23 lines
733 B
Python
23 lines
733 B
Python
|
import numpy as np
|
||
|
from keras.layers import Input, Dense, Conv2D
|
||
|
from keras.models import Model
|
||
|
GENERATED_BEAT_PATH = 'data/output/generated_bar'
|
||
|
MODEL_PATH = 'data/autoencoder_model.h5'
|
||
|
SAMPLES_PATH = 'data/samples.npz'
|
||
|
|
||
|
input = Input(shape=(1,96,128))
|
||
|
encoded = Conv2D(filters = 32, kernel_size = 1)(input)
|
||
|
decoded = Conv2D(filters = 128, kernel_size = 1)(encoded)
|
||
|
autoencoder = Model(input, decoded)
|
||
|
|
||
|
# load weights into new model
|
||
|
autoencoder.load_weights(MODEL_PATH)
|
||
|
print("Loaded model from disk")
|
||
|
|
||
|
# generate_seed = np.random.rand(1,1,96,128)
|
||
|
|
||
|
generate_seed = np.load(SAMPLES_PATH)['arr_0'][0:]
|
||
|
|
||
|
generated_beat = autoencoder.predict(generate_seed)
|
||
|
np.savez_compressed(GENERATED_BEAT_PATH, generated_beat)
|