praca-magisterska/project/midi.py

73 lines
2.8 KiB
Python
Raw Normal View History

2019-05-29 10:36:34 +02:00
#!/usr/bin/env python3
import settings
import pypianoroll as roll
import numpy as np
import os
from tqdm import tqdm
from math import floor
import sys
from collections import defaultdict
import pickle
from music21 import converter, instrument, note, chord, stream
import music21
2019-05-29 10:36:34 +02:00
midi_folder_path = sys.argv[1]
output_path = sys.argv[2]
def to_sequence(midi_path):
seq_by_instrument = defaultdict( lambda : [] )
midi_file = music21.converter.parse(midi_path)
stream = music21.instrument.partitionByInstrument(midi_file)
for part in stream:
for event in part:
if part.partName != None:
# TODO: add note lenght as parameter
if isinstance(event, music21.note.Note):
# to_export_event = (str(event.pitch), event.quarterLength)
to_export_event = str(event.pitch)
seq_by_instrument[part.partName].append(to_export_event)
elif isinstance(event, music21.chord.Chord):
to_export_event = ' '.join(str(note) for note in event.pitches)
# to_export_event = (' '.join(str(note) for note in event.pitches), event.quarterLength)
seq_by_instrument[part.partName].append(to_export_event)
X_train_by_instrument = defaultdict( lambda : [] )
y_train_by_instrument = defaultdict( lambda : [] )
for instrument, sequence in seq_by_instrument.items():
for i in range(len(sequence)-8) :
X_train_by_instrument[instrument].append(np.array(sequence[i: i + 8])) # <seq lenth
y_train_by_instrument[instrument].append(np.array(sequence[i + 8]))
# TODO: Notes to integers
return X_train_by_instrument, y_train_by_instrument
2019-05-30 13:36:15 +02:00
2019-05-29 10:36:34 +02:00
def main():
print('Exporting...')
train_X = defaultdict( lambda : [] )
train_y = defaultdict( lambda : [] )
for directory, subdirectories, files in os.walk(midi_folder_path):
for midi_file in tqdm(files):
midi_file_path = os.path.join(directory, midi_file)
_X_train, _y_train = to_sequence(midi_file_path)
for (X_key, X_value), (y_key, y_value) in zip(_X_train.items(), _y_train.items()):
train_X[X_key].extend(np.array(X_value))
train_y[y_key].extend(np.array(y_value))
# this is for intrument separation
print('Saving...')
if not os.path.exists(output_path):
os.makedirs(output_path)
for (X_key, X_value), (y_key, y_value) in tqdm(zip(train_X.items(), train_y.items())):
if X_key == y_key:
np.savez_compressed('{}/{}.npz'.format(output_path, X_key), np.array(X_value), np.array(y_value))
print('Done!')
2019-05-29 10:36:34 +02:00
if __name__ == '__main__':
main()