISbLgmbtHRHlURPFJ7LgvR67Iv2nzf5DW91wGsgTDMEYUJLleW0UD89H3jEzD7qYMtFxqpOVUoninVORve34pbMuWcMkygTCMEYVArteWkXtwyS2vej4OhH5uJRGpZ83Klg9kQmcNgaOxgQ1gEwR3UxIlCKmjjETicqpYV+Z5buVL/96j6txKJZU7bZi9eAumP7oJsxdvCfv9iGKd2t2SYgNYim8MY0QJwvfsSnE3pecZlnJtO8Jpz6FVwCOKZRmFxUCKus09bAAb/7hMSZRAAi2jyi1jhlNPphTwuPxJiSx/yjTYXnwecCqfiMEGsPGPYYyI3OTqysJpz6FFwCOKZZ6HiJu7doUgCBBaWmDu2hWu1lavcMYGsImBy5RE5CZVVxZuew65IGeU/mtE0VT78f+hZsVy99Kjq7kZsNuRf+tM9H3qH8i/+Rb3TJg1Kxs9pt7E4v0EwJkxInJTatsRKrm+bEbpv0YUTUdeXunXX0ws0hd7kzF8JR6GMSLy4ltXJu6EDDWcaRHwiGJVe710MT6L9BMbwxgRyfI9QkncCQkg6EDG8EUEpORko72u3u9+FuknNtaMEZEsLVpdECWys6bcCFNystd9LNInzowRkSzuhCSKrLyRI3CyqVXxEHFKPAxjRCRLi1YXRImORfrki8uURCRLi1YXRETkjTNjRCSLOyGJIqepqgLfrilHe109lyfJC8MYESniTkii8DVVVaBmxXJ3jzFHYwNqViwHAAYyYhgjClflThtnjohIUX35asVmr5TYWDNGFAaxD5dY5C724arcadN5ZERkJHJNXR2NDTh4/31oqqqI8ojISDgzRhQGpT5cnB0jIpE1K1sxkNWsWI5T+/fh1I4dbHmRgBjGiMLAPlzh4zIvJYKcklKvmjFfQkcHmjb/x32bNWWJhWGMKAx69uGKhxATqeOWiIxODFTHftpNqQZryhIHa8aIwqBXH654qVXjcUuUSDIKi/HLZf9/UOdQ8gDxxMAwRhSGooH5mDamwD0Tlp2RgmljCjSf1YmXEMNlXkpEOSWlfudTyuEB4omBy5REYdKjD1e8hBget0SJSFx2FM+nNHftCldHB+BTT8YDxBMHZ8aIYpBcWIm1EMPjlihRZRQWo/eivyH/1pmdRf0+QczctSt6TL2J9WIJgmGMKAbFS4jRa5mXyCikmsECgDk5hUEsgXCZkigGxdOZkTxuiRKZUu8xShwMY0QxyughJh5abxBpTa4ZLAv3EwuXKYko4uKl9QaR1iR3VlqscLa3Ye+tN/GopATBMEZEERcvrTeItJZRWIweU29yz4SZu3YFIEBoaQHwcyd+BrL4xjBGRBEXL603iKJB3FnZb9lymJNTAKfT63GhowO2ZUs4SxbHGMaIKOLipfUGUbQpFe5zlix+MYwRUcTFS+sNomgLVLgvnldJ8YVhjIgijv3DiEKj5qgktr2IP2xtQUSaMHrrDSIj8j0qSQrbXsQfhjEiIiIDySgsRkZhMZqqKlCzYrlXh36eVxmfNF2mXLduHa6++mqMGjUKK1eu9Ht89+7dKCkpwejRozFv3jw4HA4th0NERBQzfNteWLOyeV5lnNJsZqympgZPPvkkysvLkZycjEmTJuHiiy9G37593c+ZPXs2Hn74YVx44YWYO3cu3njjDUyePFmrIRFRBHl22M/tnooJl5zDZUmiCBNnySi+aTYzVlFRgcLCQmRmZiItLQ2jR4/G+vXr3Y8fPXoUbW1tuPDCCwEAJSUlXo8TkXH5dtivO9bKDvtERCHSLIzV1tYiNzfXfTsvLw81NTWyj+fm5no9TkTGxQ77RESRo9kypcvlgslkct8WBMHrdqDH1cjO7hr+QAPIze2m+WdQ8Hhd9NUo00m/samd18ZgeD2Mh9fEmPS8LpqFsfz8fHzxxRfu23V1dcjLy/N6vK6uzn27vr7e63E1Ghqa4XIJ4Q9WRm5uN9TVndTs/Sk0vC76y8pIkTzaKCsjhdfGQPi7Yjy8Jsak9XUxm02KE0iaLVMWFxejsrISjY2NaG1txYYNGzBixAj34z179kRKSgq2bt0KAFizZo3X40RkXOywT0QUOZrNjPXo0QP33nsvpk6dCrvdjokTJ2Lw4MGYMWMGZs2ahUGDBuGJJ55AWVkZmpubMXDgQEydOlWr4RBRBIm7JrmbkogofCZBELRb59MYlykTE6+L8fCaGBOvi/HwmhhT3C5TEhEREVFgDGNEREREOmIYIyIiItIRwxgRERGRjhjGiIiIiHTEMEZERESkI4YxIiIiIh0xjBERERHpiGGMiIiISEcMY0REREQ6YhgjIiIi0hHDGBEREZGOGMaIiIiIdGTVewDhMJtNcfEZFDxeF+PhNTEmXhfj4TUxJi2vS6D3NgmCIGj26URERESkiMuURERERDpiGCMiIiLSEcMYERERkY4YxoiIiIh0xDBGREREpCOGMSIiIiIdMYwRERER6YhhjIiIiEhHDGNEREREOmIYIyIiItIRwxiAdevW4eqrr8aoUaOwcuVKv8d3796NkpISjB49GvPmzYPD4dBhlIkn0HX58MMPce2112L8+PG44447cOLECR1GmVgCXRPR5s2bccUVV0RxZIkt0HU5ePAgpkyZgvHjx+OWW27h70oUBLomO3fuRGlpKcaPH4/bbrsNTU1NOowy8TQ3N2Ps2LH4/vvv/R7T9d96IcHZbDbh8ssvF44dOya0tLQI48aNE/bt2+f1nGuuuUbYvn27IAiC8OCDDworV67UYaSJJdB1OXnypDB8+HDBZrMJgiAITz31lPDXv/5Vr+EmBDW/K4IgCHV1dcJVV10lXH755TqMMvEEui4ul0sYNWqU8PHHHwuCIAiPP/64sGjRIr2GmxDU/K7ccMMNwubNmwVBEIRHHnlE+Pvf/67HUBPKf//7X2Hs2LHCwIEDhe+++87vcT3/rU/4mbGKigoUFhYiMzMTaWlpGD16NNavX+9+/OjRo2hra8OFF14IACgpKfF6nLQR6LrY7XbMnz8fPXr0AAD0798fP/74o17DTQiBromorKwMd911lw4jTEyBrsvOnTuRlpaGESNGAABuv/123HjjjXoNNyGo+V1xuVxoaWkBALS2tqJLly56DDWhvPHGG5g/fz7y8vL8HtP73/qED2O1tbXIzc11387Ly0NNTY3s47m5uV6PkzYCXZfu3bvjyiuvBAC0tbVhyZIl+M1vfhP1cSaSQNcEAFasWIEBAwbgggsuiPbwElag63LkyBHk5ORg7ty5uO666zB//nykpaXpMdSEoeZ35YEHHkBZWRkuueQSVFRUYNKkSdEeZsJZsGABfvnLX0o+pve/9QkfxlwuF0wmk/u2IAhetwM9TtpQ+72fPHkSM2fOREFBAa677rpoDjHhBLome/fuxYYNG3DHHXfoMbyEFei6OBwOVFdX44YbbsDbb7+NM888E48++qgeQ00Yga5JW1sb5s2bh+XLl+PTTz/F5MmTMWfOHD2GSj/R+9/6hA9j+fn5qKurc9+uq6vzmsL0fby+vl5yipMiK9B1ATr/T2by5Mno378/FixYEO0hJpxA12T9+vWoq6tDaWkpZs6c6b4+pK1A1yU3Nxe9evXCoEGDAABjx47Fjh07oj7ORBLomuzduxcpKSkYPHgwAOC3v/0tqquroz5O+pne/9YnfBgrLi5GZWUlGhsb0draig0bNrhrKwCgZ8+eSElJwdatWwEAa9as8XqctBHoujidTtx+++0YM2YM5s2bx9nKKAh0TWbNmoUPPvgAa9aswZIlS5CXl4dVq1bpOOLEEOi6DBkyBI2NjdizZw8AYNOmTRg4cKBew00Iga5Jr169YLPZcPDgQQDARx995A7LpA+9/623Ru2TDKpHjx649957MXXqVNjtdkycOBGDBw/GjBkzMGvWLAwaNAhPPPEEysrK0NzcjIEDB2Lq1Kl6DzvuBbouNpsNu3btgtPpxAcffAAAOP/88zlDpiE1vysUfWquyz//+U+UlZWhtbUV+fn5WLRokd7DjmtqrskjjzyCe+65B4IgIDs7GwsXLtR72AnJKP/WmwRBEKL2aURERETkJeGXKYmIiIj0xDBGREREpCOGMSIiIiIdMYwRERER6YhhjIiIiEhHDGNElNB27tyJiy66CF999ZX7vsbGRvzmN7/B5s2b9RsYESUMtrYgooT32muvYcmSJXj77beRnp6O6dOno6ioCL///e/1HhoRJQCGMSIiALNnz8apU6dw1lln4bvvvsOzzz7Lkx2IKCoYxoiIAJw6dQoTJkyAw+HAunXrkJ6erveQiChBsGaMiAjAoUOH0NLSgqamJuzcuVPv4RBRAuHMGBElvMbGRkycOBF/+MMf0N7ejieffBJvv/02cnNz9R4aESUAhjEiSmhOpxPTp09H37598ac//QkA8OCDD+K7777DSy+9BIvFovMIiSjecZmSiBLaokWL0Nraijlz5rjv+/Of/4wTJ07g73//u44jI6JEwZkxIiIiIh1xZoyIiIhIRwxjRERERDpiGCMiIiLSEcMYERERkY4YxoiIiIh0xDBGREREpCOGMSIiIiId/T/HFmmCmg3iygAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Sylwetka (ang.silhouette) dla metody k-medoid i dla k = 4 0.77\n" ] } ], "source": [ "model16 = TrainModel_medoids(X3, 4)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 5 }