ZIWAUA0/Rodział 2-3/Kurs_R.html

908 lines
2.3 MiB
HTML
Raw Normal View History

2020-04-17 20:10:04 +02:00
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="author" content="altarin" />
<meta name="date" content="2020-04-11" />
<title>Kurs_R.R</title>
<script>/*! jQuery v1.11.3 | (c) 2005, 2015 jQuery Foundation, Inc. | jquery.org/license */
!function(a,b){"object"==typeof module&&"object"==typeof module.exports?module.exports=a.document?b(a,!0):function(a){if(!a.document)throw new Error("jQuery requires a window with a document");return b(a)}:b(a)}("undefined"!=typeof window?window:this,function(a,b){var c=[],d=c.slice,e=c.concat,f=c.push,g=c.indexOf,h={},i=h.toString,j=h.hasOwnProperty,k={},l="1.11.3",m=function(a,b){return new m.fn.init(a,b)},n=/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,o=/^-ms-/,p=/-([\da-z])/gi,q=function(a,b){return b.toUpperCase()};m.fn=m.prototype={jquery:l,constructor:m,selector:"",length:0,toArray:function(){return d.call(this)},get:function(a){return null!=a?0>a?this[a+this.length]:this[a]:d.call(this)},pushStack:function(a){var b=m.merge(this.constructor(),a);return b.prevObject=this,b.context=this.context,b},each:function(a,b){return m.each(this,a,b)},map:function(a){return this.pushStack(m.map(this,function(b,c){return a.call(b,c,b)}))},slice:function(){return this.pushStack(d.apply(this,arguments))},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},eq:function(a){var b=this.length,c=+a+(0>a?b:0);return this.pushStack(c>=0&&b>c?[this[c]]:[])},end:function(){return this.prevObject||this.constructor(null)},push:f,sort:c.sort,splice:c.splice},m.extend=m.fn.extend=function(){var a,b,c,d,e,f,g=arguments[0]||{},h=1,i=arguments.length,j=!1;for("boolean"==typeof g&&(j=g,g=arguments[h]||{},h++),"object"==typeof g||m.isFunction(g)||(g={}),h===i&&(g=this,h--);i>h;h++)if(null!=(e=arguments[h]))for(d in e)a=g[d],c=e[d],g!==c&&(j&&c&&(m.isPlainObject(c)||(b=m.isArray(c)))?(b?(b=!1,f=a&&m.isArray(a)?a:[]):f=a&&m.isPlainObject(a)?a:{},g[d]=m.extend(j,f,c)):void 0!==c&&(g[d]=c));return g},m.extend({expando:"jQuery"+(l+Math.random()).replace(/\D/g,""),isReady:!0,error:function(a){throw new Error(a)},noop:function(){},isFunction:function(a){return"function"===m.type(a)},isArray:Array.isArray||function(a){return"array"===m.type(a)},isWindow:function(a){return null!=a&&a==a.window},isNumeric:function(a){return!m.isArray(a)&&a-parseFloat(a)+1>=0},isEmptyObject:function(a){var b;for(b in a)return!1;return!0},isPlainObject:function(a){var b;if(!a||"object"!==m.type(a)||a.nodeType||m.isWindow(a))return!1;try{if(a.constructor&&!j.call(a,"constructor")&&!j.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}if(k.ownLast)for(b in a)return j.call(a,b);for(b in a);return void 0===b||j.call(a,b)},type:function(a){return null==a?a+"":"object"==typeof a||"function"==typeof a?h[i.call(a)]||"object":typeof a},globalEval:function(b){b&&m.trim(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(o,"ms-").replace(p,q)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toLowerCase()===b.toLowerCase()},each:function(a,b,c){var d,e=0,f=a.length,g=r(a);if(c){if(g){for(;f>e;e++)if(d=b.apply(a[e],c),d===!1)break}else for(e in a)if(d=b.apply(a[e],c),d===!1)break}else if(g){for(;f>e;e++)if(d=b.call(a[e],e,a[e]),d===!1)break}else for(e in a)if(d=b.call(a[e],e,a[e]),d===!1)break;return a},trim:function(a){return null==a?"":(a+"").replace(n,"")},makeArray:function(a,b){var c=b||[];return null!=a&&(r(Object(a))?m.merge(c,"string"==typeof a?[a]:a):f.call(c,a)),c},inArray:function(a,b,c){var d;if(b){if(g)return g.call(b,a,c);for(d=b.length,c=c?0>c?Math.max(0,d+c):c:0;d>c;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,b){var c=+b.length,d=0,e=a.length;while(c>d)a[e++]=b[d++];if(c!==c)while(void 0!==b[d])a[e++]=b[d++];return a.length=e,a},grep:function(a,b,c){for(var d,e=[],f=0,g=a.length,h=!c;g>f;f++)d=!b(a[f],f),d!==h&&e.push(a[f]);return e},map:function(a,b,c){var d,f=0,g=a.length,h=r(a),i=[];if(h)for(;g>f;f++)d=b(a[f],f,c),null!=d&&i.push(d);else for(f in a)d=b(a[f],f,c),null!=d&&i.push(d);return e.apply([],i)},guid:1,proxy:function(a,b){var c,e,f;return"string"==typeof b&&(f=a[b],b=a,a=f),m.isFunction(a)?(c=d.call(arguments,2),e=function(){return a.apply(b||this,c.concat(d.call(arguments)))},e.guid=a.guid=a.guid||m.guid++,e):void 0},now:function(){return+new Date},support:k}),m.each(
return!0}function Q(a,b,d,e){if(m.acceptData(a)){var f,g,h=m.expando,i=a.nodeType,j=i?m.cache:a,k=i?a[h]:a[h]&&h;if(k&&j[k]&&(e||j[k].data)||void 0!==d||"string"!=typeof b)return k||(k=i?a[h]=c.pop()||m.guid++:h),j[k]||(j[k]=i?{}:{toJSON:m.noop}),("object"==typeof b||"function"==typeof b)&&(e?j[k]=m.extend(j[k],b):j[k].data=m.extend(j[k].data,b)),g=j[k],e||(g.data||(g.data={}),g=g.data),void 0!==d&&(g[m.camelCase(b)]=d),"string"==typeof b?(f=g[b],null==f&&(f=g[m.camelCase(b)])):f=g,f}}function R(a,b,c){if(m.acceptData(a)){var d,e,f=a.nodeType,g=f?m.cache:a,h=f?a[m.expando]:m.expando;if(g[h]){if(b&&(d=c?g[h]:g[h].data)){m.isArray(b)?b=b.concat(m.map(b,m.camelCase)):b in d?b=[b]:(b=m.camelCase(b),b=b in d?[b]:b.split(" ")),e=b.length;while(e--)delete d[b[e]];if(c?!P(d):!m.isEmptyObject(d))return}(c||(delete g[h].data,P(g[h])))&&(f?m.cleanData([a],!0):k.deleteExpando||g!=g.window?delete g[h]:g[h]=null)}}}m.extend({cache:{},noData:{"applet ":!0,"embed ":!0,"object ":"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"},hasData:function(a){return a=a.nodeType?m.cache[a[m.expando]]:a[m.expando],!!a&&!P(a)},data:function(a,b,c){return Q(a,b,c)},removeData:function(a,b){return R(a,b)},_data:function(a,b,c){return Q(a,b,c,!0)},_removeData:function(a,b){return R(a,b,!0)}}),m.fn.extend({data:function(a,b){var c,d,e,f=this[0],g=f&&f.attributes;if(void 0===a){if(this.length&&(e=m.data(f),1===f.nodeType&&!m._data(f,"parsedAttrs"))){c=g.length;while(c--)g[c]&&(d=g[c].name,0===d.indexOf("data-")&&(d=m.camelCase(d.slice(5)),O(f,d,e[d])));m._data(f,"parsedAttrs",!0)}return e}return"object"==typeof a?this.each(function(){m.data(this,a)}):arguments.length>1?this.each(function(){m.data(this,a,b)}):f?O(f,a,m.data(f,a)):void 0},removeData:function(a){return this.each(function(){m.removeData(this,a)})}}),m.extend({queue:function(a,b,c){var d;return a?(b=(b||"fx")+"queue",d=m._data(a,b),c&&(!d||m.isArray(c)?d=m._data(a,b,m.makeArray(c)):d.push(c)),d||[]):void 0},dequeue:function(a,b){b=b||"fx";var c=m.queue(a,b),d=c.length,e=c.shift(),f=m._queueHooks(a,b),g=function(){m.dequeue(a,b)};"inprogress"===e&&(e=c.shift(),d--),e&&("fx"===b&&c.unshift("inprogress"),delete f.stop,e.call(a,g,f)),!d&&f&&f.empty.fire()},_queueHooks:function(a,b){var c=b+"queueHooks";return m._data(a,c)||m._data(a,c,{empty:m.Callbacks("once memory").add(function(){m._removeData(a,b+"queue"),m._removeData(a,c)})})}}),m.fn.extend({queue:function(a,b){var c=2;return"string"!=typeof a&&(b=a,a="fx",c--),arguments.length<c?m.queue(this[0],a):void 0===b?this:this.each(function(){var c=m.queue(this,a,b);m._queueHooks(this,a),"fx"===a&&"inprogress"!==c[0]&&m.dequeue(this,a)})},dequeue:function(a){return this.each(function(){m.dequeue(this,a)})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,b){var c,d=1,e=m.Deferred(),f=this,g=this.length,h=function(){--d||e.resolveWith(f,[f])};"string"!=typeof a&&(b=a,a=void 0),a=a||"fx";while(g--)c=m._data(f[g],a+"queueHooks"),c&&c.empty&&(d++,c.empty.add(h));return h(),e.promise(b)}});var S=/[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/.source,T=["Top","Right","Bottom","Left"],U=function(a,b){return a=b||a,"none"===m.css(a,"display")||!m.contains(a.ownerDocument,a)},V=m.access=function(a,b,c,d,e,f,g){var h=0,i=a.length,j=null==c;if("object"===m.type(c)){e=!0;for(h in c)m.access(a,b,h,c[h],!0,f,g)}else if(void 0!==d&&(e=!0,m.isFunction(d)||(g=!0),j&&(g?(b.call(a,d),b=null):(j=b,b=function(a,b,c){return j.call(m(a),c)})),b))for(;i>h;h++)b(a[h],c,g?d:d.call(a[h],h,b(a[h],c)));return e?a:j?b.call(a):i?b(a[0],c):f},W=/^(?:checkbox|radio)$/i;!function(){var a=y.createElement("input"),b=y.createElement("div"),c=y.createDocumentFragment();if(b.innerHTML=" <link/><table></table><a href='/a'>a</a><input type='checkbox'/>",k.leadingWhitespace=3===b.firstChild.nodeType,k.tbody=!b.getElementsByTagName("tbody").length,k.htmlSerialize=!!b.getElementsByTagName("link").length,k.html5Clone="<:nav></:nav>"!==y.createElement("nav").cloneNode(!0).outerHTML,a.type="checkbox",a.checked=!0,c.appendChild(a),k.appendChecked=a.checked,b.innerHTML="<textarea>x</tex
return new Za.prototype.init(a,b,c,d,e)}m.Tween=Za,Za.prototype={constructor:Za,init:function(a,b,c,d,e,f){this.elem=a,this.prop=c,this.easing=e||"swing",this.options=b,this.start=this.now=this.cur(),this.end=d,this.unit=f||(m.cssNumber[c]?"":"px")},cur:function(){var a=Za.propHooks[this.prop];return a&&a.get?a.get(this):Za.propHooks._default.get(this)},run:function(a){var b,c=Za.propHooks[this.prop];return this.options.duration?this.pos=b=m.easing[this.easing](a,this.options.duration*a,0,1,this.options.duration):this.pos=b=a,this.now=(this.end-this.start)*b+this.start,this.options.step&&this.options.step.call(this.elem,this.now,this),c&&c.set?c.set(this):Za.propHooks._default.set(this),this}},Za.prototype.init.prototype=Za.prototype,Za.propHooks={_default:{get:function(a){var b;return null==a.elem[a.prop]||a.elem.style&&null!=a.elem.style[a.prop]?(b=m.css(a.elem,a.prop,""),b&&"auto"!==b?b:0):a.elem[a.prop]},set:function(a){m.fx.step[a.prop]?m.fx.step[a.prop](a):a.elem.style&&(null!=a.elem.style[m.cssProps[a.prop]]||m.cssHooks[a.prop])?m.style(a.elem,a.prop,a.now+a.unit):a.elem[a.prop]=a.now}}},Za.propHooks.scrollTop=Za.propHooks.scrollLeft={set:function(a){a.elem.nodeType&&a.elem.parentNode&&(a.elem[a.prop]=a.now)}},m.easing={linear:function(a){return a},swing:function(a){return.5-Math.cos(a*Math.PI)/2}},m.fx=Za.prototype.init,m.fx.step={};var $a,_a,ab=/^(?:toggle|show|hide)$/,bb=new RegExp("^(?:([+-])=|)("+S+")([a-z%]*)$","i"),cb=/queueHooks$/,db=[ib],eb={"*":[function(a,b){var c=this.createTween(a,b),d=c.cur(),e=bb.exec(b),f=e&&e[3]||(m.cssNumber[a]?"":"px"),g=(m.cssNumber[a]||"px"!==f&&+d)&&bb.exec(m.css(c.elem,a)),h=1,i=20;if(g&&g[3]!==f){f=f||g[3],e=e||[],g=+d||1;do h=h||".5",g/=h,m.style(c.elem,a,g+f);while(h!==(h=c.cur()/d)&&1!==h&&--i)}return e&&(g=c.start=+g||+d||0,c.unit=f,c.end=e[1]?g+(e[1]+1)*e[2]:+e[2]),c}]};function fb(){return setTimeout(function(){$a=void 0}),$a=m.now()}function gb(a,b){var c,d={height:a},e=0;for(b=b?1:0;4>e;e+=2-b)c=T[e],d["margin"+c]=d["padding"+c]=a;return b&&(d.opacity=d.width=a),d}function hb(a,b,c){for(var d,e=(eb[b]||[]).concat(eb["*"]),f=0,g=e.length;g>f;f++)if(d=e[f].call(c,b,a))return d}function ib(a,b,c){var d,e,f,g,h,i,j,l,n=this,o={},p=a.style,q=a.nodeType&&U(a),r=m._data(a,"fxshow");c.queue||(h=m._queueHooks(a,"fx"),null==h.unqueued&&(h.unqueued=0,i=h.empty.fire,h.empty.fire=function(){h.unqueued||i()}),h.unqueued++,n.always(function(){n.always(function(){h.unqueued--,m.queue(a,"fx").length||h.empty.fire()})})),1===a.nodeType&&("height"in b||"width"in b)&&(c.overflow=[p.overflow,p.overflowX,p.overflowY],j=m.css(a,"display"),l="none"===j?m._data(a,"olddisplay")||Fa(a.nodeName):j,"inline"===l&&"none"===m.css(a,"float")&&(k.inlineBlockNeedsLayout&&"inline"!==Fa(a.nodeName)?p.zoom=1:p.display="inline-block")),c.overflow&&(p.overflow="hidden",k.shrinkWrapBlocks()||n.always(function(){p.overflow=c.overflow[0],p.overflowX=c.overflow[1],p.overflowY=c.overflow[2]}));for(d in b)if(e=b[d],ab.exec(e)){if(delete b[d],f=f||"toggle"===e,e===(q?"hide":"show")){if("show"!==e||!r||void 0===r[d])continue;q=!0}o[d]=r&&r[d]||m.style(a,d)}else j=void 0;if(m.isEmptyObject(o))"inline"===("none"===j?Fa(a.nodeName):j)&&(p.display=j);else{r?"hidden"in r&&(q=r.hidden):r=m._data(a,"fxshow",{}),f&&(r.hidden=!q),q?m(a).show():n.done(function(){m(a).hide()}),n.done(function(){var b;m._removeData(a,"fxshow");for(b in o)m.style(a,b,o[b])});for(d in o)g=hb(q?r[d]:0,d,n),d in r||(r[d]=g.start,q&&(g.end=g.start,g.start="width"===d||"height"===d?1:0))}}function jb(a,b){var c,d,e,f,g;for(c in a)if(d=m.camelCase(c),e=b[d],f=a[c],m.isArray(f)&&(e=f[1],f=a[c]=f[0]),c!==d&&(a[d]=f,delete a[c]),g=m.cssHooks[d],g&&"expand"in g){f=g.expand(f),delete a[d];for(c in f)c in a||(a[c]=f[c],b[c]=e)}else b[d]=e}function kb(a,b,c){var d,e,f=0,g=db.length,h=m.Deferred().always(function(){delete i.elem}),i=function(){if(e)return!1;for(var b=$a||fb(),c=Math.max(0,j.startTime+j.duration-b),d=c/j.duration||0,f=1-d,g=0,i=j.tweens.length;i>g;g++)j.tweens[g].run(f);return h.notifyWith(a,[j,f,c]),1>f&&i?c:(h.resolveWith(a,[j]),!1)},j=h
</script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<style type="text/css">html{font-family:sans-serif;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}article,aside,details,figcaption,figure,footer,header,hgroup,main,menu,nav,section,summary{display:block}audio,canvas,progress,video{display:inline-block;vertical-align:baseline}audio:not([controls]){display:none;height:0}[hidden],template{display:none}a{background-color:transparent}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}dfn{font-style:italic}h1{margin:.67em 0;font-size:2em}mark{color:#000;background:#ff0}small{font-size:80%}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}img{border:0}svg:not(:root){overflow:hidden}figure{margin:1em 40px}hr{height:0;-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box}pre{overflow:auto}code,kbd,pre,samp{font-family:monospace,monospace;font-size:1em}button,input,optgroup,select,textarea{margin:0;font:inherit;color:inherit}button{overflow:visible}button,select{text-transform:none}button,html input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer}button[disabled],html input[disabled]{cursor:default}button::-moz-focus-inner,input::-moz-focus-inner{padding:0;border:0}input{line-height:normal}input[type=checkbox],input[type=radio]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box;padding:0}input[type=number]::-webkit-inner-spin-button,input[type=number]::-webkit-outer-spin-button{height:auto}input[type=search]{-webkit-box-sizing:content-box;-moz-box-sizing:content-box;box-sizing:content-box;-webkit-appearance:textfield}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}fieldset{padding:.35em .625em .75em;margin:0 2px;border:1px solid silver}legend{padding:0;border:0}textarea{overflow:auto}optgroup{font-weight:700}table{border-spacing:0;border-collapse:collapse}td,th{padding:0}@media print{*,:after,:before{color:#000!important;text-shadow:none!important;background:0 0!important;-webkit-box-shadow:none!important;box-shadow:none!important}a,a:visited{text-decoration:underline}a[href]:after{content:" (" attr(href) ")"}abbr[title]:after{content:" (" attr(title) ")"}a[href^="javascript:"]:after,a[href^="#"]:after{content:""}blockquote,pre{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}h2,h3,p{orphans:3;widows:3}h2,h3{page-break-after:avoid}.navbar{display:none}.btn>.caret,.dropup>.btn>.caret{border-top-color:#000!important}.label{border:1px solid #000}.table{border-collapse:collapse!important}.table td,.table th{background-color:#fff!important}.table-bordered td,.table-bordered th{border:1px solid #ddd!important}}@font-face{font-family:'Glyphicons Halflings';src:url(data:application/vnd.ms-fontobject;base64,n04AAEFNAAACAAIABAAAAAAABQAAAAAAAAABAJABAAAEAExQAAAAAAAAAAIAAAAAAAAAAAEAAAAAAAAAJxJ/LAAAAAAAAAAAAAAAAAAAAAAAACgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzAAAADgBSAGUAZwB1AGwAYQByAAAAeABWAGUAcgBzAGkAbwBuACAAMQAuADAAMAA5ADsAUABTACAAMAAwADEALgAwADAAOQA7AGgAbwB0AGMAbwBuAHYAIAAxAC4AMAAuADcAMAA7AG0AYQBrAGUAbwB0AGYALgBsAGkAYgAyAC4ANQAuADUAOAAzADIAOQAAADgARwBMAFkAUABIAEkAQwBPAE4AUwAgAEgAYQBsAGYAbABpAG4AZwBzACAAUgBlAGcAdQBsAGEAcgAAAAAAQlNHUAAAAAAAAAAAAAAAAAAAAAADAKncAE0TAE0ZAEbuFM3pjM/SEdmjKHUbyow8ATBE40IvWA3vTu8LiABDQ+pexwUMcm1SMnNryctQSiI1K5ZnbOlXKmnVV5YvRe6RnNMFNCOs1KNVpn6yZhCJkRtVRNzEufeIq7HgSrcx4S8h/v4vnrrKc6oCNxmSk2uKlZQHBii6iKFoH0746ThvkO1kJHlxjrkxs+LWORaDQBEtiYJIR5IB9Bi1UyL4Rmr0BNigNkMzlKQmnofBHviqVzUxwdMb3NdCn69hy+pRYVKGVS/1tnsqv4LL7wCCPZZAZPT4aCShHjHJVNuXbmMrY5LeQaGnvAkXlVrJgKRAUdFjrWEah9XebPeQMj7KS7DIBAFt8ycgC5PLGUOHSE3ErGZCiViNLL5ZARfywnCoZaKQCu6NuFX42AEeKtKUGnr/Cm2Cy8tpFhBPMW5Fxi4Qm4TkDWh4IWFDClhU2hRWosUWqcKLlgyXB+lSHaWaHiWlBAR8SeSgSPCQxdVQgzUixWKSTrIQEbU94viDctkvX+VSjJuUmV8L4CXShI11esnp0pjWNZIyxKHS4wVQ2ime1P4RnhvGw0aDN1OLAXGERsB7buFpFGGBAre4QEQR0HOIO5oYH305G+KspT/FupEGGafCCwxSe6ZUa+073rXHnNdVXE6eW
</style>
<script>/*!
* Bootstrap v3.3.5 (http://getbootstrap.com)
* Copyright 2011-2015 Twitter, Inc.
* Licensed under the MIT license
*/
if("undefined"==typeof jQuery)throw new Error("Bootstrap's JavaScript requires jQuery");+function(a){"use strict";var b=a.fn.jquery.split(" ")[0].split(".");if(b[0]<2&&b[1]<9||1==b[0]&&9==b[1]&&b[2]<1)throw new Error("Bootstrap's JavaScript requires jQuery version 1.9.1 or higher")}(jQuery),+function(a){"use strict";function b(){var a=document.createElement("bootstrap"),b={WebkitTransition:"webkitTransitionEnd",MozTransition:"transitionend",OTransition:"oTransitionEnd otransitionend",transition:"transitionend"};for(var c in b)if(void 0!==a.style[c])return{end:b[c]};return!1}a.fn.emulateTransitionEnd=function(b){var c=!1,d=this;a(this).one("bsTransitionEnd",function(){c=!0});var e=function(){c||a(d).trigger(a.support.transition.end)};return setTimeout(e,b),this},a(function(){a.support.transition=b(),a.support.transition&&(a.event.special.bsTransitionEnd={bindType:a.support.transition.end,delegateType:a.support.transition.end,handle:function(b){return a(b.target).is(this)?b.handleObj.handler.apply(this,arguments):void 0}})})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var c=a(this),e=c.data("bs.alert");e||c.data("bs.alert",e=new d(this)),"string"==typeof b&&e[b].call(c)})}var c='[data-dismiss="alert"]',d=function(b){a(b).on("click",c,this.close)};d.VERSION="3.3.5",d.TRANSITION_DURATION=150,d.prototype.close=function(b){function c(){g.detach().trigger("closed.bs.alert").remove()}var e=a(this),f=e.attr("data-target");f||(f=e.attr("href"),f=f&&f.replace(/.*(?=#[^\s]*$)/,""));var g=a(f);b&&b.preventDefault(),g.length||(g=e.closest(".alert")),g.trigger(b=a.Event("close.bs.alert")),b.isDefaultPrevented()||(g.removeClass("in"),a.support.transition&&g.hasClass("fade")?g.one("bsTransitionEnd",c).emulateTransitionEnd(d.TRANSITION_DURATION):c())};var e=a.fn.alert;a.fn.alert=b,a.fn.alert.Constructor=d,a.fn.alert.noConflict=function(){return a.fn.alert=e,this},a(document).on("click.bs.alert.data-api",c,d.prototype.close)}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.button"),f="object"==typeof b&&b;e||d.data("bs.button",e=new c(this,f)),"toggle"==b?e.toggle():b&&e.setState(b)})}var c=function(b,d){this.$element=a(b),this.options=a.extend({},c.DEFAULTS,d),this.isLoading=!1};c.VERSION="3.3.5",c.DEFAULTS={loadingText:"loading..."},c.prototype.setState=function(b){var c="disabled",d=this.$element,e=d.is("input")?"val":"html",f=d.data();b+="Text",null==f.resetText&&d.data("resetText",d[e]()),setTimeout(a.proxy(function(){d[e](null==f[b]?this.options[b]:f[b]),"loadingText"==b?(this.isLoading=!0,d.addClass(c).attr(c,c)):this.isLoading&&(this.isLoading=!1,d.removeClass(c).removeAttr(c))},this),0)},c.prototype.toggle=function(){var a=!0,b=this.$element.closest('[data-toggle="buttons"]');if(b.length){var c=this.$element.find("input");"radio"==c.prop("type")?(c.prop("checked")&&(a=!1),b.find(".active").removeClass("active"),this.$element.addClass("active")):"checkbox"==c.prop("type")&&(c.prop("checked")!==this.$element.hasClass("active")&&(a=!1),this.$element.toggleClass("active")),c.prop("checked",this.$element.hasClass("active")),a&&c.trigger("change")}else this.$element.attr("aria-pressed",!this.$element.hasClass("active")),this.$element.toggleClass("active")};var d=a.fn.button;a.fn.button=b,a.fn.button.Constructor=c,a.fn.button.noConflict=function(){return a.fn.button=d,this},a(document).on("click.bs.button.data-api",'[data-toggle^="button"]',function(c){var d=a(c.target);d.hasClass("btn")||(d=d.closest(".btn")),b.call(d,"toggle"),a(c.target).is('input[type="radio"]')||a(c.target).is('input[type="checkbox"]')||c.preventDefault()}).on("focus.bs.button.data-api blur.bs.button.data-api",'[data-toggle^="button"]',function(b){a(b.target).closest(".btn").toggleClass("focus",/^focus(in)?$/.test(b.type))})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.carousel"),f=a.extend({},c.DEFAULTS,d.data(),"object"==typeof b&&b),g="string"==typeof b?b:f.slide;e||d.data("bs.carousel",e=new c(this,f)),"number"==type
d.trigger("activate.bs.scrollspy")},b.prototype.clear=function(){a(this.selector).parentsUntil(this.options.target,".active").removeClass("active")};var d=a.fn.scrollspy;a.fn.scrollspy=c,a.fn.scrollspy.Constructor=b,a.fn.scrollspy.noConflict=function(){return a.fn.scrollspy=d,this},a(window).on("load.bs.scrollspy.data-api",function(){a('[data-spy="scroll"]').each(function(){var b=a(this);c.call(b,b.data())})})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.tab");e||d.data("bs.tab",e=new c(this)),"string"==typeof b&&e[b]()})}var c=function(b){this.element=a(b)};c.VERSION="3.3.5",c.TRANSITION_DURATION=150,c.prototype.show=function(){var b=this.element,c=b.closest("ul:not(.dropdown-menu)"),d=b.data("target");if(d||(d=b.attr("href"),d=d&&d.replace(/.*(?=#[^\s]*$)/,"")),!b.parent("li").hasClass("active")){var e=c.find(".active:last a"),f=a.Event("hide.bs.tab",{relatedTarget:b[0]}),g=a.Event("show.bs.tab",{relatedTarget:e[0]});if(e.trigger(f),b.trigger(g),!g.isDefaultPrevented()&&!f.isDefaultPrevented()){var h=a(d);this.activate(b.closest("li"),c),this.activate(h,h.parent(),function(){e.trigger({type:"hidden.bs.tab",relatedTarget:b[0]}),b.trigger({type:"shown.bs.tab",relatedTarget:e[0]})})}}},c.prototype.activate=function(b,d,e){function f(){g.removeClass("active").find("> .dropdown-menu > .active").removeClass("active").end().find('[data-toggle="tab"]').attr("aria-expanded",!1),b.addClass("active").find('[data-toggle="tab"]').attr("aria-expanded",!0),h?(b[0].offsetWidth,b.addClass("in")):b.removeClass("fade"),b.parent(".dropdown-menu").length&&b.closest("li.dropdown").addClass("active").end().find('[data-toggle="tab"]').attr("aria-expanded",!0),e&&e()}var g=d.find("> .active"),h=e&&a.support.transition&&(g.length&&g.hasClass("fade")||!!d.find("> .fade").length);g.length&&h?g.one("bsTransitionEnd",f).emulateTransitionEnd(c.TRANSITION_DURATION):f(),g.removeClass("in")};var d=a.fn.tab;a.fn.tab=b,a.fn.tab.Constructor=c,a.fn.tab.noConflict=function(){return a.fn.tab=d,this};var e=function(c){c.preventDefault(),b.call(a(this),"show")};a(document).on("click.bs.tab.data-api",'[data-toggle="tab"]',e).on("click.bs.tab.data-api",'[data-toggle="pill"]',e)}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.affix"),f="object"==typeof b&&b;e||d.data("bs.affix",e=new c(this,f)),"string"==typeof b&&e[b]()})}var c=function(b,d){this.options=a.extend({},c.DEFAULTS,d),this.$target=a(this.options.target).on("scroll.bs.affix.data-api",a.proxy(this.checkPosition,this)).on("click.bs.affix.data-api",a.proxy(this.checkPositionWithEventLoop,this)),this.$element=a(b),this.affixed=null,this.unpin=null,this.pinnedOffset=null,this.checkPosition()};c.VERSION="3.3.5",c.RESET="affix affix-top affix-bottom",c.DEFAULTS={offset:0,target:window},c.prototype.getState=function(a,b,c,d){var e=this.$target.scrollTop(),f=this.$element.offset(),g=this.$target.height();if(null!=c&&"top"==this.affixed)return c>e?"top":!1;if("bottom"==this.affixed)return null!=c?e+this.unpin<=f.top?!1:"bottom":a-d>=e+g?!1:"bottom";var h=null==this.affixed,i=h?e:f.top,j=h?g:b;return null!=c&&c>=e?"top":null!=d&&i+j>=a-d?"bottom":!1},c.prototype.getPinnedOffset=function(){if(this.pinnedOffset)return this.pinnedOffset;this.$element.removeClass(c.RESET).addClass("affix");var a=this.$target.scrollTop(),b=this.$element.offset();return this.pinnedOffset=b.top-a},c.prototype.checkPositionWithEventLoop=function(){setTimeout(a.proxy(this.checkPosition,this),1)},c.prototype.checkPosition=function(){if(this.$element.is(":visible")){var b=this.$element.height(),d=this.options.offset,e=d.top,f=d.bottom,g=Math.max(a(document).height(),a(document.body).height());"object"!=typeof d&&(f=e=d),"function"==typeof e&&(e=d.top(this.$element)),"function"==typeof f&&(f=d.bottom(this.$element));var h=this.getState(g,b,e,f);if(this.affixed!=h){null!=this.unpin&&this.$element.css("top","");var i="affix"+(h?"-"+h:""),j=a.Event(i+".bs.affix");if(this.$element.trigger(j),j.isDefaultPrevented())return;this.affi
<script>/**
* @preserve HTML5 Shiv 3.7.2 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed
*/
// Only run this code in IE 8
if (!!window.navigator.userAgent.match("MSIE 8")) {
!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x<style>"+b+"</style>",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.2",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="<xyz></xyz>",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b)}(this,document);
};
</script>
<script>/*! Respond.js v1.4.2: min/max-width media query polyfill * Copyright 2013 Scott Jehl
* Licensed under https://github.com/scottjehl/Respond/blob/master/LICENSE-MIT
* */
// Only run this code in IE 8
if (!!window.navigator.userAgent.match("MSIE 8")) {
!function(a){"use strict";a.matchMedia=a.matchMedia||function(a){var b,c=a.documentElement,d=c.firstElementChild||c.firstChild,e=a.createElement("body"),f=a.createElement("div");return f.id="mq-test-1",f.style.cssText="position:absolute;top:-100em",e.style.background="none",e.appendChild(f),function(a){return f.innerHTML='&shy;<style media="'+a+'"> #mq-test-1 { width: 42px; }</style>',c.insertBefore(e,d),b=42===f.offsetWidth,c.removeChild(e),{matches:b,media:a}}}(a.document)}(this),function(a){"use strict";function b(){u(!0)}var c={};a.respond=c,c.update=function(){};var d=[],e=function(){var b=!1;try{b=new a.XMLHttpRequest}catch(c){b=new a.ActiveXObject("Microsoft.XMLHTTP")}return function(){return b}}(),f=function(a,b){var c=e();c&&(c.open("GET",a,!0),c.onreadystatechange=function(){4!==c.readyState||200!==c.status&&304!==c.status||b(c.responseText)},4!==c.readyState&&c.send(null))};if(c.ajax=f,c.queue=d,c.regex={media:/@media[^\{]+\{([^\{\}]*\{[^\}\{]*\})+/gi,keyframes:/@(?:\-(?:o|moz|webkit)\-)?keyframes[^\{]+\{(?:[^\{\}]*\{[^\}\{]*\})+[^\}]*\}/gi,urls:/(url\()['"]?([^\/\)'"][^:\)'"]+)['"]?(\))/g,findStyles:/@media *([^\{]+)\{([\S\s]+?)$/,only:/(only\s+)?([a-zA-Z]+)\s?/,minw:/\([\s]*min\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/,maxw:/\([\s]*max\-width\s*:[\s]*([\s]*[0-9\.]+)(px|em)[\s]*\)/},c.mediaQueriesSupported=a.matchMedia&&null!==a.matchMedia("only all")&&a.matchMedia("only all").matches,!c.mediaQueriesSupported){var g,h,i,j=a.document,k=j.documentElement,l=[],m=[],n=[],o={},p=30,q=j.getElementsByTagName("head")[0]||k,r=j.getElementsByTagName("base")[0],s=q.getElementsByTagName("link"),t=function(){var a,b=j.createElement("div"),c=j.body,d=k.style.fontSize,e=c&&c.style.fontSize,f=!1;return b.style.cssText="position:absolute;font-size:1em;width:1em",c||(c=f=j.createElement("body"),c.style.background="none"),k.style.fontSize="100%",c.style.fontSize="100%",c.appendChild(b),f&&k.insertBefore(c,k.firstChild),a=b.offsetWidth,f?k.removeChild(c):c.removeChild(b),k.style.fontSize=d,e&&(c.style.fontSize=e),a=i=parseFloat(a)},u=function(b){var c="clientWidth",d=k[c],e="CSS1Compat"===j.compatMode&&d||j.body[c]||d,f={},o=s[s.length-1],r=(new Date).getTime();if(b&&g&&p>r-g)return a.clearTimeout(h),h=a.setTimeout(u,p),void 0;g=r;for(var v in l)if(l.hasOwnProperty(v)){var w=l[v],x=w.minw,y=w.maxw,z=null===x,A=null===y,B="em";x&&(x=parseFloat(x)*(x.indexOf(B)>-1?i||t():1)),y&&(y=parseFloat(y)*(y.indexOf(B)>-1?i||t():1)),w.hasquery&&(z&&A||!(z||e>=x)||!(A||y>=e))||(f[w.media]||(f[w.media]=[]),f[w.media].push(m[w.rules]))}for(var C in n)n.hasOwnProperty(C)&&n[C]&&n[C].parentNode===q&&q.removeChild(n[C]);n.length=0;for(var D in f)if(f.hasOwnProperty(D)){var E=j.createElement("style"),F=f[D].join("\n");E.type="text/css",E.media=D,q.insertBefore(E,o.nextSibling),E.styleSheet?E.styleSheet.cssText=F:E.appendChild(j.createTextNode(F)),n.push(E)}},v=function(a,b,d){var e=a.replace(c.regex.keyframes,"").match(c.regex.media),f=e&&e.length||0;b=b.substring(0,b.lastIndexOf("/"));var g=function(a){return a.replace(c.regex.urls,"$1"+b+"$2$3")},h=!f&&d;b.length&&(b+="/"),h&&(f=1);for(var i=0;f>i;i++){var j,k,n,o;h?(j=d,m.push(g(a))):(j=e[i].match(c.regex.findStyles)&&RegExp.$1,m.push(RegExp.$2&&g(RegExp.$2))),n=j.split(","),o=n.length;for(var p=0;o>p;p++)k=n[p],l.push({media:k.split("(")[0].match(c.regex.only)&&RegExp.$2||"all",rules:m.length-1,hasquery:k.indexOf("(")>-1,minw:k.match(c.regex.minw)&&parseFloat(RegExp.$1)+(RegExp.$2||""),maxw:k.match(c.regex.maxw)&&parseFloat(RegExp.$1)+(RegExp.$2||"")})}u()},w=function(){if(d.length){var b=d.shift();f(b.href,function(c){v(c,b.href,b.media),o[b.href]=!0,a.setTimeout(function(){w()},0)})}},x=function(){for(var b=0;b<s.length;b++){var c=s[b],e=c.href,f=c.media,g=c.rel&&"stylesheet"===c.rel.toLowerCase();e&&g&&!o[e]&&(c.styleSheet&&c.styleSheet.rawCssText?(v(c.styleSheet.rawCssText,e,f),o[e]=!0):(!/^([a-zA-Z:]*\/\/)/.test(e)&&!r||e.replace(RegExp.$1,"").split("/")[0]===a.location.host)&&("//"===e.substring(0,2)&&(e=a.location.protocol+e),d.push({href:e,media:f})))}w()};x(),c.update=x,c.getEmVal
};
</script>
<script>
/**
* jQuery Plugin: Sticky Tabs
*
* @author Aidan Lister <aidan@php.net>
* adapted by Ruben Arslan to activate parent tabs too
* http://www.aidanlister.com/2014/03/persisting-the-tab-state-in-bootstrap/
*/
(function($) {
"use strict";
$.fn.rmarkdownStickyTabs = function() {
var context = this;
// Show the tab corresponding with the hash in the URL, or the first tab
var showStuffFromHash = function() {
var hash = window.location.hash;
var selector = hash ? 'a[href="' + hash + '"]' : 'li.active > a';
var $selector = $(selector, context);
if($selector.data('toggle') === "tab") {
$selector.tab('show');
// walk up the ancestors of this element, show any hidden tabs
$selector.parents('.section.tabset').each(function(i, elm) {
var link = $('a[href="#' + $(elm).attr('id') + '"]');
if(link.data('toggle') === "tab") {
link.tab("show");
}
});
}
};
// Set the correct tab when the page loads
showStuffFromHash(context);
// Set the correct tab when a user uses their back/forward button
$(window).on('hashchange', function() {
showStuffFromHash(context);
});
// Change the URL when tabs are clicked
$('a', context).on('click', function(e) {
history.pushState(null, null, this.href);
showStuffFromHash(context);
});
return this;
};
}(jQuery));
window.buildTabsets = function(tocID) {
// build a tabset from a section div with the .tabset class
function buildTabset(tabset) {
// check for fade and pills options
var fade = tabset.hasClass("tabset-fade");
var pills = tabset.hasClass("tabset-pills");
var navClass = pills ? "nav-pills" : "nav-tabs";
// determine the heading level of the tabset and tabs
var match = tabset.attr('class').match(/level(\d) /);
if (match === null)
return;
var tabsetLevel = Number(match[1]);
var tabLevel = tabsetLevel + 1;
// find all subheadings immediately below
var tabs = tabset.find("div.section.level" + tabLevel);
if (!tabs.length)
return;
// create tablist and tab-content elements
var tabList = $('<ul class="nav ' + navClass + '" role="tablist"></ul>');
$(tabs[0]).before(tabList);
var tabContent = $('<div class="tab-content"></div>');
$(tabs[0]).before(tabContent);
// build the tabset
var activeTab = 0;
tabs.each(function(i) {
// get the tab div
var tab = $(tabs[i]);
// get the id then sanitize it for use with bootstrap tabs
var id = tab.attr('id');
// see if this is marked as the active tab
if (tab.hasClass('active'))
activeTab = i;
// remove any table of contents entries associated with
// this ID (since we'll be removing the heading element)
$("div#" + tocID + " li a[href='#" + id + "']").parent().remove();
// sanitize the id for use with bootstrap tabs
id = id.replace(/[.\/?&!#<>]/g, '').replace(/\s/g, '_');
tab.attr('id', id);
// get the heading element within it, grab it's text, then remove it
var heading = tab.find('h' + tabLevel + ':first');
var headingText = heading.html();
heading.remove();
// build and append the tab list item
var a = $('<a role="tab" data-toggle="tab">' + headingText + '</a>');
a.attr('href', '#' + id);
a.attr('aria-controls', id);
var li = $('<li role="presentation"></li>');
li.append(a);
tabList.append(li);
// set it's attributes
tab.attr('role', 'tabpanel');
tab.addClass('tab-pane');
tab.addClass('tabbed-pane');
if (fade)
tab.addClass('fade');
// move it into the tab content div
tab.detach().appendTo(tabContent);
});
// set active tab
$(tabList.children('li')[activeTab]).addClass('active');
var active = $(tabContent.children('div.section')[activeTab]);
active.addClass('active');
if (fade)
active.addClass('in');
if (tabset.hasClass("tabset-sticky"))
tabset.rmarkdownStickyTabs();
}
// convert section divs with the .tabset class to tabsets
var tabsets = $("div.section.tabset");
tabsets.each(function(i) {
buildTabset($(tabsets[i]));
});
};
</script>
<style type="text/css">.hljs-literal {
color: #990073;
}
.hljs-number {
color: #099;
}
.hljs-comment {
color: #998;
font-style: italic;
}
.hljs-keyword {
color: #900;
font-weight: bold;
}
.hljs-string {
color: #d14;
}
</style>
<script src="data:application/javascript;base64,LyohIGhpZ2hsaWdodC5qcyB2OS4xMi4wIHwgQlNEMyBMaWNlbnNlIHwgZ2l0LmlvL2hsanNsaWNlbnNlICovCiFmdW5jdGlvbihlKXt2YXIgbj0ib2JqZWN0Ij09dHlwZW9mIHdpbmRvdyYmd2luZG93fHwib2JqZWN0Ij09dHlwZW9mIHNlbGYmJnNlbGY7InVuZGVmaW5lZCIhPXR5cGVvZiBleHBvcnRzP2UoZXhwb3J0cyk6biYmKG4uaGxqcz1lKHt9KSwiZnVuY3Rpb24iPT10eXBlb2YgZGVmaW5lJiZkZWZpbmUuYW1kJiZkZWZpbmUoW10sZnVuY3Rpb24oKXtyZXR1cm4gbi5obGpzfSkpfShmdW5jdGlvbihlKXtmdW5jdGlvbiBuKGUpe3JldHVybiBlLnJlcGxhY2UoLyYvZywiJmFtcDsiKS5yZXBsYWNlKC88L2csIiZsdDsiKS5yZXBsYWNlKC8+L2csIiZndDsiKX1mdW5jdGlvbiB0KGUpe3JldHVybiBlLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCl9ZnVuY3Rpb24gcihlLG4pe3ZhciB0PWUmJmUuZXhlYyhuKTtyZXR1cm4gdCYmMD09PXQuaW5kZXh9ZnVuY3Rpb24gYShlKXtyZXR1cm4gay50ZXN0KGUpfWZ1bmN0aW9uIGkoZSl7dmFyIG4sdCxyLGksbz1lLmNsYXNzTmFtZSsiICI7aWYobys9ZS5wYXJlbnROb2RlP2UucGFyZW50Tm9kZS5jbGFzc05hbWU6IiIsdD1CLmV4ZWMobykpcmV0dXJuIHcodFsxXSk/dFsxXToibm8taGlnaGxpZ2h0Ijtmb3Iobz1vLnNwbGl0KC9ccysvKSxuPTAscj1vLmxlbmd0aDtyPm47bisrKWlmKGk9b1tuXSxhKGkpfHx3KGkpKXJldHVybiBpfWZ1bmN0aW9uIG8oZSl7dmFyIG4sdD17fSxyPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywxKTtmb3IobiBpbiBlKXRbbl09ZVtuXTtyZXR1cm4gci5mb3JFYWNoKGZ1bmN0aW9uKGUpe2ZvcihuIGluIGUpdFtuXT1lW25dfSksdH1mdW5jdGlvbiB1KGUpe3ZhciBuPVtdO3JldHVybiBmdW5jdGlvbiByKGUsYSl7Zm9yKHZhciBpPWUuZmlyc3RDaGlsZDtpO2k9aS5uZXh0U2libGluZykzPT09aS5ub2RlVHlwZT9hKz1pLm5vZGVWYWx1ZS5sZW5ndGg6MT09PWkubm9kZVR5cGUmJihuLnB1c2goe2V2ZW50OiJzdGFydCIsb2Zmc2V0OmEsbm9kZTppfSksYT1yKGksYSksdChpKS5tYXRjaCgvYnJ8aHJ8aW1nfGlucHV0Lyl8fG4ucHVzaCh7ZXZlbnQ6InN0b3AiLG9mZnNldDphLG5vZGU6aX0pKTtyZXR1cm4gYX0oZSwwKSxufWZ1bmN0aW9uIGMoZSxyLGEpe2Z1bmN0aW9uIGkoKXtyZXR1cm4gZS5sZW5ndGgmJnIubGVuZ3RoP2VbMF0ub2Zmc2V0IT09clswXS5vZmZzZXQ/ZVswXS5vZmZzZXQ8clswXS5vZmZzZXQ/ZTpyOiJzdGFydCI9PT1yWzBdLmV2ZW50P2U6cjplLmxlbmd0aD9lOnJ9ZnVuY3Rpb24gbyhlKXtmdW5jdGlvbiByKGUpe3JldHVybiIgIitlLm5vZGVOYW1lKyc9IicrbihlLnZhbHVlKS5yZXBsYWNlKCciJywiJnF1b3Q7IikrJyInfXMrPSI8Iit0KGUpK0UubWFwLmNhbGwoZS5hdHRyaWJ1dGVzLHIpLmpvaW4oIiIpKyI+In1mdW5jdGlvbiB1KGUpe3MrPSI8LyIrdChlKSsiPiJ9ZnVuY3Rpb24gYyhlKXsoInN0YXJ0Ij09PWUuZXZlbnQ/bzp1KShlLm5vZGUpfWZvcih2YXIgbD0wLHM9IiIsZj1bXTtlLmxlbmd0aHx8ci5sZW5ndGg7KXt2YXIgZz1pKCk7aWYocys9bihhLnN1YnN0cmluZyhsLGdbMF0ub2Zmc2V0KSksbD1nWzBdLm9mZnNldCxnPT09ZSl7Zi5yZXZlcnNlKCkuZm9yRWFjaCh1KTtkbyBjKGcuc3BsaWNlKDAsMSlbMF0pLGc9aSgpO3doaWxlKGc9PT1lJiZnLmxlbmd0aCYmZ1swXS5vZmZzZXQ9PT1sKTtmLnJldmVyc2UoKS5mb3JFYWNoKG8pfWVsc2Uic3RhcnQiPT09Z1swXS5ldmVudD9mLnB1c2goZ1swXS5ub2RlKTpmLnBvcCgpLGMoZy5zcGxpY2UoMCwxKVswXSl9cmV0dXJuIHMrbihhLnN1YnN0cihsKSl9ZnVuY3Rpb24gbChlKXtyZXR1cm4gZS52JiYhZS5jYWNoZWRfdmFyaWFudHMmJihlLmNhY2hlZF92YXJpYW50cz1lLnYubWFwKGZ1bmN0aW9uKG4pe3JldHVybiBvKGUse3Y6bnVsbH0sbil9KSksZS5jYWNoZWRfdmFyaWFudHN8fGUuZVcmJltvKGUpXXx8W2VdfWZ1bmN0aW9uIHMoZSl7ZnVuY3Rpb24gbihlKXtyZXR1cm4gZSYmZS5zb3VyY2V8fGV9ZnVuY3Rpb24gdCh0LHIpe3JldHVybiBuZXcgUmVnRXhwKG4odCksIm0iKyhlLmNJPyJpIjoiIikrKHI/ImciOiIiKSl9ZnVuY3Rpb24gcihhLGkpe2lmKCFhLmNvbXBpbGVkKXtpZihhLmNvbXBpbGVkPSEwLGEuaz1hLmt8fGEuYkssYS5rKXt2YXIgbz17fSx1PWZ1bmN0aW9uKG4sdCl7ZS5jSSYmKHQ9dC50b0xvd2VyQ2FzZSgpKSx0LnNwbGl0KCIgIikuZm9yRWFjaChmdW5jdGlvbihlKXt2YXIgdD1lLnNwbGl0KCJ8Iik7b1t0WzBdXT1bbix0WzFdP051bWJlcih0WzFdKToxXX0pfTsic3RyaW5nIj09dHlwZW9mIGEuaz91KCJrZXl3b3JkIixhLmspOngoYS5rKS5mb3JFYWNoKGZ1bmN0aW9uKGUpe3UoZSxhLmtbZV0pfSksYS5rPW99YS5sUj10KGEubHx8L1x3Ky8sITApLGkmJihhLmJLJiYoYS5iPSJcXGIoIithLmJLLnNwbGl0KCIgIikuam9pbigifCIpKyIpXFxiIiksYS5ifHwoYS5iPS9cQnxcYi8pLGEuYlI9dChhLmIpLGEuZXx8YS5lV3x8KGEuZT0vXEJ8XGIvKSxhLmUmJihhLmVSPXQoYS5lKSksYS50RT1uKGEuZSl8fCIiLGEuZVcmJmkudEUmJihhLnRFKz0oYS5lPyJ8IjoiIikraS50RSkpLGEuaSYmKGEuaVI9dChhLmkpKSxudWxsPT1hLnImJihhLnI9MSksYS5jfHwoYS5jPVtdKSxhLmM9QXJyYXkucHJvdG90eXBlLmNvbmNhdC5hcHBseShbXSxhLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBsKCJzZWxmIj09PWU/YTplKX0pKSxhLmMuZm9yRWFjaChmdW5jdGlvbihlKXtyKGUsYSl9KSxhLnN0YXJ0cyYmcihhLnN0YXJ0cyxpKTt2YXIgYz1hLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBlLmJLPyJcXC4/KCIrZS5iKyIpXFwuPyI6ZS5ifSkuY29uY2F0KFthLnRFLGEuaV0pLm1hcChuKS5maWx0ZXIoQm9vbGVhbik7YS50PWMubGVuZ3RoP3QoYy5qb2luKCJ8IiksITApOntleGVjOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGx9fX19cihlKX1mdW5jdGlvbiBmKGUsdCxhLGkpe2Z1bmN0aW9uIG8oZSxuKXt2YXIgdCxhO2Zvcih0PTAsYT1uLmMubGVuZ3RoO2E+dDt0Kys
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<style type="text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
</head>
<body>
<div class="container-fluid main-container">
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Kurs_R.R</h1>
<h4 class="author">altarin</h4>
<h4 class="date">2020-04-11</h4>
</div>
<pre class="r"><code>library(tidyverse)</code></pre>
<pre><code>## ── Attaching packages ───────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──</code></pre>
<pre><code>## ✓ ggplot2 3.3.0 ✓ purrr 0.3.3
## ✓ tibble 2.1.3 ✓ dplyr 0.8.5
## ✓ tidyr 1.0.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0</code></pre>
<pre><code>## ── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()</code></pre>
<div id="section" class="section level1">
<h1>2.3.1</h1>
<div id="zadanie-1" class="section level2">
<h2>Zadanie 1</h2>
<pre class="r"><code>airquality %&gt;%
select(Ozone, Solar.R, Wind, Temp) %&gt;%
filter(Ozone&gt;80)</code></pre>
<pre><code>## Ozone Solar.R Wind Temp
## 1 115 223 5.7 79
## 2 135 269 4.1 84
## 3 97 267 6.3 92
## 4 97 272 5.7 92
## 5 85 175 7.4 89
## 6 108 223 8.0 85
## 7 82 213 7.4 88
## 8 122 255 4.0 89
## 9 89 229 10.3 90
## 10 110 207 8.0 90
## 11 168 238 3.4 81
## 12 118 225 2.3 94
## 13 84 237 6.3 96
## 14 85 188 6.3 94
## 15 96 167 6.9 91
## 16 91 189 4.6 93</code></pre>
</div>
<div id="zadanie-2" class="section level2">
<h2>Zadanie 2</h2>
<pre class="r"><code>#install.packages('weathermetrics')
library(weathermetrics)
airquality %&gt;%
mutate(TempC=fahrenheit.to.celsius(Temp))</code></pre>
<pre><code>## Ozone Solar.R Wind Temp Month Day TempC
## 1 41 190 7.4 67 5 1 19.44
## 2 36 118 8.0 72 5 2 22.22
## 3 12 149 12.6 74 5 3 23.33
## 4 18 313 11.5 62 5 4 16.67
## 5 NA NA 14.3 56 5 5 13.33
## 6 28 NA 14.9 66 5 6 18.89
## 7 23 299 8.6 65 5 7 18.33
## 8 19 99 13.8 59 5 8 15.00
## 9 8 19 20.1 61 5 9 16.11
## 10 NA 194 8.6 69 5 10 20.56
## 11 7 NA 6.9 74 5 11 23.33
## 12 16 256 9.7 69 5 12 20.56
## 13 11 290 9.2 66 5 13 18.89
## 14 14 274 10.9 68 5 14 20.00
## 15 18 65 13.2 58 5 15 14.44
## 16 14 334 11.5 64 5 16 17.78
## 17 34 307 12.0 66 5 17 18.89
## 18 6 78 18.4 57 5 18 13.89
## 19 30 322 11.5 68 5 19 20.00
## 20 11 44 9.7 62 5 20 16.67
## 21 1 8 9.7 59 5 21 15.00
## 22 11 320 16.6 73 5 22 22.78
## 23 4 25 9.7 61 5 23 16.11
## 24 32 92 12.0 61 5 24 16.11
## 25 NA 66 16.6 57 5 25 13.89
## 26 NA 266 14.9 58 5 26 14.44
## 27 NA NA 8.0 57 5 27 13.89
## 28 23 13 12.0 67 5 28 19.44
## 29 45 252 14.9 81 5 29 27.22
## 30 115 223 5.7 79 5 30 26.11
## 31 37 279 7.4 76 5 31 24.44
## 32 NA 286 8.6 78 6 1 25.56
## 33 NA 287 9.7 74 6 2 23.33
## 34 NA 242 16.1 67 6 3 19.44
## 35 NA 186 9.2 84 6 4 28.89
## 36 NA 220 8.6 85 6 5 29.44
## 37 NA 264 14.3 79 6 6 26.11
## 38 29 127 9.7 82 6 7 27.78
## 39 NA 273 6.9 87 6 8 30.56
## 40 71 291 13.8 90 6 9 32.22
## 41 39 323 11.5 87 6 10 30.56
## 42 NA 259 10.9 93 6 11 33.89
## 43 NA 250 9.2 92 6 12 33.33
## 44 23 148 8.0 82 6 13 27.78
## 45 NA 332 13.8 80 6 14 26.67
## 46 NA 322 11.5 79 6 15 26.11
## 47 21 191 14.9 77 6 16 25.00
## 48 37 284 20.7 72 6 17 22.22
## 49 20 37 9.2 65 6 18 18.33
## 50 12 120 11.5 73 6 19 22.78
## 51 13 137 10.3 76 6 20 24.44
## 52 NA 150 6.3 77 6 21 25.00
## 53 NA 59 1.7 76 6 22 24.44
## 54 NA 91 4.6 76 6 23 24.44
## 55 NA 250 6.3 76 6 24 24.44
## 56 NA 135 8.0 75 6 25 23.89
## 57 NA 127 8.0 78 6 26 25.56
## 58 NA 47 10.3 73 6 27 22.78
## 59 NA 98 11.5 80 6 28 26.67
## 60 NA 31 14.9 77 6 29 25.00
## 61 NA 138 8.0 83 6 30 28.33
## 62 135 269 4.1 84 7 1 28.89
## 63 49 248 9.2 85 7 2 29.44
## 64 32 236 9.2 81 7 3 27.22
## 65 NA 101 10.9 84 7 4 28.89
## 66 64 175 4.6 83 7 5 28.33
## 67 40 314 10.9 83 7 6 28.33
## 68 77 276 5.1 88 7 7 31.11
## 69 97 267 6.3 92 7 8 33.33
## 70 97 272 5.7 92 7 9 33.33
## 71 85 175 7.4 89 7 10 31.67
## 72 NA 139 8.6 82 7 11 27.78
## 73 10 264 14.3 73 7 12 22.78
## 74 27 175 14.9 81 7 13 27.22
## 75 NA 291 14.9 91 7 14 32.78
## 76 7 48 14.3 80 7 15 26.67
## 77 48 260 6.9 81 7 16 27.22
## 78 35 274 10.3 82 7 17 27.78
## 79 61 285 6.3 84 7 18 28.89
## 80 79 187 5.1 87 7 19 30.56
## 81 63 220 11.5 85 7 20 29.44
## 82 16 7 6.9 74 7 21 23.33
## 83 NA 258 9.7 81 7 22 27.22
## 84 NA 295 11.5 82 7 23 27.78
## 85 80 294 8.6 86 7 24 30.00
## 86 108 223 8.0 85 7 25 29.44
## 87 20 81 8.6 82 7 26 27.78
## 88 52 82 12.0 86 7 27 30.00
## 89 82 213 7.4 88 7 28 31.11
## 90 50 275 7.4 86 7 29 30.00
## 91 64 253 7.4 83 7 30 28.33
## 92 59 254 9.2 81 7 31 27.22
## 93 39 83 6.9 81 8 1 27.22
## 94 9 24 13.8 81 8 2 27.22
## 95 16 77 7.4 82 8 3 27.78
## 96 78 NA 6.9 86 8 4 30.00
## 97 35 NA 7.4 85 8 5 29.44
## 98 66 NA 4.6 87 8 6 30.56
## 99 122 255 4.0 89 8 7 31.67
## 100 89 229 10.3 90 8 8 32.22
## 101 110 207 8.0 90 8 9 32.22
## 102 NA 222 8.6 92 8 10 33.33
## 103 NA 137 11.5 86 8 11 30.00
## 104 44 192 11.5 86 8 12 30.00
## 105 28 273 11.5 82 8 13 27.78
## 106 65 157 9.7 80 8 14 26.67
## 107 NA 64 11.5 79 8 15 26.11
## 108 22 71 10.3 77 8 16 25.00
## 109 59 51 6.3 79 8 17 26.11
## 110 23 115 7.4 76 8 18 24.44
## 111 31 244 10.9 78 8 19 25.56
## 112 44 190 10.3 78 8 20 25.56
## 113 21 259 15.5 77 8 21 25.00
## 114 9 36 14.3 72 8 22 22.22
## 115 NA 255 12.6 75 8 23 23.89
## 116 45 212 9.7 79 8 24 26.11
## 117 168 238 3.4 81 8 25 27.22
## 118 73 215 8.0 86 8 26 30.00
## 119 NA 153 5.7 88 8 27 31.11
## 120 76 203 9.7 97 8 28 36.11
## 121 118 225 2.3 94 8 29 34.44
## 122 84 237 6.3 96 8 30 35.56
## 123 85 188 6.3 94 8 31 34.44
## 124 96 167 6.9 91 9 1 32.78
## 125 78 197 5.1 92 9 2 33.33
## 126 73 183 2.8 93 9 3 33.89
## 127 91 189 4.6 93 9 4 33.89
## 128 47 95 7.4 87 9 5 30.56
## 129 32 92 15.5 84 9 6 28.89
## 130 20 252 10.9 80 9 7 26.67
## 131 23 220 10.3 78 9 8 25.56
## 132 21 230 10.9 75 9 9 23.89
## 133 24 259 9.7 73 9 10 22.78
## 134 44 236 14.9 81 9 11 27.22
## 135 21 259 15.5 76 9 12 24.44
## 136 28 238 6.3 77 9 13 25.00
## 137 9 24 10.9 71 9 14 21.67
## 138 13 112 11.5 71 9 15 21.67
## 139 46 237 6.9 78 9 16 25.56
## 140 18 224 13.8 67 9 17 19.44
## 141 13 27 10.3 76 9 18 24.44
## 142 24 238 10.3 68 9 19 20.00
## 143 16 201 8.0 82 9 20 27.78
## 144 13 238 12.6 64 9 21 17.78
## 145 23 14 9.2 71 9 22 21.67
## 146 36 139 10.3 81 9 23 27.22
## 147 7 49 10.3 69 9 24 20.56
## 148 14 20 16.6 63 9 25 17.22
## 149 30 193 6.9 70 9 26 21.11
## 150 NA 145 13.2 77 9 27 25.00
## 151 14 191 14.3 75 9 28 23.89
## 152 18 131 8.0 76 9 29 24.44
## 153 20 223 11.5 68 9 30 20.00</code></pre>
</div>
</div>
<div id="section-1" class="section level1">
<h1>2.4.1</h1>
<div id="zadanie-1-1" class="section level2">
<h2>Zadanie 1</h2>
<pre class="r"><code>as_tibble(airquality)</code></pre>
<pre><code>## # A tibble: 153 x 6
## Ozone Solar.R Wind Temp Month Day
## &lt;int&gt; &lt;int&gt; &lt;dbl&gt; &lt;int&gt; &lt;int&gt; &lt;int&gt;
## 1 41 190 7.4 67 5 1
## 2 36 118 8 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 NA NA 14.3 56 5 5
## 6 28 NA 14.9 66 5 6
## 7 23 299 8.6 65 5 7
## 8 19 99 13.8 59 5 8
## 9 8 19 20.1 61 5 9
## 10 NA 194 8.6 69 5 10
## # … with 143 more rows</code></pre>
</div>
<div id="zadanie-2-1" class="section level2">
<h2>Zadanie 2</h2>
<pre class="r"><code>tibble(litery=letters[6:11],
miesiace=month.name[1:6])</code></pre>
<pre><code>## # A tibble: 6 x 2
## litery miesiace
## &lt;chr&gt; &lt;chr&gt;
## 1 f January
## 2 g February
## 3 h March
## 4 i April
## 5 j May
## 6 k June</code></pre>
</div>
</div>
<div id="section-2" class="section level1">
<h1>3.2.4</h1>
<div id="zadanie-1-2" class="section level2">
<h2>Zadanie 1</h2>
<pre class="r"><code>ggplot(data=mpg)</code></pre>
<p><img src="
<p>Co widzisz? Szare. puste pole ## Zadanie 2</p>
<pre class="r"><code>as_tibble(mtcars)</code></pre>
<pre><code>## # A tibble: 32 x 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
## 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
## # … with 22 more rows</code></pre>
<p>liczba wierszy: 32 ## Zadanie 3</p>
<pre class="r"><code>?mpg</code></pre>
<p>drv f = front-wheel drive, r = rear wheel drive, 4 = 4wd ## Zadanie 4</p>
<pre class="r"><code>ggplot(aes(x=hwy, y=cyl), data=as_tibble(mpg)) + geom_point()</code></pre>
<p><img src="
</div>
<div id="zadanie-5" class="section level2">
<h2>Zadanie 5</h2>
<pre class="r"><code>ggplot(aes(x=class, y=drv), data=as_tibble(mpg)) + geom_point()</code></pre>
<p><img src="
<p>Dlaczego wykres jest bezuzyteczny? Wykres nie pokazuje żadnych liczbowych informacji na temat danych Zostały wykorzystane dwie cechy typu categorical Jedyną informacją jest to, czy dana kombinacja drv i class istanieje. # 3.3.1 ## Zadanie 1 ustalenie parametru color wewnątrz funckcji aes powinno być nazwą kolumny z categoriami, po których punkty zostaną pogrupowane, a nie istanieje kolumna “blue” w zbriorze danych</p>
<p>parametr color powinien zostać ustalony wewnątrz funkcji geom_point. Poprawiony kod poniżej.</p>
<pre class="r"><code>ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy), color = &quot;blue&quot;)</code></pre>
<p><img src="
</div>
<div id="zadanie-2-2" class="section level2">
<h2>Zadanie 2</h2>
<pre class="r"><code>mpg</code></pre>
<pre><code>## # A tibble: 234 x 11
## manufacturer model displ year cyl trans drv cty hwy fl class
## &lt;chr&gt; &lt;chr&gt; &lt;dbl&gt; &lt;int&gt; &lt;int&gt; &lt;chr&gt; &lt;chr&gt; &lt;int&gt; &lt;int&gt; &lt;chr&gt; &lt;chr&gt;
## 1 audi a4 1.8 1999 4 auto(l… f 18 29 p comp…
## 2 audi a4 1.8 1999 4 manual… f 21 29 p comp…
## 3 audi a4 2 2008 4 manual… f 20 31 p comp…
## 4 audi a4 2 2008 4 auto(a… f 21 30 p comp…
## 5 audi a4 2.8 1999 6 auto(l… f 16 26 p comp…
## 6 audi a4 2.8 1999 6 manual… f 18 26 p comp…
## 7 audi a4 3.1 2008 6 auto(a… f 18 27 p comp…
## 8 audi a4 quat… 1.8 1999 4 manual… 4 18 26 p comp…
## 9 audi a4 quat… 1.8 1999 4 auto(l… 4 16 25 p comp…
## 10 audi a4 quat… 2 2008 4 manual… 4 20 28 p comp…
## # … with 224 more rows</code></pre>
<p>kolumny z danymi kategorialnymi to: manufacturer, model, trans, frv, fl, class można zwrócić uwagę na typ danych w kolumnie jeśli typ to <chr>, to najprawdopodobniej jest to dana kategorialna ## Zadanie 3</p>
<pre class="r"><code>ggplot(data = mpg) +
geom_point(mapping = aes(x=displ, y=hwy, color=displ, size=displ))</code></pre>
<p><img src="
<p>zmienna ciągła jest interpolowania między dwoma kolorami tworząc gradient tak jak samo z rozmiarem, rozmiar jest skalowany w przypadku shape powoduje to błąd. Gdyby podać dane kategorialne podział byłby dyskretny, na różne kolory, wielkości, kształty ## Zadanie 4 Przykład w punkcie wyżej Ta sama zmienna bedzie przedstawiona różnymi metodami ## Zadanie 5 stroke wpływa na grubuść konturu, obrysu, mozna stosować z punktami i liniami</p>
<pre class="r"><code>?geom_point</code></pre>
</div>
<div id="zadanie-6" class="section level2">
<h2>Zadanie 6</h2>
<pre class="r"><code>ggplot(data = mpg) +
geom_point(mapping = aes(x=displ, y=hwy, color=displ &lt; 5))</code></pre>
<p><img src="
<pre class="r"><code>mpg %&gt;%
filter(displ &lt; 5) %&gt;%
mutate(is_less_than_5=displ &lt; 5)</code></pre>
<pre><code>## # A tibble: 196 x 12
## manufacturer model displ year cyl trans drv cty hwy fl class
## &lt;chr&gt; &lt;chr&gt; &lt;dbl&gt; &lt;int&gt; &lt;int&gt; &lt;chr&gt; &lt;chr&gt; &lt;int&gt; &lt;int&gt; &lt;chr&gt; &lt;chr&gt;
## 1 audi a4 1.8 1999 4 auto… f 18 29 p comp…
## 2 audi a4 1.8 1999 4 manu… f 21 29 p comp…
## 3 audi a4 2 2008 4 manu… f 20 31 p comp…
## 4 audi a4 2 2008 4 auto… f 21 30 p comp…
## 5 audi a4 2.8 1999 6 auto… f 16 26 p comp…
## 6 audi a4 2.8 1999 6 manu… f 18 26 p comp…
## 7 audi a4 3.1 2008 6 auto… f 18 27 p comp…
## 8 audi a4 q… 1.8 1999 4 manu… 4 18 26 p comp…
## 9 audi a4 q… 1.8 1999 4 auto… 4 16 25 p comp…
## 10 audi a4 q… 2 2008 4 manu… 4 20 28 p comp…
## # … with 186 more rows, and 1 more variable: is_less_than_5 &lt;lgl&gt;</code></pre>
<p>Przypisanie displ &lt; 5 podzieliło data set na dwie grupy TRUE oraz FALSE, w zalezności od tego czy warunek był spełniony czy nie. # 3.5.1 ## Zadanie 1</p>
<pre class="r"><code>ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ displ)</code></pre>
<p><img src="
<p>ggplot potraktuje ją jako zmienną kategorialną, tworząc siatkę dla kazdej unikatowej wartości zmiennej ciagłęj ## Zadanie 2</p>
<pre class="r"><code>ggplot(data = mpg) +
geom_point(mapping = aes(x = drv, y = cyl))</code></pre>
<p><img src="
<pre class="r"><code>ggplot(data = mpg) +
geom_point(mapping = aes(x = drv, y = cyl)) +
facet_grid(cyl~drv)</code></pre>
<p><img src="
<p>puste komórki oznacznaczają brak danych ## Zadanie 3</p>
<pre class="r"><code>ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ .)</code></pre>
<p><img src="
<pre class="r"><code>ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(. ~ cyl)</code></pre>
<p><img src="
<p>kropka traktowana jest jako puste pole, wtedy jedna z osi, nie bedzie kategoryzowana ## Zadanie 4</p>
<pre class="r"><code>ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~ class, nrow = 2)</code></pre>
<p><img src="
</div>
</div>
<div id="section-3" class="section level1">
<h1>3.6.1</h1>
<div id="zadanie-1-3" class="section level2">
<h2>Zadanie 1</h2>
<p>liniowy - geom_line() pudełkowy - geom_boxplot() histogram - geom_histogram() warstwowy - geom_area() ## Zadanie 2</p>
<pre class="r"><code>ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth(se = FALSE)</code></pre>
<pre><code>## `geom_smooth()` using method = 'loess' and formula 'y ~ x'</code></pre>
<p><img src="
</div>
<div id="zadanie-3" class="section level2">
<h2>Zadanie 3</h2>
<p>show.legend = FALSE, sluży do ukrycia legendy ## Zadanie 4 parametr se w funcji geom_smooth() służy do pokazania, lub ukrycia przedziałów ufnośći na wykresie. ## Zadanie 5 dwa poniższe wyresy są takie same, różnią się tylko sposobem denifincji mapowania. mapowanie wewnątrz aes w ggplot, przenosi mapowania na wszystkie geometrie, gdy nie sa zdefiniowane inne.</p>
<pre class="r"><code>ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth()</code></pre>
<pre><code>## `geom_smooth()` using method = 'loess' and formula 'y ~ x'</code></pre>
<p><img src="
<pre class="r"><code>ggplot() +
geom_point(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_smooth(data = mpg, mapping = aes(x = displ, y = hwy))</code></pre>
<pre><code>## `geom_smooth()` using method = 'loess' and formula 'y ~ x'</code></pre>
<p><img src="
</div>
<div id="zadanie-6-1" class="section level2">
<h2>Zadanie 6</h2>
<p>Wykres 1</p>
<pre class="r"><code>mpg %&gt;%
ggplot(aes(x=displ, y=hwy)) +
geom_point() +
geom_smooth(se=FALSE)</code></pre>
<pre><code>## `geom_smooth()` using method = 'loess' and formula 'y ~ x'</code></pre>
<p><img src="
<p>Wykres 2</p>
<pre class="r"><code>mpg %&gt;%
ggplot(aes(x=displ, y=hwy, group=drv)) +
geom_point() +
geom_smooth(se=FALSE)</code></pre>
<pre><code>## `geom_smooth()` using method = 'loess' and formula 'y ~ x'</code></pre>
<p><img src="
<p>Wykres 3</p>
<pre class="r"><code>mpg %&gt;%
ggplot(aes(x=displ, y=hwy, color=drv)) +
geom_point() +
geom_smooth(se=FALSE)</code></pre>
<pre><code>## `geom_smooth()` using method = 'loess' and formula 'y ~ x'</code></pre>
<p><img src="
<p>Wykres 4</p>
<pre class="r"><code>mpg %&gt;%
ggplot(aes(x=displ, y=hwy)) +
geom_point(aes(color=drv)) +
geom_smooth(se=FALSE)</code></pre>
<pre><code>## `geom_smooth()` using method = 'loess' and formula 'y ~ x'</code></pre>
<p><img src="
<p>Wykres 5</p>
<pre class="r"><code>mpg %&gt;%
ggplot(aes(x=displ, y=hwy)) +
geom_point(aes(color=drv)) +
geom_smooth(aes(linetype=drv), se=FALSE)</code></pre>
<pre><code>## `geom_smooth()` using method = 'loess' and formula 'y ~ x'</code></pre>
<p><img src="
<p>Wykres 6</p>
<pre class="r"><code>mpg %&gt;%
ggplot(aes(x=displ, y=hwy)) +
geom_point(aes(fill=drv), shape=21, stroke=2, color='white', size=2)</code></pre>
<p><img src="
</div>
</div>
<div id="section-4" class="section level1">
<h1>3.7.1</h1>
<pre class="r"><code># Zadanie 1
?stat_summary</code></pre>
<p>Funcja stat_summary jest związana w funcją geom_pointrange()</p>
<pre class="r"><code>diamonds %&gt;%
ggplot() +
geom_pointrange(aes(x = cut, y = depth), stat='summary')</code></pre>
<pre><code>## No summary function supplied, defaulting to `mean_se()`</code></pre>
<p><img src="
<div id="zadanie-2-3" class="section level2">
<h2>Zadanie 2</h2>
<p>funkcja geom_bar służy do wykresów słupkowych/kolumnowych i jej domyslna statystyka do count, funcja geom_col, ma domyślną statystykę identity ## Zadanie 3</p>
<p>geom_bar : stat_count geom_col : identity geom_histogram: stat_bin geom_line : identity geom_path : identity geom_step : identity geom_segment : identity geom_curve : identity geom_spoke : identity geom_polygon : identity geom_ribbot : identity geom_area : identity geom_freqpoly : stat_bin</p>
</div>
<div id="zadanie-4" class="section level2">
<h2>Zadanie 4</h2>
<p>?geom_smmoth : stat_smooth y - predicted value ymin - lower pointwise confidence interval around the mean yman - upper pointwise confidence interval around the mean se = standard error</p>
</div>
<div id="zadanie-5-1" class="section level2">
<h2>Zadanie 5</h2>
<p>każdy “słupek” jest taki sam</p>
<pre class="r"><code>ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, y = ..prop..))</code></pre>
<p><img src="
<pre class="r"><code>ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, fill = color, y = ..prop..))</code></pre>
<p><img src="
<pre class="r"><code># uzyliśmy group=1, aby nadpisać domysle grupowanie funcji geom_bar, które grupuje po x, czyli po cut,
# dlatego każdy słupek wyglądał identycznie, ponieważ powinniśmy w tym przypadku zgrupować po całym zbiorze, usunąć grupy.
# równie dobrze będzie działać group=2, albo group='abc'
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, fill = color, y = ..prop.., group=1))</code></pre>
<p><img src="
</div>
</div>
<div id="section-5" class="section level1">
<h1>3.8.1</h1>
<div id="zadanie-1-4" class="section level2">
<h2>Zadanie 1</h2>
<pre class="r"><code>ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
geom_point()</code></pre>
<p><img src="
</div>
<div id="zadanie-2-4" class="section level2">
<h2>Zadanie 2</h2>
<p>nakładają się na siebie punkty i nie widać dobrze zagęszczenia mozna poprawić przez dodanie posiiton=jitter</p>
<pre class="r"><code> ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
geom_point(position='jitter')</code></pre>
<p><img src="
</div>
<div id="zadanie-3-1" class="section level2">
<h2>Zadanie 3</h2>
<pre class="r"><code> ?geom_jitter</code></pre>
<p>paremtry width i height</p>
<pre class="r"><code> ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
geom_jitter(position='jitter')</code></pre>
<p><img src="
<pre class="r"><code> ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
geom_count(position='jitter')</code></pre>
<p><img src="
<pre class="r"><code> #' obie funcje pokazują zagęszczenie, geom jitter, rozsuwa je aby było widać kazdy punkt.
#' geom count pokazuje zagęszczenie przez parametr size.</code></pre>
<p>Zadanie 4</p>
<pre class="r"><code>?geom_boxplot</code></pre>
<p>domyślne dopasowanie dla geom_boxplot to dodge2</p>
<pre class="r"><code>mpg %&gt;%
ggplot(aes(x=cty, y=factor(cyl))) +
geom_boxplot()</code></pre>
<p><img src="
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open')
});
});
</script>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>