2019-05-29 10:36:34 +02:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import settings
|
|
|
|
import pypianoroll as roll
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
|
|
|
import os
|
|
|
|
from tqdm import tqdm
|
|
|
|
from math import floor
|
|
|
|
import sys
|
2019-05-30 11:23:34 +02:00
|
|
|
import pickle
|
|
|
|
from tqdm import tqdm
|
|
|
|
from tqdm import trange
|
|
|
|
from collections import defaultdict
|
|
|
|
|
|
|
|
import bz2
|
|
|
|
import pickle
|
2019-05-29 10:36:34 +02:00
|
|
|
|
|
|
|
def to_samples(midi_file_path, midi_res=settings.midi_resolution):
|
|
|
|
|
2019-05-30 11:23:34 +02:00
|
|
|
# TODO: add transpositions of every sample to every possible key transposition
|
|
|
|
# np.roll(sample, pitch_interval, axis=1) for transposition
|
|
|
|
# np.roll(sample, time_steps, axis=0) for time shifting
|
|
|
|
all_X_samples = []
|
|
|
|
all_y_samples = []
|
|
|
|
for track in roll.Multitrack(midi_file_path).tracks:
|
|
|
|
if not track.is_drum:
|
|
|
|
# TODO: this makes rollable samples and dataset of y_train for prdiction
|
|
|
|
# the idea is to predict next N timesteps from prevous M timesteps
|
|
|
|
m_timesteps = 96
|
|
|
|
n_next_notes = 4
|
|
|
|
|
|
|
|
track_timesteps = track.pianoroll.shape[0] - (m_timesteps + n_next_notes)
|
|
|
|
|
|
|
|
X_track_samples = []
|
|
|
|
y_track_samples = []
|
|
|
|
for i in range(track_timesteps):
|
|
|
|
X = track.pianoroll[i : i + m_timesteps].reshape(96,128)
|
|
|
|
y = track.pianoroll[i + m_timesteps : i + m_timesteps + n_next_notes].reshape(4,128)
|
|
|
|
X_track_samples.append(X)
|
|
|
|
y_track_samples.append(y)
|
|
|
|
|
|
|
|
all_X_samples.extend(X_track_samples)
|
|
|
|
all_y_samples.extend(y_track_samples)
|
|
|
|
else:
|
|
|
|
# TODO: add code for drums samples
|
|
|
|
pass
|
|
|
|
return all_X_samples, all_y_samples
|
|
|
|
|
|
|
|
def to_samples_by_instrument(midi_file_path, midi_res=settings.midi_resolution):
|
|
|
|
|
|
|
|
# add transpositions of every sample to every possible key transposition
|
|
|
|
# np.roll(sample, pitch_interval, axis=1) for transposition
|
|
|
|
# np.roll(sample, time_steps, axis=0) for time shifting
|
2019-05-29 10:36:34 +02:00
|
|
|
|
2019-05-30 11:23:34 +02:00
|
|
|
# TODO: make rollable samples with train_Y set
|
2019-05-29 10:36:34 +02:00
|
|
|
|
2019-05-30 11:23:34 +02:00
|
|
|
fill_empty_array = lambda : [ np.empty((0, 96, 128)) , np.empty((0, 1, 128)) ]
|
|
|
|
samples_by_instrument = defaultdict(fill_empty_array)
|
|
|
|
all_beats = np.empty((0, 96, 128))
|
2019-05-29 10:36:34 +02:00
|
|
|
|
|
|
|
for track in roll.Multitrack(midi_file_path).tracks:
|
|
|
|
if not track.is_drum:
|
2019-05-30 11:23:34 +02:00
|
|
|
key = track.program + 1
|
|
|
|
# TODO: this makes pack of samples of N x 96 x 128 shape
|
|
|
|
# number_of_beats = floor(track.pianoroll.shape[0] / midi_res)
|
|
|
|
# track_pianoroll = track.pianoroll[: number_of_beats * midi_res]
|
|
|
|
# track_beats = track_pianoroll.reshape(number_of_beats, midi_res, 128)
|
|
|
|
|
|
|
|
# TODO: this makes rollable samples and dataset of y_train for prdiction
|
|
|
|
# the idea is to predict next n notes from prevous m timesteps
|
|
|
|
m_timesteps = 96
|
|
|
|
n_next_notes = 4
|
|
|
|
for i, value in tqdm(enumerate(track.pianoroll[:-(m_timesteps + n_next_notes)])):
|
|
|
|
X = track.pianoroll[i : i + m_timesteps].reshape(1,96,128)
|
|
|
|
y = track.pianoroll[i + m_timesteps : i + m_timesteps + n_next_notes].reshape(1,1,128)
|
|
|
|
|
|
|
|
samples_by_instrument[key][0] = np.concatenate([X, samples_by_instrument[ key ][0]], axis=0)
|
|
|
|
samples_by_instrument[key][1] = np.concatenate([y, samples_by_instrument[ key ][1]], axis=0)
|
|
|
|
|
|
|
|
# samples_by_instrument[track.program + 1][0] = np.concatenate([track_beats, samples_by_instrument[ track.program + 1]], axis=0)
|
2019-05-29 10:36:34 +02:00
|
|
|
else:
|
2019-05-30 11:23:34 +02:00
|
|
|
# TODO: add code for drums samples
|
2019-05-29 10:36:34 +02:00
|
|
|
pass
|
2019-05-30 11:23:34 +02:00
|
|
|
return samples_by_instrument
|
2019-05-29 10:36:34 +02:00
|
|
|
|
|
|
|
def to_midi(samples, output_path=settings.generated_midi_path, program=0, tempo=120, beat_resolution=settings.beat_resolution):
|
|
|
|
tracks = [roll.Track(samples, program=program)]
|
|
|
|
return_midi = roll.Multitrack(tracks=tracks, tempo=tempo, downbeat=[0, 96, 192, 288], beat_resolution=beat_resolution)
|
2019-05-30 11:23:34 +02:00
|
|
|
roll.write(return_midi, output_path)
|
2019-05-29 10:36:34 +02:00
|
|
|
|
2019-05-29 10:50:00 +02:00
|
|
|
# todo: this function is running too slow.
|
2019-05-29 10:36:34 +02:00
|
|
|
def delete_empty_samples(sample_pack):
|
|
|
|
print('Deleting empty samples...')
|
|
|
|
temp_sample_pack = sample_pack
|
|
|
|
index_manipulator = 1
|
|
|
|
for index, sample in enumerate(sample_pack):
|
|
|
|
if sample.sum() == 0:
|
|
|
|
temp_sample_pack = np.delete(temp_sample_pack, index-index_manipulator, axis=0)
|
|
|
|
index_manipulator = index_manipulator + 1
|
|
|
|
print('Deleted {} empty samples'.format(index_manipulator-1))
|
|
|
|
return temp_sample_pack
|
|
|
|
|
|
|
|
def main():
|
2019-05-30 11:23:34 +02:00
|
|
|
print('Exporting...')
|
|
|
|
|
|
|
|
# from collections import defaultdict
|
|
|
|
# fill_empty_array = lambda : [ np.empty((0, 96, 128)) , np.empty((0, 1, 128)) ]
|
|
|
|
# samples_pack_by_instrument = defaultdict(fill_empty_array)
|
|
|
|
|
|
|
|
# sample_pack = np.empty((0,settings.midi_resolution,128))
|
|
|
|
X_train = []
|
|
|
|
y_train = []
|
|
|
|
|
|
|
|
for midi_file in tqdm(os.listdir(settings.midi_dir)):
|
|
|
|
print(midi_file)
|
|
|
|
midi_file_path = '{}/{}'.format(settings.midi_dir, midi_file)
|
|
|
|
X, y = to_samples(midi_file_path)
|
|
|
|
# if midi_samples is None:
|
|
|
|
# continue
|
|
|
|
X_train.extend(X)
|
|
|
|
y_train.extend(y)
|
|
|
|
# this is for intrument separation
|
|
|
|
# for key, value in midi_samples.items():
|
|
|
|
# samples_pack_by_instrument[key][0] = np.concatenate((samples_pack_by_instrument[key][0], value[0]), axis=0)
|
|
|
|
# samples_pack_by_instrument[key][1] = np.concatenate((samples_pack_by_instrument[key][1], value[1]), axis=0)
|
|
|
|
|
|
|
|
# TODO: Delete empty samples
|
|
|
|
# sample_pack = delete_empty_samples(sample_pack)
|
|
|
|
|
|
|
|
# save as compressed pickle (sample-dictionary)
|
|
|
|
# sfile = bz2.BZ2File('data/samples.pickle', 'w')
|
|
|
|
# pickle.dump(dict(samples_pack_by_instrument), sfile)
|
|
|
|
|
|
|
|
# this is for intrument separation
|
|
|
|
# print('Saving...')
|
|
|
|
# for key, value in tqdm(samples_pack_by_instrument.items()):
|
|
|
|
# np.savez_compressed('data/samples/X_{}.npz'.format(settings.midi_program[key][0]), value)
|
|
|
|
# np.savez_compressed('data/samples/y_{}.npz'.format(settings.midi_program[key][1]), value)
|
|
|
|
|
|
|
|
# this if for one big list
|
|
|
|
print('Saving...')
|
|
|
|
|
|
|
|
np_X_train = np.array(X_train)
|
|
|
|
np_y_train = np.array(y_train)
|
|
|
|
print(np_X_train.shape, np_y_train.shape)
|
|
|
|
np.savez_compressed('data/samples/X_{}.npz'.format(1), np_X_train)
|
|
|
|
np.savez_compressed('data/samples/y_{}.npz'.format(1), np_y_train)
|
|
|
|
|
|
|
|
# Give a preview of what samples looks like
|
|
|
|
# fig, axes = plt.subplots(nrows=10, ncols=10, figsize=(20, 20))
|
|
|
|
# for idx, ax in enumerate(axes.ravel()):
|
|
|
|
# n = np.random.randint(0, value[0].shape[0])
|
|
|
|
# sample = value[n]
|
|
|
|
# ax.imshow(sample, cmap = plt.get_cmap('gray'))
|
|
|
|
# plt.savefig('data/samples/{}.png'.format(settings.midi_program[key]))
|
|
|
|
|
|
|
|
print('Exported {} samples'.format(np_X_train.shape[0]))
|
|
|
|
print('Done!')
|
2019-05-29 10:36:34 +02:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|